Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 maja 2025 10:57
  • Data zakończenia: 21 maja 2025 11:15

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który rodzaj pamięci półprzewodnikowej po zaprogramowaniu powinien być chroniony przed działaniem światła słonecznego, aby zabezpieczyć jej dane?

A. EEPROM
B. SRAM
C. EPROM
D. DDR
Wybierając DDR, SRAM albo EEPROM jako odpowiedź, można się pomylić, bo w działaniu i przechowywaniu danych różnią się od EPROM. DDR, czyli Double Data Rate, to pamięć dynamiczna, używana głównie w komputerach do tymczasowego trzymania danych. Nie musi być chroniona przed światłem, bo dane są w kondensatorach, które się cyklicznie odświeżają. SRAM, czyli Static Random-Access Memory, działa z kolei na zasadzie stałych komórek pamięci, więc też światło nie jest jej straszne. Jest szybka, ale droższa i więcej energii potrzebuje. EEPROM, czyli Electrically Erasable Programmable Read-Only Memory, pozwala na elektroniczne zapisywanie i usuwanie danych, ale na szczęście nie jest czuła na światło UV, co sprawia, że jest bardziej praktyczna w sytuacjach, gdzie często się korzysta z pamięci. Często błędy przy wyborze zła odpowiedzi wynikają z nieznajomości różnic między tymi pamięciami oraz ich zastosowania. Dlatego warto mieć podstawową wiedzę o tych typach pamięci, żeby podejmować lepsze decyzje w projektach elektronicznych.

Pytanie 2

Czujnik akustyczny połączony z systemem alarmowym do wykrywania włamań i napadów służy do identyfikacji

A. stłuczenia szyby
B. dźwięku ulatniającego się gazu
C. modulacji dźwięku
D. otwarcia okna
Czujka akustyczna, będąca kluczowym elementem systemu sygnalizacji włamania i napadu, jest zaprojektowana do wykrywania specyficznych dźwięków, które mogą świadczyć o niepożądanym działaniu intruza. W kontekście stłuczenia szyby, czujka ta monitoruje fale dźwiękowe generowane przez rozbicie szkła. Dzięki zastosowaniu technologii rozpoznawania dźwięku, czujki akustyczne są w stanie rozróżnić dźwięki stłuczenia od innych hałasów, co ma kluczowe znaczenie w kontekście bezpieczeństwa. Stosowanie czujek akustycznych w systemach bezpieczeństwa jest zgodne z normami branżowymi, takimi jak EN 50131, które definiują wymagania dotyczące urządzeń alarmowych. Przykładowo, w obiektach o podwyższonym ryzyku, takich jak sklepy jubilerskie czy muzea, czujki akustyczne są integralną częścią zabezpieczeń, ponieważ ich szybka reakcja na stłuczenie szkła pozwala na natychmiastowe powiadomienie służb ochrony lub policji, co może zapobiec kradzieży lub zniszczeniu mienia.

Pytanie 3

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
B. Brak powiązania prądu spoczynkowego z temperaturą
C. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
D. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
Zrozumienie zależności prądu spoczynkowego od temperatury w tranzystorach mocy jest kluczowe dla prawidłowego projektowania układów elektronicznych. Odpowiedzi sugerujące brak zależności prądu spoczynkowego od temperatury są nieprawidłowe, ponieważ tranzystory, takie jak BJT, wykazują wyraźny wzrost prądu przy wzroście temperatury. Ignorowanie tego zjawiska prowadzi do poważnych problemów w działaniu urządzeń elektronicznych. Zmniejszenie prądu spoczynkowego w odpowiedzi na wzrost temperatury jest również błędne, ponieważ efektywnie obniżyłoby to wydajność tranzystora, co mogłoby prowadzić do zniekształceń sygnału. Istotnym błędem myślowym jest założenie, że różne rodzaje tranzystorów mogą działać w ten sposób, jednak w praktyce wszystkie tranzystory typu BJT mają podobne właściwości temperaturowe, co powoduje, że prąd spoczynkowy wzrasta wraz z temperaturą. Użytkownicy powinni być świadomi, że bez odpowiedniego zarządzania termicznego i kompensacji, wzrastający prąd spoczynkowy może prowadzić do nieodwracalnych szkód w komponentach. Dobrą praktyką w projektowaniu układów elektronicznych jest przewidywanie tych zmian i implementacja układów zabezpieczających, które dostosowują parametry pracy do zmieniających się warunków, co jest istotnym elementem w zapewnieniu długotrwałej i niezawodnej pracy urządzeń.

Pytanie 4

Na podstawie dołączonej tabeli określ, ile powinno wynosić natężenie oświetlenia na stanowisku pracy przy wykonywaniu precyzyjnych czynności montażowych układów mikroelektronicznych.

Działalność przemysłowa i rzemieślnicza –
Przemysł elektrotechniczny i elektroniczny
Typ obszaru, zadanie lub działalnośćWymagane natężenie oświetlenia, lx
Produkcja kabli i przewodów300
Uzwojenie:
– duże cewki
– średnie cewki
– małe cewki

300
500
750
Impregnacja cewek300
Galwanizowanie300
Montaż:
– zgrubny, np. duże transformatory,
– średni, np. tablice rozdzielcze
– dokładny, np. telefony, radia, sprzęt IT (komputery)
– precyzyjny, np. sprzęt pomiarowy, płytki obwodów drukowanych

300
500
750
1000
Warsztaty elektroniczne, sprawdzanie, regulacja1500

A. 750 lx
B. 500 lx
C. 1500 lx
D. 1000 lx
Wybrana odpowiedź 1000 lx jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, takimi jak PN-EN 12464-1, natężenie oświetlenia na stanowiskach pracy, gdzie wykonywane są precyzyjne czynności montażowe, powinno wynosić właśnie 1000 lx. W przypadku pracy z układami mikroelektronicznymi, na przykład podczas montażu płytek obwodów drukowanych, niewłaściwe natężenie oświetlenia może prowadzić do uszkodzeń komponentów lub błędów w montażu. Odpowiednie natężenie pozwala na dokładne dostrzeganie detali oraz minimalizuje ryzyko zmęczenia wzroku, co jest kluczowe w pracy wymagającej wysoce precyzyjnych działań. Ponadto, odpowiednie oświetlenie przyczynia się do ogólnej poprawy komfortu i efektywności pracy, co jest istotne dla jakości wytwarzanych produktów. Przykłady zastosowań obejmują prace w laboratoriach i zakładach produkcyjnych, gdzie błędy mogą prowadzić do poważnych konsekwencji finansowych i reputacyjnych.

Pytanie 5

Termin "licznik mikrorozkazów" odnosi się do

A. manipulatora
B. systemu mikroprocesorowego
C. pętli PLL
D. oscyloskopu cyfrowego
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 6

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. gwoździe oraz młot
B. wiertarka i kołki rozporowe
C. ołówek i poziomica
D. śruby i śrubokręt
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 7

Jaką funkcję pełni PTY w radiu?

A. Odbiór informacji drogowych
B. Odbiór wiadomości tekstowych
C. Wybieranie i przeszukiwanie typu programu
D. Automatyczną "regulację głośności"
Funkcja PTY, czyli Program Type, jest kluczowym elementem standardu RDS (Radio Data System), który pozwala na identyfikację i klasyfikację programów radiowych. Główna rola PTY polega na umożliwieniu słuchaczom łatwego wyszukiwania stacji radiowych na podstawie ich rodzaju programowego, co znacząco ułatwia odbiór audycji odpowiadających ich zainteresowaniom. Na przykład, użytkownik może ustawić odbiornik tak, aby automatycznie wyszukiwał stacje nadające muzykę pop lub wiadomości. Dzięki temu, w sytuacji, gdy słuchacz chce zmienić stację, nie musi przeszukiwać wszystkich dostępnych sygnałów ręcznie. PTY jest stosowane w praktyce przez wiele stacji radiowych, które nadają programy o różnych typach. Wspiera to również standardy jakości dźwięku i dostępu do informacji, które są obowiązujące w branży radiowej, a także zwiększa komfort użytkowania odbiorników. Użytkownicy powinni zwrócić uwagę na dostępność tej funkcji w swoich odbiornikach radiowych, ponieważ może to być istotny atut przy wyborze sprzętu.

Pytanie 8

Aby podłączyć czujnik PIR do linii parametrycznej 2EOL (DEOL), co jest wymagane?

A. 4 żyły przewodu i jeden rezystor
B. 6 żył przewodu i dwa rezystory
C. 6 żył przewodu i jeden rezystor
D. 4 żyły przewodu i dwa rezystory
Podłączenie czujnika PIR do linii parametrycznej 2EOL (DEOL) wymaga użycia 4 żył przewodu oraz dwóch rezystorów w celu prawidłowego działania systemu. Czujniki PIR, które są wykorzystywane w systemach alarmowych i automatyki budowlanej, potrzebują odpowiedniego zasilania oraz sygnału, aby mogły skutecznie wykrywać ruch. W przypadku linii DEOL, zastosowanie dwóch rezystorów pozwala na właściwe dopasowanie impedancji i umożliwia dokładne monitorowanie stanu linii. Dobrą praktyką branżową jest zapewnienie, że każdy element w systemie jest zgodny z aktualnymi normami, co podnosi niezawodność i stabilność całej instalacji. W praktyce, takie rozwiązanie pozwala na efektywne wykrywanie ruchu w obszarach o dużym natężeniu, takich jak biura czy obiekty przemysłowe, gdzie niezbędne jest szybkie i precyzyjne reagowanie na potencjalne zagrożenia. Dodatkowo, stosując standardy EOL (end of line), zabezpieczamy system przed fałszywymi alarmami, co jest kluczowe w systemach bezpieczeństwa."

Pytanie 9

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
B. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
C. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
D. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
Topologia liniowa, w której zastosowano gniazda TV końcowe lub przelotowe, nie jest najlepszym rozwiązaniem dla instalacji antenowych. W przypadku gniazd końcowych w topologii liniowej, sygnał jest przesyłany przez każdą jednostkę po drodze, co prowadzi do znacznych strat sygnału i pogorszenia jakości obrazu. Gniazda przelotowe również wprowadzają dodatkowe problemy, ponieważ sygnał przechodzi przez wiele punktów, co zwiększa ryzyko zakłóceń. W praktyce, użytkownicy mogą doświadczać problemów z odbiorem, takich jak zniekształcenia obrazu czy zrywanie sygnału. Dodatkowo, instalacje liniowe są trudniejsze do rozbudowy, ponieważ każda zmiana wymaga przerywania istniejących połączeń. Takie podejście nie jest zgodne z zaleceniami branżowymi, które podkreślają znaczenie minimalizacji strat sygnału oraz łatwości w modyfikacji systemu. Dlatego, wybór topologii gwiazdy z gniazdami końcowymi jest nie tylko bardziej efektywny, ale również jest zgodny z najlepszymi praktykami w branży telekomunikacyjnej i instalacyjnej.

Pytanie 10

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
B. określić rezystancję falową kabla i w razie potrzeby ją skorygować
C. oczyścić oraz pomalować antenę, a następnie ją ustawić
D. zmierzyć impedancję falową kabla koncentrycznego
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 11

Instalując czujkę ruchu typu NC w konfiguracji EOL, rezystor parametryczny powinien być połączony szeregowo ze stykiem alarmowym czujki i umiejscowiony

A. niezależnie od miejsca
B. bezpośrednio przy centrali
C. na środku przewodu
D. w obudowie czujki
Podłączenie czujki ruchu typu NC (Normalnie Zamknięty) w konfiguracji EOL (End Of Line) z rezystorem parametrycznym umieszczonym w obudowie czujki to rozwiązanie zgodne z najlepszymi praktykami w dziedzinie systemów zabezpieczeń. Umieszczenie rezystora w obudowie czujki pozwala na minimalizację długości przewodów, co z kolei zmniejsza ryzyko zakłóceń sygnału oraz zapewnia lepszą ochronę przed manipulacją. Taka konfiguracja zapewnia także, że wszelkie zmiany w obwodzie, takie jak odłączenie przewodu, będą natychmiastowo wykrywane przez system alarmowy, co zwiększa jego niezawodność. W praktyce, wiele systemów alarmowych wymaga stosowania rezystorów w obudowach czujek, aby sprostać normom EN 50131 oraz innym standardom branżowym dotyczącym instalacji zabezpieczeń. Dodatkowo, umieszczenie rezystora w obudowie czujki ułatwia konserwację i diagnostykę, ponieważ w razie potrzeby można szybko sprawdzić stan rezystora oraz samej czujki, co jest istotne w kontekście utrzymania sprawności systemu.

Pytanie 12

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. BNC
B. SMA
C. RJ11
D. RJ45
Złącza SMA, BNC i RJ11, mimo że są powszechnie używane w różnych aplikacjach technologicznych, nie są odpowiednie w kontekście kamer IP. Złącze SMA jest stosowane głównie w systemach komunikacji bezprzewodowej, jako złącze antenowe, co czyni je nieprzydatnym dla kamer, które wymagają połączenia Ethernetowego do przesyłania danych. Z kolei złącze BNC jest przestarzałym rozwiązaniem stosowanym głównie w analogowych systemach wideo, takich jak kamery CCTV, gdzie obraz jest przesyłany w postaci sygnału analogowego. W systemach IP, które przesyłają dane w formie cyfrowej, wykorzystanie BNC nie jest zalecane, ponieważ nie obsługuje standardów transmisji IP. Złącze RJ11, znane jako złącze telefoniczne, również nie jest odpowiednie dla kamer IP, ponieważ jego zastosowanie ogranicza się do systemów telefonicznych i nie oferuje wystarczającej przepustowości ani możliwości przesyłania sygnału wideo. Wybór niewłaściwego złącza w systemie monitoringu może prowadzić do problemów z jakością obrazu, opóźnieniami oraz brakiem stabilności połączenia, co jest kluczowe w zabezpieczeniach i monitoringu obiektów.

Pytanie 13

Jakość sygnału z anten satelitarnych mocno uzależniona jest od warunków pogodowych, co prowadzi do tzw. efektu pikselizacji lub utraty obrazu. W przypadku anten o jakiej średnicy to zjawisko jest najbardziej zauważalne?

A. 100 cm
B. 85 cm
C. 60 cm
D. 110 cm
Antena o średnicy 60 cm jest najbardziej podatna na zjawisko pikselizacji oraz zanik obrazu z powodu warunków atmosferycznych, takich jak opady deszczu, śniegu czy silne wiatry. Mniejsze anteny mają mniejszą zdolność do zbierania sygnału, co oznacza, że ich wydajność spada w trudnych warunkach atmosferycznych. Przy standardowych częstotliwościach pracy dla anten satelitarnych, mniejsze średnice są bardziej narażone na utratę sygnału, ponieważ nie mogą efektywnie odbierać sygnałów odbitych czy rozproszonych przez czynniki atmosferyczne. W praktyce, użytkownicy anten o średnicy 60 cm często doświadczają problemów z jakością obrazu lub jego całkowitym zniknięciem podczas silnych opadów deszczu. Z tego powodu, w sytuacjach, gdzie warunki atmosferyczne mogą być zmienne, zaleca się stosowanie większych anten, które oferują lepszą stabilność sygnału oraz jakość obrazu. W branży telekomunikacyjnej standardem jest rekomendowanie anten o co najmniej 80 cm średnicy dla obszarów, gdzie opady mogą być częste lub intensywne.

Pytanie 14

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. wyłącznie w pionie
B. najkrótszą trasą
C. tylko w poziomie
D. w pionie oraz poziomie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 15

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. B.
B. A.
C. D.
D. C.
Wybór innej opcji jako odpowiedzi na to pytanie może wynikać z niepoprawnego zrozumienia zasad działania funkcji logicznych oraz ich zastosowania w praktycznych sytuacjach. Funkcje te opierają się na podstawowych zasadach algebraicznych, gdzie każda zmienna (sygnał) może przyjąć wartość "0" lub "1", a ich kombinacje determinują końcowy wynik. Często zdarza się, że błędne odpowiedzi są efektem mylenia sygnałów negowanych z ich rzeczywistymi wartościami. Na przykład, niektóre opcje mogły zostać wybrane, ponieważ zawierały wartości "1" dla sygnałów, które w danej funkcji wymagają wartości "0". Taki błąd logiczny może wynikać z typowych nieporozumień dotyczących negacji sygnałów, co prowadzi do fałszywych wniosków. Ważne jest, aby zwracać uwagę na każdy element funkcji przy ustalaniu, które wartości spełniają wymagania. Ponadto, w praktyce inżynierskiej, znajomość operacji logicznych i umiejętność ich stosowania jest kluczowa w projektowaniu systemów, które muszą działać zgodnie z określonymi zasadami. Używanie diagramów prawdy oraz metod analizy może znacząco zwiększyć skuteczność w zrozumieniu i zastosowaniu tych koncepcji w praktyce. Dlatego też zrozumienie i poprawne zastosowanie zasad logiki cyfrowej jest fundamentem dla efektywnego projektowania układów elektronicznych.

Pytanie 16

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 100,00 zł
B. 117,60 zł
C. 146,40 zł
D. 122,00 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 17

Utrzymanie w pełni funkcjonalnych elektronicznych systemów zabezpieczeń powinno być realizowane w okresach określonych normami technicznymi, a jeżeli nie zostały one ustalone - nie rzadziej niż co:

A. trzy miesiące
B. sześć miesięcy
C. rok
D. miesiąc
Odpowiedź "sześć miesięcy" jest zgodna z zaleceniami norm technicznych dotyczących konserwacji systemów zabezpieczeń. Regularna konserwacja, wykonywana co najmniej co sześć miesięcy, jest kluczowa dla utrzymania sprawności systemów oraz zapewnienia ich niezawodności. Systemy zabezpieczeń, takie jak alarmy czy monitoring, wymagają okresowych przeglądów, aby wykryć potencjalne problemy, takie jak zużycie komponentów czy nieprawidłowe działanie czujników. Na przykład, w przypadku systemów alarmowych, nieprzeprowadzenie konserwacji może prowadzić do fałszywych alarmów lub całkowitej awarii systemu, co w sytuacjach kryzysowych może mieć tragiczne skutki. Normy branżowe, takie jak ISO 9001, podkreślają znaczenie regularnych przeglądów w celu zapewnienia jakości i bezpieczeństwa, co potwierdza, że przeprowadzanie konserwacji co sześć miesięcy jest praktyką rekomendowaną przez ekspertów. Dbanie o systemy zabezpieczeń nie tylko zwiększa ich żywotność, ale również podnosi poczucie bezpieczeństwa użytkowników.

Pytanie 18

Jakiego typu czujkę powinno się wykorzystać w pomieszczeniu, gdzie występują intensywne ruchy powietrza spowodowane działaniem pieca lub klimatyzatora?

A. Przewodową pasywną czujkę podczerwieni typu PET
B. Dualną czujkę ruchu
C. Przewodową pasywną czujkę podczerwieni
D. Bezprzewodową pasywną czujkę podczerwieni
Wybieranie pasywnych czujek podczerwieni, jak te przewodowe czy bezprzewodowe, w pomieszczeniach, gdzie ruch powietrza jest dość intensywny, może być na dłuższą metę problematyczne. One działają na zmianach temperatury, więc w takich warunkach mogą fałszywie uznać, że coś się dzieje. Z moich doświadczeń wynika, że w biurach z klimatyzacją takie czujki mogą wprowadzać w błąd i wywoływać alarmy, gdzie ich nie ma. Złe dobranie czujki może sprawić, że cały system będzie działał słabo, co wiąże się z kosztami z fałszywych alarmów i może obniżyć zaufanie w systemie bezpieczeństwa. Nie zapominajmy też o standardach, jak PN-EN 50131-2-2, które mówią, że musimy dobrze dobrać czujki do konkretnego miejsca, a czujki dualne w takich warunkach wydają się znacznie lepsze.

Pytanie 19

Telewizor nie odbiera żadnych sygnałów z zewnętrznej anteny w transmisji naziemnej, ale poprawnie prezentuje obraz z tunera satelitarnego podłączonego do niego za pomocą przewodu EUROSCART oraz z kamery VHS-C. Wymienione objawy sugerują, że uszkodzony jest moduł

A. odchylania poziomego i pionowego
B. wielkiej i pośredniej częstotliwości
C. separatora impulsów
D. wzmacniacza wizji
Muszę powiedzieć, że rozważanie uszkodzenia wzmacniacza wizji, separatora impulsów czy układów odchylania poziomego i pionowego nie do końca ma sens w tej sytuacji. Każdy z tych elementów ma swoją rolę, ale nie jest bezpośrednio odpowiedzialny za odbieranie sygnału z anteny. Wzmacniacz wizji wzmacnia sygnał obrazu, ale skoro telewizor działa z innych źródeł, to raczej nie on jest winowajcą. Separator impulsów oddziela sygnały wideo, ale to nie jest główny problem, bo tu chodzi o brak sygnału z anteny, a nie o jego separację. No i te układy odchylania odpowiadają za wyświetlanie obrazu, ale też nie są tu kluczowe. Czasami ludzie mylą funkcje tych komponentów z tym, co naprawdę odpowiada za odbiór sygnału. Trzeba pamiętać, że uszkodzenie modułu wielkiej i pośredniej częstotliwości wpływa bezpośrednio na odbiór sygnałów z anteny, to jest kluczowe w tym przypadku.

Pytanie 20

Jakie oznaczenie literowe ma przewód wykorzystywany w połączeniach elementów systemów alarmowych?

A. F/UTP
B. LGY
C. SMY
D. YTDY
Odpowiedzi F/UTP, SMY i LGY niestety nie pasują do kontekstu, gdy chodzi o przewody do systemów alarmowych. F/UTP, mimo że ma ekran, jest bardziej używany w sieciach komputerowych niż do alarmów. Jego budowa sprawia, że to kabel idealny do sieci Ethernet, ale niekoniecznie w temacie bezpieczeństwa. Co do SMY, to jest stosunkowo typowy w telekomunikacji, ale dla systemów alarmowych to raczej nie jest to odpowiedni wybór. A kabel LGY, chociaż używany w różnych instalacjach elektrycznych, nie jest pierwszym, który bym wskazał w kontekście zabezpieczeń. Wybór tych odpowiedzi bywa często wynikiem mylenia zastosowań kabli w różnych branżach i braku znajomości specyfikacji, które są ważne dla systemów alarmowych. Kluczowe, aby wybierać odpowiednie kable, jak YTDY, które zostały zaprojektowane z myślą o tym konkretnym zastosowaniu.

Pytanie 21

Ile przewodów potrzeba do standardowego podłączenia czujnika ruchu z antysabotażowym wejściem?

A. 4
B. 8
C. 6
D. 2
Wybór niewłaściwej liczby żył do podłączenia czujnika ruchu jest powszechnym problemem, który wynika z misunderstandingu dotyczącego funkcji poszczególnych żył. Wiele osób myśli, że czujnik ruchu może działać na dwóch lub czterech żyłach, co jest nieprawidłowe w kontekście urządzeń z wejściem antysabotażowym. Odpowiedzi sugerujące mniejszą liczbę żył nie uwzględniają kluczowych funkcji, takich jak zasilanie oraz monitorowanie sabotażu, które są niezbędne do zapewnienia pełnej funkcjonalności. Użycie tylko dwóch żył ogranicza możliwości czujnika do prostego zasilania, co uniemożliwia mu komunikację z systemem alarmowym oraz nie pozwala na wykrywanie prób jego usunięcia lub manipulacji. Natomiast wybór czterech żył nie pokrywa się z wymaganiami dla urządzeń z antysabotem, które wymagają dodatkowych obwodów zabezpieczających. Warto podkreślić, że standardy branżowe, takie jak EN 50131, wyraźnie wskazują na potrzebę stosowania odpowiedniej liczby żył, aby zapewnić niezawodność systemów zabezpieczeń. W związku z tym, wybierając niewłaściwą liczbę żył, można narażać system na poważne luki w bezpieczeństwie, co w praktyce może prowadzić do nieefektywnej ochrony obiektów.

Pytanie 22

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. to, że działają na tej samej częstotliwości
B. to, że instalacja ma tylko jeden sygnalizator
C. ich natychmiastowe działanie
D. ich umiejscowienie na suficie
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 23

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. bitowej stopy błędów
B. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
C. współczynnika zniekształceń nieliniowych
D. czasów narastania i opadania impulsów
Kiedy analizujesz funkcje oscyloskopu, to trochę błędne jest myślenie, że może on mierzyć przesunięcie fazowe między sygnałami sinusoidalnymi czy jakość transmisji danych. Oscyloskop w swojej podstawowej wersji jest tak naprawdę stworzony do wizualizacji sygnałów w czasie, a nie do badania ich fazy czy jakości. Przesunięcie fazowe to sprawa, która potrzebuje bardziej zaawansowanego sprzętu, jak analizatory widma, które mogą analizować różnice fazowe między sygnałami. Jeśli chodzi o bitową stopę błędów, oscyloskop sam w sobie nie oceni jakości przesyłania danych cyfrowych, bo to wymaga analizy statystycznej błędów, niestety jego to nie obejmuje. Z kolei współczynnik zniekształceń nieliniowych także wymaga lepszej analizy, co zwykle robią analizatory sygnałów, które mogą się skupić na analizie harmonicznych. Zrozumienie, co dany sprzęt potrafi zmierzyć, jest kluczowe, żeby nie popełniać błędów przy diagnostyce problemów i odpowiednim doborze narzędzi.

Pytanie 24

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tyrystor
B. Tranzystor unipolarny
C. Trymer
D. Tranzystor bipolarny
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 25

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. telewizji dozorowej
B. instalacji antenowej
C. sieci komputerowej
D. systemu alarmowego
Instalacja antenowa to obszar, w którym miernik bitowej stopy błędów (BER) odgrywa kluczową rolę w ocenie jakości sygnałów transmisyjnych. BER jest wskaźnikiem określającym stosunek liczby błędnie odebranych bitów do całkowitej liczby bitów przesłanych w czasie określonym. W kontekście instalacji antenowych, szczególnie w systemach telekomunikacyjnych i satelitarnych, niska stopa błędów jest kluczowym parametrem gwarantującym niezawodność i jakość odbioru sygnału. Przykładowo, w przypadku telewizji satelitarnej, jeśli BER przekracza akceptowalny poziom, może to prowadzić do przerw w odbiorze sygnału. Właściciele instalacji antenowych mogą korzystać z mierników BER do szybkiej diagnozy problemów, takich jak niewłaściwe ustawienie anteny, zły jakościowo kabel czy interferencje z innymi źródłami sygnału. Dobre praktyki branżowe zalecają regularne monitorowanie BER, aby zapewnić ciągłość i jakość usług. Warto także nadmienić, że standardy takie jak DVB-S2 dla telewizji satelitarnej definiują konkretne wartości BER, które muszą być spełnione, aby system mógł działać poprawnie.

Pytanie 26

Wybierz z podanych parametrów sygnałów, które poziomy sygnałów analogowych są wykorzystywane w systemach automatyki przemysłowej do transmisji danych?

A. 4 mA ÷ 20 mA
B. 4 mV ÷ 20 mV
C. 4 A ÷ 20 A
D. 4 V ÷ 20 V
Poziomy sygnałów 4 mA ÷ 20 mA są standardem w systemach automatyki przemysłowej, znanym jako sygnał prądowy. Jest to powszechnie stosowany zakres dla czujników i urządzeń pomiarowych, które komunikują się z systemami sterującymi. Wykorzystanie tego standardu jest zgodne z normą IEC 60381-1, która definiuje zasady dotyczące sygnałów analogowych w automatyce. Prąd 4 mA reprezentuje minimalny poziom sygnału, podczas gdy 20 mA to maksymalny poziom. Taki zakres daje możliwość wykrycia awarii w obwodzie, ponieważ sygnał opada poniżej 4 mA, co sygnalizuje problem z urządzeniem. Przykładowo, w systemach monitorowania temperatury, czujnik może wysyłać sygnał prądowy w tym zakresie do kontrolera, umożliwiając precyzyjne zarządzanie procesem. W zastosowaniach przemysłowych, takich jak automatyka procesowa, wykorzystanie sygnałów 4 mA ÷ 20 mA pozwala na efektywne przesyłanie informacji przy minimalnych zakłóceniach i długich odległościach, co czyni tę metodę niezawodną i efektywną.

Pytanie 27

W jakich systemach wykorzystywany jest sterownik PLC?

A. w telewizji dozorowej
B. w transmisji światłowodowej
C. w sieciach komputerowych
D. w automatyce przemysłowej
Wybór odpowiedzi związanej z sieciami komputerowymi czy transmisją światłowodową pokazuje, że może nie do końca rozumiesz, do czego służą sterowniki PLC. One są głównie do automatyki przemysłowej i odpowiadają za sterowanie procesami. Oczywiście, są interfejsy, które łączą PLC z systemami komputerowymi, ale same sterowniki nie zajmują się zarządzaniem sieciami. Podobnie z transmisją światłowodową – PLC nie obsługują sygnałów optycznych, tylko elektroniczne. Co do telewizji dozorowej, to prawda, że mogą być częścią systemów monitoringu, ale nie odpowiadają za ich działanie. Ważne by zrozumieć, co te technologie potrafią, żeby unikać takich pomyłek. Odpowiednie zrozumienie roli PLC w automatyce jest kluczowe, żeby dobrze projektować i wdrażać systemy.

Pytanie 28

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Zamiana akumulatora
B. Montaż manipulatora
C. Sprawdzanie czujników
D. Weryfikacja powiadamiania
Montaż manipulatora to czynność, która nie należy do konserwacji instalacji alarmowych. Konserwacja odnosi się do działań mających na celu utrzymanie systemu w sprawności i zapewnienie jego prawidłowego funkcjonowania. Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania rutynowe, które pomagają w ocenie stanu systemu oraz w zapobieganiu ewentualnym awariom. Na przykład, regularne testowanie czujników pozwala na wykrycie ich ewentualnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników. Wymiana akumulatora, natomiast, jest niezbędna, aby zapewnić ciągłość działania systemu w przypadku przerwy w zasilaniu. Standardy branżowe, takie jak PN-EN 50131, wskazują na znaczenie regularnej konserwacji dla systemów zabezpieczeń, co podkreśla rolę tych czynności w zapewnieniu niezawodności i efektywności systemów alarmowych.

Pytanie 29

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Układ odchylania w pionie
B. Powielacz wysokiego napięcia
C. Zintegrowana głowica w.cz.
D. Wzmacniacz mocy
Głowica zintegrowana w.cz. odpowiada za odbiór sygnału telewizyjnego, a jej uszkodzenie zwykle manifestuje się brakiem sygnału lub trudnościami w jego dekodowaniu, co nie prowadziłoby do iskrzenia ani zapachu ozonu. Układ odchylania pionowego ma na celu pionowe skanowanie obrazu, a uszkodzenie tego układu najczęściej skutkuje zniekształceniem obrazu lub jego całkowitym brakiem, ale nie generuje charakterystycznych symptomów związanych z wysokim napięciem. Wzmacniacz mocy odpowiada za wzmacnianie sygnału audio i wideo, a jego awaria objawia się najczęściej brakiem dźwięku lub obrazu, jednak nie wiąże się z występowaniem iskrzenia czy zapachu ozonu. Typowe błędy myślowe prowadzące do błędnych wniosków często wynikają z braku zrozumienia, jak poszczególne elementy odbiornika telewizyjnego współdziałają ze sobą. Wiedza o tym, jak funkcjonuje powielacz wysokiego napięcia oraz jego rola w systemie, jest kluczowa dla właściwej diagnostyki oraz skutecznych napraw, co podkreśla znaczenie edukacji i ciągłego doskonalenia w tej dziedzinie.

Pytanie 30

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
B. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
C. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
D. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
W przypadku podawania zakresów pomiarowych w odpowiedziach, istotne jest dostosowanie ich do specyfiki mierzonych napięć oraz typów prądu. Ustawienie zakresu 200 V AC na wejściu transformatora, chociaż wydaje się być odpowiednie, w rzeczywistości nie uwzględnia potencjalnych wyższych napięć, które mogą występować w instalacjach sieciowych. Zakres 200 V mógłby prowadzić do niepełnych odczytów lub zniekształceń pomiarowych. Ponadto, wybór 20 V AC na wyjściu transformatora zasilającego nie pokrywa się z wymaganym napięciem 18 V, co może wprowadzać w błąd, gdyż pomiar w takim zakresie nie jest dostatecznie precyzyjny dla niskich napięć. W przypadku pomiaru na akumulatorze, stosowanie zakresu 20 V AC jest nieprawidłowe, ponieważ napięcie na akumulatorze jest prądem stałym. Użycie zakresu AC prowadziłoby do błędnych wyników pomiaru, co jest typowym błędem myślowym, polegającym na niezrozumieniu różnicy pomiędzy prądem stałym a zmiennym, a także nieodpowiednim dobraniu zakresu do specyfiki urządzenia. Kluczowe jest, aby mieć świadomość, że prawidłowe pomiary wymagają znajomości zarówno parametrów technicznych urządzeń, jak i zasad działania układów elektrycznych.

Pytanie 31

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 10 kHz
B. 0,1 kHz
C. 100 kHz
D. 1 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 32

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. ustalać czasu lutowania do poszczególnych miejsc na płytce
B. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
C. przenosić lutowia na końcówce grota
D. zajmować się czystością grota
Przenoszenie lutowia na grocie lutownicy jest praktyką, której należy unikać, ponieważ może prowadzić do wielu problemów związanych z jakością lutowania. Grota lutownicy powinna być czysta i odpowiednio nagrzana, aby zapewnić skuteczne i trwałe połączenie. Przenoszenie lutowia na grocie zwiększa ryzyko powstawania zanieczyszczeń, co może negatywnie wpłynąć na jakość lutowia i prowadzić do wadliwych połączeń. Zgodnie z najlepszymi praktykami, lutowie powinno być aplikowane bezpośrednio na złącze, a nie na grot. Przykładem dobrego zachowania w tym zakresie jest technika tzw. 'wstępnego podgrzewania' elementów, co zwiększa efektywność procesu lutowania oraz redukuje ryzyko przegrzania. Kolejnym aspektem jest używanie lutowia o odpowiednim składzie, które dobrze wtopi się w materiały bez tworzenia nadmiernych osadów, co z kolei pomoże w uzyskaniu czystego i mocnego połączenia.

Pytanie 33

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. SATA
B. RS 232
C. D-SUB 15
D. LPT
Odpowiedź SATA jest prawidłowa, ponieważ jest to jeden z najpopularniejszych interfejsów stosowanych do podłączania dysków twardych i napędów SSD do płyt głównych komputerów. Standard SATA (Serial ATA) został wprowadzony, aby zastąpić starszy interfejs PATA (Parallel ATA) i oferuje znacznie wyższą prędkość transferu danych, co jest kluczowe w kontekście wydajności nowoczesnych systemów komputerowych. SATA obsługuje prędkości transferu do 6 Gb/s w wersji III, co pozwala na szybki dostęp do danych i efektywne wykonywanie operacji na plikach. Zastosowanie SATA umożliwia również łatwiejsze podłączanie i wymianę dysków, co jest istotne w kontekście modernizacji sprzętu. Warto również zauważyć, że złącza SATA mają charakterystyczny kształt i orientację, co ułatwia ich prawidłowe podłączenie. Przykładowo, podłączając dysk SSD do płyty głównej, użytkownik powinien zwrócić uwagę na odpowiednie złącze SATA, aby uniknąć problemów z wydajnością oraz kompatybilnością.

Pytanie 34

Maksymalne rozciągnięcie kabla UTP w gniazdku użytkownika nie powinno przekraczać

A. 30 mm
B. 20 mm
C. 12 mm
D. 3 mm
Maksymalne rozszycie kabla UTP w gniazdku abonenckim określane na 12 mm jest zgodne z wymaganiami standardów telekomunikacyjnych, takich jak TIA/EIA-568. Ważne jest, aby minimalizować długość odsłoniętych par przewodów, ponieważ zbyt duża długość może prowadzić do zwiększenia podatności na zakłócenia elektromagnetyczne oraz degradację sygnału. Kiedy przewody są rozdzielane i odsłonięte na zbyt dużej długości, mogą powstawać niepożądane efekty, takie jak crosstalk i tłumienie sygnału, co negatywnie wpływa na jakość transmisji danych. Przykładem zastosowania tej zasady jest instalacja w biurach, gdzie wiele urządzeń może współdzielić tę samą infrastrukturę sieciową. Odpowiednie utrzymanie maksymalnego rozszycia w gniazdku pozwala na zachowanie pełnej funkcjonalności oraz wydajności sieci, co jest kluczowe w środowiskach o wysokich wymaganiach transmisyjnych, takich jak centra danych czy biura z intensywnym obciążeniem sieciowym.

Pytanie 35

Stacja bazowa jest częścią systemu

A. alarmowego
B. sterowania mikroprocesorowego
C. nawigacyjnego
D. telewizji kablowej
Wybór odpowiedzi dotyczącej alarmowego systemu jest nieprawidłowy, ponieważ stacja czołowa nie ma związku z systemami alarmowymi. Systemy alarmowe koncentrują się na detekcji zagrożeń, takich jak włamania czy pożary, oraz na monitorowaniu i reagowaniu na te sytuacje. W kontekście telekomunikacji, stacja czołowa nie jest elementem, który odpowiada za alarmowanie, lecz za przetwarzanie sygnałów telewizyjnych. Podobnie, wybór opcji dotyczącej nawigacji jest błędny, ponieważ systemy nawigacyjne, takie jak GPS, skupiają się na lokalizacji i kierowaniu, a nie na przekazywaniu sygnału telewizyjnego. Stacja czołowa nie uczestniczy w procesie nawigacyjnym, lecz skupia się na dystrybucji treści multimedialnych. Napotkanie na odpowiedź wskazującą na sterowanie mikroprocesorowe może wynikać z mylnego przekonania o uniwersalności mikroprocesorów w różnych zastosowaniach. Choć mikroprocesory są kluczowe w systemach elektronicznych, ich rola w stacji czołowej telewizji kablowej jest ograniczona do przetwarzania sygnałów, a nie zarządzania funkcjami systemów sterowania. Często spotykanym błędem myślowym w takich przypadkach jest uogólnienie funkcji technologii bez zrozumienia ich kontekstu i specyfiki działania w danym systemie.

Pytanie 36

Który rodzaj kondensatora wymaga zachowania polaryzacji podczas jego wymiany?

A. Elektrolityczny
B. Powietrzny
C. Foliowy
D. Ceramiczny
Kondensatory elektrolityczne są elementami, które wymagają zachowania polaryzacji podczas wymiany, co jest kluczowym aspektem ich użytkowania. Są one zaprojektowane z wykorzystaniem elektrody, która jest wytwarzana z materiału przewodzącego, oraz dielektryka, który jest elektrolitem. Polaryzacja oznacza, że kondensator ma określoną biegunowość - jeden terminal działa jako anoda, a drugi jako katoda. W przypadku zamiany miejscami tych biegunów może dojść do uszkodzenia kondensatora, a nawet wybuchu. W praktycznych zastosowaniach, kondensatory elektrolityczne są powszechnie używane w zasilaczach, filtrach i układach audio, gdzie ich zdolność do przechowywania dużych ładunków sprawia, że są niezbędne. Ważne jest również stosowanie norm, takich jak IEC 60384, które regulują parametry kondensatorów elektrolitycznych, aby zapewnić ich niezawodność i bezpieczeństwo w aplikacjach. Wymieniając te komponenty, należy zawsze upewnić się, że nowe kondensatory mają odpowiednią biegunowość, aby uniknąć poważnych problemów.

Pytanie 37

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
B. Generator funkcyjny oraz cyfrowy multimetr
C. Zasilacz symetryczny oraz cyfrowy multimetr
D. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
Aby wyznaczyć charakterystykę przenoszenia wzmacniacza selektywnego LC, konieczne jest zastosowanie zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu. Zasilacz symetryczny zapewnia stabilne napięcie zasilające wzmacniacz, co jest kluczowe dla uzyskania dokładnych pomiarów. Generator funkcyjny umożliwia generowanie sygnałów o różnych częstotliwościach oraz amplitudach, co pozwala na badanie odpowiedzi wzmacniacza na różne częstotliwości. Oscyloskop jest niezbędny do wizualizacji sygnału wyjściowego wzmacniacza, co umożliwia analizę jego charakterystyki przenoszenia. Przykładowo, podczas testowania wzmacniacza selektywnego LC, można wykorzystać generator do przesyłania sygnału sinusoidalnego o zmiennej częstotliwości, a oscyloskop do obserwacji, jak zmienia się amplituda sygnału wyjściowego, co pozwala na określenie pasma przenoszenia oraz zysku wzmacniacza. Stosowanie tych przyrządów jest zgodne z najlepszymi praktykami w dziedzinie elektroniki, co zapewnia wiarygodność i rzetelność uzyskanych wyników pomiarów.

Pytanie 38

Na zakłócenie czasowe w odbiorze sygnału satelitarnego prawidłowo zamontowanej anteny wpływ mają

A. chmura burzowa
B. wiatr
C. zawilgocenie kabla antenowego
D. mgła
Chmury burzowe mają duży wpływ na sygnał satelitarny, zwłaszcza przez rozpraszanie oraz wchłanianie fal radiowych. Kiedy pojawiają się takie chmury, które są naładowane wodą i różnymi cząstkami, sygnał może być naprawdę słabszy, co prowadzi do różnych zakłóceń. Na przykład, w czasie burzy radiofale mogą być odbijane albo rozpraszane, co sprawia, że sygnał staje się niestabilny. Warto pamiętać, że projektując systemy antenowe, powinniśmy brać pod uwagę lokalne warunki atmosferyczne, w tym możliwość wystąpienia burz, bo to może mieć duży wpływ na jakość odbioru. Moim zdaniem, użytkownicy satelitów powinni być świadomi, że podczas intensywnych deszczy czy burz, jakość sygnału może znacznie spaść, więc czasem trzeba pomyśleć o dodatkowych rozwiązaniach, jak mocniejsze anteny czy jakieś systemy zapasowe, by poprawić odbiór.

Pytanie 39

Który z poniższych przyrządów jest używany do pomiaru oporności izolacji przewodów?

A. UM-112B
B. Mostek Thomsona
C. IMI-341
D. Mostek Wiena
Mostek Thomsona, Mostek Wiena oraz UM-112B to urządzenia pomiarowe, które nie są przeznaczone do pomiaru rezystancji izolacji kabli, co może prowadzić do nieporozumień. Mostek Thomsona jest wykorzystywany głównie do pomiaru niewielkich różnic napięć, co sprawia, że nie jest naturalnym wyborem do oceny izolacji, która wymaga znacznie wyższych napięć pomiarowych. Z kolei Mostek Wiena, stosowany głównie w analizie częstotliwościowej, jest narzędziem do pomiaru impedancji, co również nie odpowiada specyfice pomiarów izolacyjnych. UM-112B, jako multimeter, jest bardziej uniwersalnym narzędziem do pomiarów napięcia, prądu i rezystancji, ale nie jest optymalnym rozwiązaniem do oceny stanu izolacji kabel, ponieważ nie oferuje odpowiednich napięć testowych, które są kluczowe dla tej aplikacji. Prawidłowe zrozumienie funkcji poszczególnych przyrządów jest istotne, aby unikać nieefektywnego lub niebezpiecznego korzystania z nieodpowiednich urządzeń w kontekście pomiarów elektrycznych. Dlatego ważne jest, aby stosować dedykowane mierniki, takie jak IMI-341, które są zaprojektowane zgodnie z normami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkowników.

Pytanie 40

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 24 V/V
B. KUMAX = 12 V/V
C. KUMAX = 260 V/V
D. KUMAX = 2,4 V/V
Wybór odpowiedzi innej niż KUMAX = 12 V/V może wynikać z kilku nieporozumień dotyczących pomiarów wzmocnienia napięciowego. Na przykład, jeżeli ktoś obliczał wzmocnienie na podstawie niewłaściwych wartości napięcia, mógł dojść do błędnych wniosków. W przypadku pomiaru wzmocnienia ważne jest, aby korzystać z dokładnych danych, w tym właściwych wartości napięcia wejściowego i wyjściowego. Użycie napięcia wyjściowego 2,4 V w połączeniu z napięciem wejściowym 200 mV jest kluczowe, a błędne wartości mogą prowadzić do znaczących różnic w obliczeniach. Przykładowe pomyłki to mylenie jednostek – np. przeliczenie napięcia z miliwoltów na wolty lub odwrotnie, co może prowadzić do znacznych błędów w obliczeniach. Ważne jest również zrozumienie, że wzmocnienie napięciowe nie jest stałe dla wszystkich częstotliwości; może się zmieniać w zależności od charakterystyki układu oraz zastosowanych komponentów. Niekiedy osoby oceniające wzmocnienie mogą również zapominać, że wzmocnienie napięciowe jest wartością bezwymiarową, co oznacza, że nie wiąże się z jednostkami, a jego interpretacja wymaga starannego podejścia do analizy sygnałów. Dlatego kluczowe jest przeanalizowanie wszystkich danych i zastosowanie odpowiednich metod obliczeniowych, aby uzyskać prawidłowy wynik.