Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 maja 2025 10:34
  • Data zakończenia: 7 maja 2025 11:02

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Detektor z lampą UV
B. Detektor gazów
C. Ultradźwiękowy wykrywacz nieszczelności
D. Optyczny detektor nieszczelności
Detektor z lampą ultrafioletową nie jest odpowiednim narzędziem do wykrywania nieszczelności w instalacjach pneumatycznych. To urządzenie jest zazwyczaj stosowane w diagnostyce wycieków substancji organicznych, takich jak oleje czy płyny hydrauliczne, które po nałożeniu specjalnego barwnika fluorescencyjnego mogą być identyfikowane pod wpływem promieniowania UV. W przypadku gazów czy powietrza, które nie mają zdolności do fluorescencji, metoda ta jest nieefektywna. Optyczny wykrywacz nieszczelności również nie jest najlepszym wyborem, ponieważ polega on na optycznym wykrywaniu zmian w strukturze materiału, co w przypadku gazów i powietrza nie przynosi pożądanych rezultatów. Detektory gazowe, choć mogą identyfikować obecność niektórych gazów, nie są w stanie precyzyjnie lokalizować nieszczelności w instalacjach pneumatycznych. Często prowadzi to do błędnych przekonań, że wystarczy wykryć obecność danego gazu, aby ocenić szczelność instalacji. W rzeczywistości, nieszczelności mogą być bardzo małe i trudne do wykrycia przy użyciu tych metod. Dlatego kluczowe jest zastosowanie odpowiednich technologii, takich jak ultradźwiękowe wykrywacze nieszczelności, które są bardziej precyzyjne i skuteczne w lokalizowaniu problemów w instalacjach pneumatycznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Zbiornika sprężonego powietrza
B. Siłownika dwustronnego działania
C. Siłownika jednostronnego działania
D. Zbiornika oleju hydraulicznego
Podłączenie przyłącza oznaczonego literą T do zbiornika oleju hydraulicznego jest kluczowe dla prawidłowego funkcjonowania systemu hydraulicznego. Przyłącze T, znane również jako przyłącze powrotne, służy do odprowadzania oleju hydraulicznego po jego przejściu przez układ. W standardowych zaworach hydraulicznych 4/2, przyłącze T łączy się z zbiornikiem, umożliwiając powrót oleju do obiegu, co zapobiega nadciśnieniu i pozwala na efektywne zarządzanie ciśnieniem w systemie. W praktyce, gdy ciśnienie w systemie wzrasta, olej jest kierowany do zbiornika, gdzie może być schłodzony i ponownie wykorzystywany. Zgodnie z dobrymi praktykami, ważne jest, aby przyłącze T było właściwie zabezpieczone i miało odpowiednią średnicę, aby uniknąć zatorów, co mogłoby prowadzić do uszkodzeń systemu hydraulicznego. Wiele aplikacji przemysłowych, takich jak maszyny budowlane czy linie produkcyjne, korzysta z tego rozwiązania, co potwierdza jego znaczenie w hydraulice.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
B. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
C. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
D. wylutowania uszkodzonej diody oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 12

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany rezystancji
C. zmiany indukcyjności własnej
D. zmiany pojemności elektrycznej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 13

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 24
B. 30
C. 75
D. 60
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 14

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. jarzmowe
B. śrubowe toczne
C. korbowe
D. cierne pośrednie
Odpowiedź 'śrubowe toczne' jest poprawna, ponieważ w tokarkach CNC ruch posuwowy, który jest kluczowy dla precyzyjnego wykonywania obróbki skrawaniem, jest realizowany za pomocą przekładni śrubowych tocznych. Te systemy wykorzystują śruby o dużym skoku, co pozwala na dokładne i płynne przesunięcie narzędzia skrawającego wzdłuż osi roboczej. Przekładnie te są preferowane w aplikacjach CNC, ponieważ zapewniają wysoką precyzję oraz powtarzalność, co jest zgodne z normami branżowymi dotyczącymi jakości obróbki. Na przykład, w przemyśle motoryzacyjnym, gdzie tolerancje wymiarowe są bardzo rygorystyczne, wykorzystanie przekładni śrubowych tocznych pozwala na osiągnięcie wymaganych parametrów przy zachowaniu efektywności produkcji. Warto również zauważyć, że systemy te są stosowane w wielu nowoczesnych maszynach, co czyni je standardem w branży obróbczej. W zakresie najlepszych praktyk, operatorzy powinni regularnie kontrolować stan tych przekładni, aby zapewnić ich długowieczność i niezawodność w pracy.

Pytanie 15

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Stal niskowęglowa
C. Żeliwo szare
D. Stal wysokowęglowa
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Stal używana do wytwarzania zbiorników ciśnieniowych oznaczana jest w symbolu głównym literą

A. E
B. L
C. P
D. S
Odpowiedzi oznaczone literami 'L', 'E' oraz 'S' są nieprawidłowe w kontekście klasyfikacji stali do produkcji zbiorników ciśnieniowych. Stal oznaczona literą 'L' jest zazwyczaj wykorzystywana w konstrukcjach stalowych, które nie są narażone na wysokie ciśnienia, co może prowadzić do błędnych założeń co do jej zastosowania w krytycznych aplikacjach. Wybór stali, która nie spełnia norm PN-EN 10028, może skutkować awarią strukturalną, co stawia pod znakiem zapytania bezpieczeństwo operacyjne. Z kolei stal oznaczona literą 'E' jest często związana z materiałami stosowanymi w elektrotechnice i nie ma zastosowania w kontekście konstrukcji ciśnieniowych. Natomiast litera 'S' zwykle odnosi się do stali konstrukcyjnej, która nie jest przystosowana do pracy w warunkach wysokiego ciśnienia. Użycie nieodpowiednich materiałów może prowadzić do poważnych konsekwencji, takich jak wycieki, eksplozje czy inne niebezpieczne sytuacje, dlatego kluczowe jest zrozumienie właściwego oznaczenia i zastosowania stali w kontekście ich przeznaczenia. Wiedza na temat właściwych symboli i standardów jest niezbędna dla inżynierów i techników zajmujących się projektowaniem oraz eksploatacją instalacji ciśnieniowych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. wzrostem reaktancji uzwojeń
B. zmniejszeniem prędkości obrotowej
C. spadkiem reaktancji uzwojeń
D. zwiększeniem prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 21

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w hełm ochronny
B. w rękawice antywibracyjne
C. w gogle ochronne
D. w odzież ochronną
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 22

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. dławiące
B. zwrotne
C. regulacyjne
D. rozdzielające
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Iskrobezpieczeństwo
B. Niezawodność
C. Efektywność
D. Bezobsługowość
Iskrobezpieczeństwo jest kluczową cechą w projektowaniu linii produkcyjnych, zwłaszcza w kontekście konfekcjonowania substancji chemicznych, takich jak rozcieńczalniki do farb i lakierów, które są łatwopalne i mogą wydzielać niebezpieczne opary. Użycie podzespołów i urządzeń spełniających normy iskrobezpieczeństwa (np. ATEX w Europie) ma na celu minimalizację ryzyka wybuchów oraz pożarów. Przykładem mogą być pompy, które są zaprojektowane tak, aby nie generować iskier podczas pracy, a także systemy wentylacyjne, które skutecznie odprowadzają opary. W praktyce oznacza to stosowanie materiałów odpornych na korozję, jak również instalację odpowiednich czujników wykrywających obecność niebezpiecznych gazów. Właściwe zabezpieczenie strefy zagrożonej wybuchem powinno obejmować także odpowiednie klasyfikacje stref, które są zgodne z międzynarodowymi standardami, takimi jak IEC 60079. Zatem iskrobezpieczeństwo nie tylko zwiększa bezpieczeństwo pracowników, ale także zapewnia ciągłość produkcji, co jest niezbędne w efektywnych liniach produkcyjnych.

Pytanie 27

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
B. nastąpiła awaria wewnętrzna sterownika
C. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
D. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 28

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. grupy siłowników z modułem rozszerzającym
B. programatora ze sterownikiem
C. silnika z pompą hydrauliczną
D. programatora z siłownikiem
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie metody wykorzystuje się do produkcji prętów?

A. tłoczenie
B. wytłaczanie
C. walcowanie
D. odlewanie
Walcowanie jest procesem obróbki plastycznej, który polega na redukcji grubości materiału przez jego przetaczanie pomiędzy dwoma walcami. Technika ta jest szeroko stosowana w produkcji prętów, ponieważ pozwala na uzyskanie odpowiednich właściwości mechanicznych oraz wymiarowych. Walcowanie może być przeprowadzane na gorąco lub na zimno, co wpływa na strukturę mikro oraz mechaniczne właściwości końcowego produktu. Dzięki walcowaniu, pręty charakteryzują się jednorodnością materiałową oraz lepszą jakością powierzchni, co jest niezbędne w wielu zastosowaniach inżynieryjnych, takich jak budownictwo czy przemysł motoryzacyjny. W branży istnieją także normy, takie jak EN 10025, które określają wymagania dotyczące stali walcowanej, co dodatkowo podkreśla znaczenie tej metody w produkcji. Walcowanie jest procesem efektywnym, który przyczynia się do obniżenia kosztów produkcji oraz zwiększenia wydajności, co czyni tę metodę jedną z najpopularniejszych w obróbce metali.

Pytanie 33

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. amplitudy impulsu
B. częstotliwości oraz fazy impulsu
C. szerokości impulsu
D. częstotliwości impulsu
Modulacja impulsowa oznaczona jako PWM jest często mylona z innymi formami modulacji, co prowadzi do nieporozumień na temat jej działania. Zmiana częstotliwości impulsu nie jest właściwa, ponieważ w PWM częstotliwość pozostaje stała, a zmienia się tylko szerokość impulsów. Użytkownicy mogą mylić tę koncepcję z modulacją częstotliwości (FM), w której to właśnie częstotliwość sygnału jest zmieniana. Z kolei zmiana fazy impulsu odnosi się raczej do technik, które są stosowane w modulacji fazy, gdzie istotne jest przesunięcie fazy sygnału, co również nie jest cechą PWM. Ostatnia z niepoprawnych koncepcji, związana z amplitudą impulsu, odnosi się do modulacji amplitudy (AM), w której zmiana amplitudy fali nośnej jest kluczowa. Takie błędne myślenie może wynikać z nieznajomości różnic pomiędzy różnymi technikami modulacji. Zrozumienie, że PWM polega na zmianie szerokości impulsów, a nie innych parametrów, jest kluczowe do prawidłowego zastosowania tej techniki w praktyce. Niezrozumienie podstaw PWM może prowadzić do niewłaściwego projektowania układów, co w konsekwencji skutkuje nieefektywnym wykorzystaniem energii lub nawet uszkodzeniem komponentów. Dlatego ważne jest, aby zrozumieć, jak PWM działa oraz jakie ma zastosowanie w różnych dziedzinach inżynierii.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.