Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 kwietnia 2025 17:26
  • Data zakończenia: 19 kwietnia 2025 17:40

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 50g
B. 80g
C. 200g
D. 20g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 2

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 ml
B. 200 dm3
C. 20 dm3
D. 200 cm3
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 3

Który z wskaźników nie jest używany w alkacymetrii?

A. Skrobia
B. Oranż metylowy
C. Fenoloftaleina
D. Błękit tymolowy
Oranż metylowy, fenoloftaleina oraz błękit tymolowy to wskaźniki, które odgrywają kluczową rolę w alkacymetrii, a ich zastosowanie jest oparte na ich zdolności do zmiany koloru w odpowiedzi na zmiany pH roztworu. Oranż metylowy, zmieniający kolor przy pH 3,1 - 4,4, jest szczególnie użyteczny w reakcjach, gdzie dominują kwasy. Fenoloftaleina, zmieniająca barwę z bezbarwnej na różową w zakresie pH 8,2 - 10,0, znajduje zastosowanie w titracji zasadowej, gdzie istotne jest ustalenie momentu, w którym zasadowość roztworu jest wystarczająca do neutralizacji kwasu. Błękit tymolowy, zmieniający kolor w pH 6,0 - 7,6, jest często wykorzystywany w analizach, gdzie pH roztworu zbliża się do neutralności. W związku z tym, mylenie skrobi z tymi wskaźnikami może wynikać z nieporozumienia dotyczącego ich funkcji. Skrobia, będąca naturalnym polisacharydem, nie działa jako wskaźnik pH, lecz jest używana jako reagent do wykrywania jodu, co pokazuje różnice w ich zastosowaniach. Zrozumienie różnic w zastosowaniach tych substancji jest kluczowe, aby uniknąć błędnych wniosków w praktyce laboratoryjnej.

Pytanie 4

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. sedymentacja
B. dekantacja
C. hydratacja
D. absorpcja
Hydratacja, absorpcja i dekantacja to procesy, które różnią się zasadniczo od sedymentacji, co może prowadzić do nieporozumień. Hydratacja odnosi się do procesu, w którym cząsteczki wody wchodzą w interakcje z innymi substancjami, często prowadząc do ich rozpuszczenia lub zmiany stanu skupienia. Nie jest to więc proces związany z opadaniem cząstek ani ich separacją przez grawitację. Absorpcja z kolei dotyczy wchłaniania substancji przez inne materiały, co również nie ma związku z grawitacyjnym oddzielaniem cząstek. W kontekście chemii i technologii materiałowej absorpcja ma zastosowanie w procesach takich jak filtracja, gdzie substancje są wchłaniane przez porowate materiały, ale nie jest to tożsame z sedymentacją. Dekantacja to metoda polegająca na oddzielaniu cieczy od osadu, jednak wymaga wcześniejszej sedymentacji, aby cząstki mogły opaść na dno. Dekantacja jest bardziej zaawansowanym procesem, który nie odbywa się wyłącznie pod wpływem siły grawitacji, lecz również zakłada manualne lub mechaniczne oddzielenie faz. Dlatego zrozumienie różnic między tymi procesami jest kluczowe w naukach przyrodniczych i inżynieryjnych, a niepoprawne przypisanie cech jednego procesu do drugiego może prowadzić do błędnych wniosków oraz nieefektywności w praktycznych zastosowaniach.

Pytanie 5

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. kulistą
B. palcową
C. prostą
D. spiralną
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 6

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
B. Metoda wydania, imię i nazwisko osoby wydającej
C. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
D. Data ważności, forma substancji
Odpowiedź dotycząca zapisania wydanych ilości, stanu zapasów oraz nazwiska osoby, której substancja została wydana, jest prawidłowa, ponieważ ewidencja rozchodu substancji niebezpiecznych wymaga szczegółowego dokumentowania tych informacji w celu zapewnienia bezpieczeństwa i zgodności z przepisami. Wydane ilości umożliwiają śledzenie zużycia substancji, co jest niezbędne do oceny ich dostępności i planowania zakupów. Stan zapasów pozwala na zarządzanie zasobami, minimalizując ryzyko ich niedoboru, co jest istotne w kontekście ciągłości pracy laboratorium. Imię i nazwisko osoby, której substancja została wydana, pozwala na identyfikację użytkownika, co jest kluczowe w przypadku ewentualnych incydentów związanych z bezpieczeństwem. W praktyce, takie podejście jest zgodne z normami ISO 14001, które podkreślają znaczenie dokumentacji w zarządzaniu substancjami niebezpiecznymi, a także z dobrą praktyką laboratoryjną (GLP), która nakłada obowiązek ścisłego rejestrowania obiegu substancji chemicznych.

Pytanie 7

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,740 g
B. 27,740 g
C. 22,745 g
D. 27,745 g
Jak się pomylisz, to warto zwrócić uwagę na typowe błędy przy obliczaniu masy. Na przykład odpowiedzi 22,745 g i 22,740 g mogą wskazywać na błędy przy sumowaniu masy odważników albo problem z przeliczaniem jednostek. Często niektórzy zapominają, żeby uwzględnić wszystkie jednostki, co potem prowadzi do tego, że masa wyjdzie za mała. Przykładowo, jak 500 mg to 0,5 g, to trzeba to doliczyć do całości. Zrozumienie, jak przeliczać jednostki, jest naprawdę ważne w laboratoriach. Inny częsty błąd to pominięcie sumy odważników, przez co wynik jest niższy niż powinien być. W praktyce widzę, że każdy detal ma znaczenie, a jak popełnisz błąd w jednym kroku, to cały proces może się skomplikować. Dokładność i staranność to kluczowe sprawy, bo ich brak może prowadzić do złych wyników w badaniach czy kontrolach jakości w przemyśle.

Pytanie 8

Piknometr służy do określania

A. gęstości
B. rozpuszczalności
C. wilgotności
D. lepkości
Piknometr jest precyzyjnym przyrządem służącym do pomiaru gęstości substancji, co jest niezwykle istotne w wielu dziedzinach, takich jak chemia, biochemia czy inżynieria materiałowa. Gęstość jest definiowana jako masa na jednostkę objętości i ma kluczowe znaczenie w identyfikacji substancji oraz w kontrolowaniu jakości produktów. Piknometry są wykorzystywane w laboratoriach do pomiaru gęstości cieczy, a także ciał stałych po uprzednim ich przekształceniu w zawiesiny. Przykładowo, w analizie chemicznej, znajomość gęstości substancji pozwala na obliczenie stężenia roztworów, co jest krytyczne dla wielu procesów syntezy chemicznej i analitycznej. Zgodnie z zasadami metrologii, pomiar gęstości powinien być przeprowadzany w warunkach kontrolowanej temperatury, a piknometry muszą być kalibrowane, aby zapewnić wiarygodność wyników. Standardy, takie jak ASTM D1481, wyznaczają metody pomiaru gęstości z wykorzystaniem piknometrów, co dodatkowo podkreśla ich znaczenie w praktyce laboratywnej.

Pytanie 9

Czy próbkę laboratoryjną przechowuje się w lodówce, gdy występuje w niej

A. rozpad promieniotwórczy
B. degradacja termiczna
C. utrata lotnych składników
D. chłonięcie wody
Przechowywanie pobranych próbek laboratoryjnych w lodówce jest kluczowym procesem, gdyż zapobiega degradacji termicznej, która może prowadzić do nieodwracalnych zmian w składzie chemicznym analitów. Degradacja termiczna zachodzi, gdy próbki są narażone na podwyższone temperatury, co może powodować denaturację białek, rozkład enzymów, a także zmiany w składzie chemicznym substancji czynnych. Przechowywanie w lodówce (zwykle w temperaturze 2-8°C) zapewnia stabilność wielu związków, co jest niezbędne w badaniach analitycznych. Przykładowo, próbki krwi, moczu czy tkanek biologicznych często wymagają przechowywania w chłodnych warunkach, aby zminimalizować ryzyko degradacji. Standardy takie jak ISO 15189 dla laboratoriów medycznych podkreślają istotność odpowiednich warunków przechowywania próbek, co jest niezbędne dla uzyskania wiarygodnych wyników analiz. Właściwe przechowywanie nie tylko chroni próbki, ale również zwiększa dokładność wyników badań, co jest kluczowe dla diagnostyki i dalszego leczenia pacjentów.

Pytanie 10

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. wyniesieniu osoby poszkodowanej na świeże powietrze
B. zwilżeniu zimną wodą czoła i karku
C. rozpoczęciu resuscytacji
D. rozpoczęciu reanimacji
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 11

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. manometr
B. waga hydrostatyczna
C. areometr
D. piknometr
Manometr jest przyrządem służącym do pomiaru ciśnienia gazów i cieczy. Nie jest on jednak przeznaczony do wyznaczania gęstości cieczy. Gęstość, definiowana jako masa na jednostkę objętości, wymaga zastosowania innych narzędzi pomiarowych. Manometr działa na zasadzie różnicy ciśnień, co sprawia, że jest istotny w wielu zastosowaniach przemysłowych, takich jak monitorowanie ciśnienia w systemach hydraulicznych czy pneumatycznych. W praktyce, aby określić gęstość cieczy, można wykorzystać piknometr, który pozwala na bezpośredni pomiar masy próbki i jej objętości, co umożliwia obliczenie gęstości. Innym przyrządem jest areometr, który działa na zasadzie pływania w cieczy i również dostarcza informacji o gęstości. W przemyśle chemicznym, precyzyjne pomiary gęstości są kluczowe w kontroli jakości, dlatego znajomość właściwych narzędzi pomiarowych jest niezbędna.

Pytanie 12

Na skutek krystalizacji 18 g kwasu benzoesowego uzyskano 8 g czystego produktu. Jaką wydajność miała ta krystalizacja?

A. 2,25 g
B. 44,44 g
C. 2,25%
D. 44,44%
Wydawać by się mogło, że odpowiedzi takie jak 2,25 g czy 2,25% mogłyby być poprawne, jednak te wartości nie mają związku z obliczeniami wydajności procesu krystalizacji. Zwykle, gdy mówimy o wydajności, powinniśmy skupić się na całkowitej masie produktu w stosunku do masy surowca, a nie na jednostkowych masach. Na przykład, odpowiedź 2,25 g może sugerować, że powinno się podać masę uzyskanego produktu w inny sposób, co jest błędnym podejściem, ponieważ wydajność nie jest miarą masy, lecz stosunku. Podobnie, 2,25% jest nieprawidłowe, ponieważ nie uwzględnia całkowitej masy surowca, co jest kluczowym czynnikiem w obliczeniach. Prawidłowe podejście wymaga zrozumienia, że wydajność wyraża się w procentach i wynik uzyskuje się z podziału masy uzyskanego produktu przez masę surowca, a następnie pomnożeniu przez 100%. Wreszcie, odpowiedzi podane w gramach, takie jak 44,44 g, są niepoprawne, gdyż nie odnoszą się do procentowej wydajności procesu, a zamiast tego sugerują konkretną masę, co nie jest istotne w obliczeniach wydajności. Kluczowe jest zrozumienie, że wydajność procesu krystalizacji jest miarą efektywności, a nie bezpośrednio związana z masą surowca ani masą produktu, co prowadzi do typowych błędów w interpretacji danych procesowych.

Pytanie 13

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. galaretowatego osadu
B. drobnokrystalicznego osadu
C. serowatego osadu
D. grubokrystalicznego osadu
Reakcja chlorku żelaza(III) z wodorotlenkiem potasu prowadzi do wytrącenia wodorotlenku żelaza(III) w postaci galaretowatego osadu. Ta charakterystyka jest istotna w kontekście chemii analitycznej oraz w procesach związanych z oczyszczaniem wód. Galaretowaty osad jest wynikiem specyficznej kinetyki reakcji oraz agregacji cząsteczek w wyniku obecności warunków pH. W praktycznych zastosowaniach, taki osad jest łatwy do rozdzielenia od cieczy, co czyni go użytecznym w procesach filtracji. Ponadto, wodorotlenek żelaza(III) jest często stosowany w przemysłowych aplikacjach, takich jak produkcja pigmentów czy w medycynie do usuwania metali ciężkich z organizmu. Zrozumienie właściwości tego osadu jest kluczowe dla efektywnego projektowania procesów przemysłowych, w których kontrola nad rozdziałem faz jest niezbędna.

Pytanie 14

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. UV
B. na mokro
C. mikrofalową
D. na sucho
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 15

Próbka wzorcowa to próbka

A. otrzymana w wyniku zmieszania próbek jednostkowych
B. o dokładnie znanym składzie
C. przeznaczona w całości do jednego oznaczenia
D. przygotowana z próbki laboratoryjnej przez jej zmniejszenie
Próbka wzorcowa to próbka o dokładnie znanym składzie, co czyni ją kluczowym elementem w procesach analitycznych. W analizie chemicznej i badaniach laboratoryjnych próbki wzorcowe są niezbędne do kalibracji instrumentów pomiarowych, a także do walidacji metod analitycznych. Przykładem może być stosowanie standardów w technikach spektroskopowych, gdzie próbki wzorcowe pozwalają na uzyskanie precyzyjnych wyników pomiarów. Zgodnie z normami ISO, próbki wzorcowe powinny być przygotowane z najwyższą starannością, aby zminimalizować błędy pomiarowe. W praktyce, ich zastosowanie obejmuje również monitorowanie jakości procesu produkcyjnego, co pozwala na wykrywanie potencjalnych nieprawidłowości. Stosowanie próbki wzorcowej jest również zgodne z dobrymi praktykami laboratoryjnymi (GLP), które podkreślają znaczenie znanego składu prób w zapewnieniu wiarygodności wyników i umożliwieniu ich porównywalności. Dlatego też, rozwiązując problemy analityczne, znajomość i umiejętność wykorzystania próbek wzorcowych jest niezbędna dla każdego specjalisty w dziedzinie analizy chemicznej i biologicznej.

Pytanie 16

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera maksymalnie 0,1% zanieczyszczeń
B. zawiera co najmniej 0,05% zanieczyszczeń
C. zawiera co najmniej 0,1% zanieczyszczeń
D. zawiera maksymalnie 0,05% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera maksymalnie 0,1% zanieczyszczeń jest poprawny, ponieważ termin "cz.d.a." oznacza "czystość do analizy". Standardy analityczne, takie jak te określone przez European Pharmacopoeia oraz American Chemical Society, wskazują, że substancje oznaczone jako cz.d.a. spełniają wymogi czystości, które ograniczają zawartość zanieczyszczeń. W praktyce oznacza to, że odczynniki te mogą być wykorzystywane w analizach laboratoryjnych, gdzie niska zawartość zanieczyszczeń jest kluczowa dla uzyskania dokładnych wyników. Na przykład, w chemii analitycznej, zanieczyszczenia mogą wpływać na wyniki pomiarów spektroskopowych, dlatego istotne jest, aby stosowane odczynniki były wysokiej czystości. Właściwe zrozumienie oznaczeń na etykietach odczynników chemicznych jest zatem niezbędne dla każdego, kto pracuje w laboratoriach, aby zapewnić wiarygodność wyników badań.

Pytanie 17

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. miękki
B. średni
C. sztywny
D. utwardzony
Odpowiedzi takie jak 'twardy', 'utwardzony' oraz 'średni' nie są właściwe w kontekście filtracji galaretowatego osadu. Twarde i utwardzone sączki są zaprojektowane do pracy z bardziej szorstkimi lub stałymi materiałami, gdzie ich odporność na mechaniczne uszkodzenia jest istotna. W przypadku filtracji galaretowatych substancji, twarde materiały mogą nie tylko ograniczać efektywność procesu, ale również prowadzić do zatykania się porów, co zwiększa opór i wydłuża czas filtracji. Użycie sączka twardego może także spowodować uszkodzenie struktury galaretowatego osadu, co wpływa na jakość uzyskanego filtratu. Odpowiedź 'średni' sugeruje, że powinno się stosować coś pomiędzy, co nie ma sensu w kontekście filtracji galaretowatych osadów. W praktyce, zastosowanie średnich materiałów filtracyjnych również może skutkować nieefektywnym oddzielaniem cząstek. Kluczowym błędem myślowym jest przekonanie, że tylko twardość lub średnia porowatość materiału wpływa na efekty filtracji, podczas gdy ważniejsze są specyfikacje dotyczące porowatości oraz zdolności absorpcyjnych, które w przypadku galaretowatych osadów są kluczowe.

Pytanie 18

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 5,00 g
B. 0,05 g
C. 7,50 g
D. 0,75 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 19

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. spirytus salicylowy
B. środki opatrunkowe
C. leki przeciwbólowe
D. leki nasercowe
Choć leki przeciwbólowe, spirytus salicylowy i leki nasercowe mogą być użyteczne w różnych sytuacjach medycznych, nie powinny one znajdować się w apteczce pierwszej pomocy w laboratorium chemicznym. Leki przeciwbólowe są przeznaczone do łagodzenia bólu, ale w kontekście pierwszej pomocy, ich stosowanie może maskować objawy urazów, co jest niebezpieczne. W sytuacjach kryzysowych, takich jak wypadki w laboratoriach, kluczowe jest szybkie rozpoznanie problemu, a stosowanie takich leków może prowadzić do opóźnień w uzyskaniu odpowiedniej pomocy medycznej. Spirytus salicylowy, mimo że ma zastosowanie w leczeniu niektórych schorzeń, nie jest wskazany do użytku w nagłych przypadkach, zwłaszcza w laboratoriach, gdzie mogą być obecne toksyczne substancje chemiczne. Leki nasercowe są z kolei specjalistycznymi preparatami stosowanymi w leczeniu chorób serca; ich niewłaściwe użycie w sytuacjach awaryjnych może być szkodliwe, a ich podanie powinno być zawsze poprzedzone oceną stanu pacjenta przez wykwalifikowany personel medyczny. W kontekście pierwszej pomocy, kluczowe jest, aby zestaw zawierał tylko te elementy, które są niezbędne do natychmiastowego udzielenia pomocy w sytuacjach nagłych, a nie leki stosowane w przewlekłych schorzeniach czy objawach, co może prowadzić do mylnych przekonań na temat ich zastosowania. Właściwe wyposażenie apteczki pierwszej pomocy zgodnie z normami i wytycznymi zapewnia, że pomoc stanie się skuteczna i szybka, co jest kluczowe w każdej sytuacji awaryjnej.

Pytanie 20

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. statyw
B. eksykator
C. zlewka
D. bagietka
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 21

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. BaCl2 + H2SO4 → BaSO4 + 2HCl
B. CaCO3 → CaO + CO2
C. NaOH + HCl → NaCl + H2O
D. 2KClO3 → 2KCl + 3O2
Patrząc na inne reakcje, można zauważyć, że w większości z nich stopnie utlenienia pierwiastków się nie zmieniają. W reakcji BaCl2 + H2SO4 → BaSO4 + 2HCl, bary i chlor zostają na tych samych poziomach utlenienia przed i po reakcji. Bary w BaCl2 i BaSO4 trzyma stopień utlenienia +2, a chlor w HCl i BaCl2 również ma stopień utlenienia -1. Podobnie jest w reakcji CaCO3 → CaO + CO2, gdzie wapń cały czas ma +2, a węgiel oraz tlen również się nie zmieniają. Dlatego nie dochodzi tu do redukcji ani utlenienia. W reakcji NaOH + HCl → NaCl + H2O, sód, chlor i tlen też nie zmieniają swoich stopni utlenienia, tylko są na +1, -1 i -2. Te błędne wnioski mogą wynikać z braku zrozumienia, czym jest stopień utlenienia i jak działają reakcje redoks. Reakcje, które nie zmieniają stopni utlenienia, nie są procesami redoks, co jest kluczowe przy analizowaniu chemii, zwłaszcza w syntezach czy reakcjach katalitycznych.

Pytanie 22

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. przed połączeniem wypłukać szlify acetonem
B. przed połączeniem nałożyć na szlify glicerynę
C. dokładnie oczyścić i osuszyć sprzęt
D. przed połączeniem nałożyć na szlify wazelinę
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 23

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w benzenie
B. w wodzie
C. w benzynie
D. w nafcie
Przechowywanie fosforu białego w nafcie, benzynie lub innym rozpuszczalniku organicznym jest nie tylko nieefektywne, ale także bardzo niebezpieczne. Te substancje charakteryzują się łatwopalnością, co w połączeniu z właściwościami fosforu białego stwarza wysokie ryzyko pożaru. Fosfor biały w kontakcie z naftą może prowadzić do nieprzewidywalnych reakcji chemicznych, w tym zapłonu, co stanowi poważne zagrożenie dla zdrowia i bezpieczeństwa. Często występującym błędem jest mylenie nafty z wodą, co wynika z niewłaściwego zrozumienia właściwości chemicznych tych substancji. Woda jest substancją niepalną, która stabilizuje fosfor biały, podczas gdy nafta jest substancją łatwopalną, która mogłaby spowodować pożar. Podobnie, zarówno benzyna, jak i benzen są substancjami organicznymi, które mogą sprzyjać wybuchom oraz są szkodliwe dla zdrowia. W kontekście najlepszych praktyk, takie podejście do przechowywania fosforu białego jest absolutnie niewłaściwe i sprzeczne z zaleceniami instytucji zajmujących się bezpieczeństwem chemicznym. W przemyśle chemicznym oraz laboratoriach stosowane są ściśle określone procedury, które eliminują możliwość przechowywania substancji niebezpiecznych w niewłaściwy sposób, co dodatkowo podkreśla nieodpowiedzialność takich wyborów.

Pytanie 24

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. rozcieńczaniu
B. zagęszczaniu
C. roztwarzaniu
D. liofilizacji
Wybór odpowiedzi związanych z roztwarzaniem, liofilizacją czy rozcieńczaniem nie odpowiada na pytanie dotyczące zwiększenia stężenia składników śladowych w roztworze. Roztwarzanie polega na procesie rozpuszczania substancji stałych w cieczy, co prowadzi do rozcieńczenia, a nie zagęszczenia. W kontekście chemii analitycznej, stosowanie roztwarzania w sytuacji, gdy celem jest zwiększenie stężenia analitu, jest błędnym podejściem, ponieważ z definicji prowadzi do obniżenia stężenia składnika. Liofilizacja, z kolei, jest procesem suszenia, który polega na usunięciu wody z substancji poprzez sublimację, a dla roztworu nie jest on odpowiedni, gdyż na ogół ma na celu uzyskanie proszków z substancji w stanie płynnym, co nie wpływa na stężenie składników w roztworze. Natomiast rozcieńczanie prowadzi do zmniejszenia stężenia substancji w roztworze poprzez dodanie rozpuszczalnika, co jest całkowicie sprzeczne z celem zwiększenia stężenia składników śladowych. Zrozumienie tych procesów jest kluczowe dla prawidłowego przygotowania prób w badaniach laboratoryjnych oraz w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne manipulowanie stężeniami składników jest niezbędne do uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 25

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę wielomiarową o pojemności 25 cm3
B. pipetę jednomiarową o pojemności 20 cm3
C. pipetę jednomiarową o pojemności 10 cm3
D. cylinder miarowy o pojemności 25 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 26

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. sublimacją
B. roztwarzaniem
C. rozpuszczaniem
D. stapianiem
Rozpuszczanie to proces, w którym substancja stała, zwana solutem, ulega rozkładowi w rozpuszczalniku, tworząc jednorodną mieszaninę, znaną jako roztwór. W czasie tego procesu, cząsteczki lub jony solutu odrywają się od sieci krystalicznej i są otaczane przez cząsteczki rozpuszczalnika. Przykładem może być rozpuszczanie soli kuchennej (NaCl) w wodzie, gdzie jony sodu i chlorkowe oddzielają się i są stabilizowane przez cząsteczki wody. Zjawisko to jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, gdzie przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzania reakcji chemicznych i analiz. Ponadto, zrozumienie rozpuszczania ma zastosowanie w technologii, farmacji, a także biotechnologii, gdzie przygotowanie odpowiednich roztworów jest niezbędne do badań i produkcji. Znajomość procesów rozpuszczania oraz czynników wpływających na ten proces, takich jak temperatura, pH czy obecność innych substancji, jest fundamentalna dla wielu praktycznych zastosowań oraz badań naukowych.

Pytanie 27

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Kolby stożkowej o pojemności 200 cm3
B. Kolby miarowej o pojemności 100 cm3
C. Zlewki o pojemności 150 cm3
D. Zlewki o pojemności 200 cm3
Wybór naczyń laboratoryjnych do ogrzewania cieczy wymaga odpowiedniego zrozumienia ich właściwości oraz przeznaczenia. Zlewki o pojemności 200 cm³, kolby stożkowe o pojemności 200 cm³ oraz zlewki o pojemności 150 cm³ są odpowiednie do podgrzewania wody, ponieważ są zaprojektowane z myślą o tym, aby wytrzymywać wysokie temperatury. Zlewki mają szerokie dno, co sprzyja równomiernemu rozkładaniu ciepła, a kolby stożkowe, dzięki swojej konstrukcji, są stabilniejsze podczas podgrzewania. Często spotyka się sytuacje, w których laboranci mylą przeznaczenie naczyń, co prowadzi do wyboru niewłaściwego sprzętu do konkretnego zadania; w ten sposób mogą się narażać na niebezpieczeństwo, a także do uszkodzenia sprzętu. Typowe błędy myślowe obejmują założenie, że jakiekolwiek naczynie szklane nadaje się do ogrzewania, a nie branie pod uwagę szczegółowych właściwości materiału. W rzeczywistości wiele naczyń, takich jak kolby miarowe, nie jest odporna na to, co może być spowodowane przez intensywne podgrzewanie, co może prowadzić do ich zniszczenia. W praktyce laboratoryjnej kluczowe jest, aby zawsze kierować się zasadą doboru odpowiednich narzędzi do konkretnego zadania, co zapewnia bezpieczeństwo i skuteczność badań.

Pytanie 28

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 5,30 mol/dm3
B. 6,30 mol/dm3
C. 3,60 mol/dm3
D. 3,49 mol/dm3
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia procesu obliczania stężenia molowego i roli gęstości roztworu. Na przykład, odpowiedzi sugerujące zbyt wysokie stężenia molowe mogą być wynikiem braku uwzględnienia objętości roztworu. Kluczowym krokiem w obliczeniach jest zrozumienie, że stężenie molowe definiuje ilość moli substancji w jednostce objętości roztworu. W przypadku roztworu 20% kwasu azotowego(V) istotne jest, aby poprawnie obliczyć masę kwasu w roztworze oraz odpowiednią objętość tego roztworu, której wartość można uzyskać poprzez podzielenie masy roztworu przez jego gęstość. Pomijanie tego kroku prowadzi do błędnych wniosków. Na przykład, jeśli ktoś obliczy masę 20 g kwasu, ale błędnie przyjmie objętość roztworu jako 1 dm³, uzyskałby stężenie molowe znacznie zawyżone, co nie ma odzwierciedlenia w rzeczywistości. Dodatkowo, przy obliczeniach warto pamiętać o odpowiednich jednostkach; każdy etap obliczeń powinien być dokładnie sprawdzany pod kątem jednostek, aby uniknąć pomyłek. W kontekście praktycznym, znajomość poprawnych metod obliczeniowych jest niezbędna w laboratoriach chemicznych, gdzie precyzyjne stężenia mają bezpośredni wpływ na wyniki eksperymentów, a błędy mogą prowadzić do niepoprawnych wyników analitycznych.

Pytanie 29

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Pobranie nadmiernej liczby próbek pierwotnych
B. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
C. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
D. Transport próbki mleka w temperaturze 30°C
Transport próbki mleka w temperaturze 30°C może prowadzić do znacznych zmian w populacji drobnoustrojów, co może skutkować błędnym oznaczeniem ich liczby. W przypadku mleka, które zawiera składniki odżywcze, idealne warunki do rozwoju mikroorganizmów są osiągane w temperaturach powyżej 20°C. Jeśli próbka jest transportowana w tak wysokiej temperaturze, istnieje ryzyko namnażania się niepożądanych bakterii, co może zafałszować wyniki analizy. Również niewłaściwe mycie i dezynfekcja pipet do pobierania próbek oraz zbiorników do przechowywania mogą prowadzić do kontaminacji próbek, co również wpływa na dokładność wyników. Pipety, które nie zostały odpowiednio zdezynfekowane, mogą wprowadzać mikroorganizmy z otoczenia, co skutkuje błędnymi pomiarami. Zgodnie z wytycznymi dotyczącymi kontroli jakości w przemyśle mleczarskim, takie praktyki są absolutnie niewłaściwe i mogą prowadzić do poważnych konsekwencji zdrowotnych. Organizacje zajmujące się bezpieczeństwem żywności, takie jak WHO i FAO, podkreślają znaczenie przestrzegania rygorystycznych procedur przy pobieraniu i analizowaniu próbek. Właściwe zarządzanie próbkami, w tym ich transport w odpowiednich warunkach temperaturowych i dezynfekcja narzędzi, jest kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 30

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. koniecznością dokładnego wymieszania roztworu
B. opóźnieniem w osiągnięciu równowagi dysocjacji
C. potrzebą wyrównania temperatury roztworu z otoczeniem
D. opóźnieniem w ustaleniu się kontrakcji objętości
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 31

Najwyżej czyste odczynniki chemiczne to odczynniki

A. chemicznie czyste.
B. czyste.
C. czyste do analizy.
D. spektralnie czyste.
Odpowiedź 'spektralnie czyste' jest jak najbardziej na miejscu. Chodzi tutaj o odczynniki chemiczne, które są na najwyższym poziomie czystości – to naprawdę ważne w analizach spektralnych i spektroskopowych. Gdy mamy do czynienia z takimi odczynnikami, musimy pamiętać, że wszelkie zanieczyszczenia mogą zepsuć nasze wyniki. Na przykład w laboratoriach chemicznych, gdzie badamy różne substancje, jakiekolwiek zanieczyszczenia mogą wprowadzić nas w błąd. Najlepsze praktyki w laboratoriach mówią, że powinniśmy używać odczynników spektralnie czystych, zwłaszcza gdy potrzebujemy dużej precyzji, jak w pomiarach absorbancji w spektroskopii UV-Vis. Dlatego stosowanie odczynników o wysokiej czystości jest kluczowe, bo to zapewnia, że wyniki są wiarygodne i dają się powtórzyć. Podobne normy, jak ISO 17025, pokazują, jak istotne jest używanie odczynników o potwierdzonej czystości.

Pytanie 32

Gęstość próbki cieczy wyznacza się przy użyciu

A. piknometru
B. refraktometru
C. spektrofotometru
D. biurety
Refraktometr, biureta oraz spektrofotometr to narzędzia, które mają różne zastosowania, ale nie są odpowiednie do pomiaru gęstości cieczy. Refraktometr służy do określania współczynnika załamania światła w cieczy, co pozwala na pośrednią ocenę stężenia roztworów, a nie ich gęstości. Zastosowanie refraktometru polega na pomiarze, czy dana ciecz jest roztworem, a nie na bezpośrednim pomiarze gęstości. Biureta to narzędzie, które umożliwia precyzyjne dozowanie cieczy w titracji, a nie pomiar masy czy objętości cieczy do obliczenia gęstości. Wreszcie, spektrofotometr jest używany do pomiaru absorbancji światła w roztworach, co pozwala na ocenę stężenia substancji chemicznych, ale nie dostarcza informacji o gęstości cieczy. Wybierając te instrumenty, można łatwo popełnić błąd myślowy, polegający na myleniu różnych parametrów fizycznych. Gęstość, jako wielkość opisująca masę przypadającą na jednostkę objętości, wymaga specyficznych metod pomiarowych, jak te stosowane w piknometrze. Ważne jest więc, aby przy wyborze narzędzia zwracać uwagę na jego właściwości i przeznaczenie, co jest kluczowe w laboratoriach analitycznych, gdzie precyzyjne pomiary są niezbędne.

Pytanie 33

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 5 g KCl i 200 g wody
B. 10 g KCl i 200 g wody
C. 10 g KCl i 190 g wody
D. 20 g KCl i 180 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 34

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. dekantacja
B. krystalizacja
C. destylacja
D. filtracja
Filtracja, krystalizacja oraz dekantacja to metody separacji różnych faz w mieszaninach, jednak żadna z nich nie wykorzystuje równowagi fazowej ciecz-gaz. Filtracja polega na przeprowadzaniu cieczy przez medium filtracyjne, które zatrzymuje cząstki stałe, ale nie rozdziela składników mieszanin cieczy na podstawie różnic w ich temperaturach wrzenia. W kontekście przemysłowym, filtracja jest powszechnie stosowana do oczyszczania cieczy, na przykład w oczyszczalniach ścieków, gdzie istotne jest usunięcie zanieczyszczeń stałych. Krystalizacja z kolei opiera się na procesie formowania kryształów z roztworu, co również nie jest związane z równowagą fazową ciecz-gaz, a raczej z przejściem ze stanu ciekłego do stałego. Przykłady to produkcja soli czy cukru. Dekantacja natomiast to proces oddzielania cieczy od osadu, który osadził się na dnie naczynia, i jest skuteczna jedynie w przypadku mieszanin, gdzie różnice gęstości są znaczne. Te metody, mimo że są użyteczne w różnych kontekstach, nie są odpowiednie do separacji składników cieczy w oparciu o różnice w temperaturach wrzenia, jakie zachodzą w procesie destylacji. Uznawanie ich za alternatywy dla destylacji prowadzi do nieporozumień w zastosowaniach technologicznych oraz w przemyśle chemicznym, gdzie właściwy dobór metody separacji jest kluczowy dla efektywności i jakości procesów produkcyjnych.

Pytanie 35

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 50 g
B. 2 g
C. 0,5 g
D. 0,02 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 36

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
B. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
C. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
D. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
W analizowanych odpowiedziach występuje szereg nieprawidłowości dotyczących obliczeń proporcji składników eluentu. W przypadku pierwszej odpowiedzi, ilości toluenu, acetonu i kwasu mrówkowego nie odpowiadają wymaganym proporcjom 10:4:1. Obliczenia są zbyt małe, co prowadzi do niewłaściwego tworzenia roztworu. W drugiej odpowiedzi, chociaż objętości są zwiększone, proporcje nadal nie odpowiadają wymaganym wartościom. Wartości 200 cm³ toluenu, 80 cm³ acetonu i 20 cm³ kwasu mrówkowego są zgodne z wymogami stosunku, co czyni tę odpowiedź poprawną, ale inne odpowiedzi nie tylko nie spełniają wymogów, ale także mogą wprowadzać w błąd osoby, które bazują na tych informacjach. Dodatkowo, w trzeciej odpowiedzi objętość toluenu jest zbyt mała, a acetonu zbyt duża, co może prowadzić do nieefektywnej separacji w trakcie chromatografii. Warto pamiętać, że dokładne obliczenia są kluczowe w pracy laboratoryjnej, ponieważ wpływają na jakość i powtarzalność wyników analiz. Zastosowanie niewłaściwych proporcji eluentu może skutkować zafałszowaniem danych i błędnymi wynikami interpretacyjnymi w badaniach chemicznych.

Pytanie 37

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
B. miareczkowanie innym roztworem, który nie jest mianowany.
C. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
D. zmierzenie gęstości tego roztworu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 38

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,1 mol/dm3
B. 1 mol/dm3
C. 0,01 mol/dm3
D. 0,001 mol/dm3
Wybór stężenia 0,01 mol/dm³ to efekt błędnego spojrzenia na obliczenia dotyczące ilości moli i objętości roztworu. Żeby dobrze określić stężenie, najpierw trzeba znać masę molową substancji i przeprowadzić odpowiednie obliczenia. Przy 4 g NaOH, wydaje mi się, że pomyliłeś się, myśląc, że stężenie wynosi 0,01 mol/dm³. To wynika z nieprzypadkowego dzielenia masy przez masę molową. Liczba moli to masa substancji podzielona przez jej masę molową, czyli 4 g / 40 g/mol to 0,1 mol. Jeszcze trzeba uważać z objętościami, bo jeżeli pomylisz decymetry sześcienne z mililitrami, to mogą wyjść naprawdę duże błędy. Stężenie 0,001 mol/dm³ też wskazuje na nieprawidłowe rozumienie związku między masą a objętością. Może to być przez złą konwersję jednostek albo popełnione błędy w obliczeniach, co w pracy z roztworami chemicznymi jest kluczowe. Dobrze jest przed obliczeniami upewnić się, że wszystkie jednostki są zrozumiane i poprawnie zastosowane. Dlatego w laboratoriach precyzja w obliczeniach i umiejętność dobrej interpretacji wyników to podstawa, żeby wyjść z wiarygodnymi i powtarzalnymi rezultatami.

Pytanie 39

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
B. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
C. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
D. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
Przygotowanie roztworu o stężeniu 0,0100 mol/dm3 w objętości 100 cm3 lub 1000 cm3 na podstawie danych z pytania jest niepoprawne z perspektywy obliczeń stężenia molowego. W przypadku pierwszej z tych odpowiedzi, gdy planujemy uzyskać stężenie 0,0100 mol/dm3, obliczamy: n = C * V, czyli n = 0,0100 mol/dm3 * 0,1 dm3 = 0,001 mol. Aby uzyskać 0,1 mola EDTA z odważki, potrzebowalibyśmy znacznie większej objętości roztworu, co przekracza dostępne możliwości. Podobnie w przypadku 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3, obliczenia prowadzą do jeszcze większych niezgodności, ponieważ wymagałyby one 0,0100 mola * 1 dm3 = 0,01 mol, co także nie jest możliwe przy dostępnym 0,1 molu. W przypadku stężenia 0,2000 mol/dm3 w objętości 2000 cm3 sytuacja jest analogiczna, ponieważ znowu obliczenia pokazują, że potrzebna byłaby większa ilość moli niż posiadamy. Te błędy wynikają z nieprawidłowego zrozumienia relacji między stężeniem, ilością substancji a objętością roztworu. W praktyce, kluczowe jest umiejętne posługiwanie się równaniami dotyczącymi stężenia molowego, aby uniknąć takich fałszywych wniosków i zapewnić prawidłowe przygotowanie roztworów. Odpowiednia znajomość tych zasad jest istotna w każdym laboratorium chemicznym i w zastosowaniach analitycznych.

Pytanie 40

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 21°C
C. 20°C
D. 19°C
Odpowiedzi 19°C, 25°C oraz 21°C są niepoprawne w kontekście standardowych praktyk kalibracji szklanych naczyń miarowych. Kalibracja w temperaturze 19°C może wydawać się logiczna, jednak nie jest zgodna z powszechnie przyjętymi normami. Podobnie, 25°C, chociaż często stosowane w niektórych aplikacjach, prowadzi do nieścisłości, ponieważ cieczy w temperaturze 25°C mogą wykazywać różnice w objętości w porównaniu do standardowych pomiarów. Wysoka temperatura może również wpływać na zachowanie niektórych materiałów, co dodatkowo komplikuje pomiary. Z kolei 21°C, mimo że znajduje się blisko wartości standardowej, nie spełnia wymogów precyzyjnych pomiarów wymaganych w laboratoriach, gdzie każdy stopień Celsjusza może prowadzić do błędów w obliczeniach. Typowym błędem myślowym jest założenie, że niewielkie odchylenie od standardu nie ma znaczenia. W praktyce, nawet małe różnice w temperaturze mogą prowadzić do poważnych nieścisłości, co podkreśla konieczność stosowania kalibracji w 20°C dla zapewnienia dokładności i powtarzalności wyników. Warto zauważyć, że standardy ISO oraz normy branżowe jednoznacznie wskazują na 20°C jako optymalną temperaturę dla kalibracji, co jest kluczowe dla osiągnięcia wiarygodnych wyników w pomiarach laboratoryjnych.