Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 17:49
  • Data zakończenia: 14 maja 2025 18:23

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 30
C. 24
D. 75
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z miedzi
B. z aluminium
C. z polipropylenu
D. ze stali
Wybierając inne materiały, takie jak miedź, stal czy aluminium, można błędnie założyć, że sensory indukcyjne będą w stanie je wykryć. Miedź, będąca materiałem przewodzącym, podlega wpływowi pola elektromagnetycznego. Sensory indukcyjne są zaprojektowane do detekcji takich materiałów, a ich działanie opiera się na indukcji elektromagnetycznej. Z kolei stal, szczególnie ferromagnetyczna, jest zazwyczaj jednym z najlepszych materiałów do detekcji przez te sensory. Sensory indukcyjne są często stosowane do detekcji obiektów metalowych w różnych procesach przemysłowych, co sprawia, że wybór stali jako materiału wykrywalnego jest uzasadniony. Aluminium również jest materiałem, który można wykrywać, chociaż efektywność detekcji może być nieco niższa niż w przypadku stali. Problem z tymi odpowiedziami polega na mylnym przekonaniu, że każdy materiał metalowy można wykryć bez względu na jego właściwości elektryczne. W rzeczywistości wielkość obiektu, jego kształt oraz materiał, z którego jest wykonany, mają kluczowe znaczenie dla efektywności wykrywania. Użytkownicy powinni zwrócić uwagę na to, że różne typy czujników mają swoje specyficzne zastosowania związane z materiałami, co jest podkreślone w normach branżowych dotyczących automatyzacji i detekcji, takich jak IEC 60947-5-2.

Pytanie 4

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. zapadkowe
B. uniwersalne
C. płaskie
D. oczko
Klucze zapadkowe są specjalizowanymi narzędziami, które pozwalają na szybkie i efektywne dokręcanie oraz odkręcanie połączeń gwintowych, co znacznie zwiększa wydajność montażu. Ich konstrukcja pozwala na ciągłe obracanie klucza w jednym kierunku bez konieczności jego wyjmowania z miejsca pracy. Działa to na zasadzie mechanizmu zapadkowego, gdzie przekręcenie klucza w jedną stronę powoduje, że zapadka przeskakuje, umożliwiając kolejne ruchy. W praktyce oznacza to, że praca z kluczem zapadkowym jest znacznie szybsza i mniej męcząca, co ma kluczowe znaczenie w środowiskach przemysłowych, gdzie czas i efektywność są na wagę złota. Użycie kluczy zapadkowych jest zgodne z normami ergonomii oraz efektywności pracy, co czyni je bardzo popularnym rozwiązaniem w mechanice i montażu. Warto również zauważyć, że klucze zapadkowe są dostępne w różnych rozmiarach i konfiguracjach, co pozwala na ich stosowanie w różnorodnych zastosowaniach, od napraw samochodowych po prace w przemyśle budowlanym.

Pytanie 5

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
B. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
C. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
D. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
Zastosowanie opaski powyżej rany lub poniżej rany w kontekście krwotoku zewnętrznego jest nieprawidłowe z kilku powodów. Głównym celem opatrunku w przypadku krwawienia jest bezpośrednie uciskanie rany, co pozwala na fizyczne zatrzymanie krwi. Zakładanie opaski powyżej rany, czyli na zdrową tkankę, może nie tylko nie pomóc w zatrzymaniu krwawienia, ale także spowodować uszkodzenie tkanek w wyniku ucisku. Takie podejście jest zgodne z nieprawidłowymi założeniami, które skupiają się na lokalizacji opaski, zamiast na bezpośrednim działaniu na ranę. Z kolei zastosowanie opaski poniżej rany również nie przynosi pożądanych efektów, ponieważ krew nadal będzie płynąć do rany, co może prowadzić do dalszej utraty krwi. Dodatkowo, zmiana opatrunku w krótkim czasie bez odpowiedniego ucisku na ranie jest błędem, ponieważ może prowadzić do wznowienia krwawienia. W kontekście standardów pierwszej pomocy, niezwykle ważne jest, aby skupić się na ucisku na miejscu krwawienia i zastosowaniu jałowego opatrunku, co stwarza warunki do skutecznej interwencji. Praktyka pokazuje, że odpowiednie działania powinny być oparte na zrozumieniu anatomii i mechanizmów krwawienia, a także na stosowaniu sprawdzonych metod, które zwiększają szanse na zatrzymanie krwawienia i udzielenie skutecznej pomocy przedmedycznej.

Pytanie 6

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
B. IL (Instruction List) - lista instrukcji - lista instrukcji
C. FBD (Function Block Diagram) - schemat bloków funkcyjnych
D. ST (Structured Text) - tekst strukturalny
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 7

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru kreskowego
B. mikroskopu technicznego
C. przymiaru średnicowego
D. śruby mikrometrycznej
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 8

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Gwintownik
B. Tłocznik
C. Narzynka
D. Skrobak
Dla nacinania gwintu zewnętrznego nie można zastosować gwintownika, ponieważ jest to narzędzie przeznaczone do wykonywania gwintów wewnętrznych. Gwintowniki są zaprojektowane tak, aby pasowały do otworów, w których gwint ma być wycinany, a ich konstrukcja oraz geometria skrawająca są dostosowane do tego celu. Użycie gwintownika do gwintu zewnętrznego prowadziłoby do nieprawidłowego kształtu gwintu oraz potencjalnych uszkodzeń elementów złącznych. Skrobak, z kolei, jest narzędziem stosowanym głównie do wygładzania powierzchni oraz usuwania nadmiaru materiału, nie ma jednak zastosowania w procesie nacinania gwintów. Tłoczniki są używane w procesach tłoczenia blach, a ich zastosowanie w gwintowaniu jest również nieadekwatne. Przykłady błędnych wniosków mogą wynikać z mylenia funkcji narzędzi skrawających. Niezrozumienie różnych typów gwintów oraz ich zastosowania w konkretnych operacjach może prowadzić do nieefektywności produkcji, a w skrajnych przypadkach do uszkodzenia maszyn. Dlatego istotne jest, aby każdy operator obrabiarek znał podstawy funkcjonalności narzędzi skrawających oraz ich poprawne zastosowanie w zależności od rodzaju gwintu, który zamierzają wykonać.

Pytanie 9

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. zmniejszenia prędkości obrotowej
C. spadku rezystancji uzwojeń
D. wzrostu rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Flip-flopy.
B. Stabilizatory.
C. Prostowniki.
D. Generatory.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 130 N
B. 160 N
C. 140 N
D. 150 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 16

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Bezobsługowość
B. Niezawodność
C. Iskrobezpieczeństwo
D. Efektywność
Wydajność, niezawodność i bezobsługowość to istotne cechy w projektowaniu układów automatyki, ale ich znaczenie w kontekście konfekcjonowania łatwopalnych substancji chemicznych, jakimi są rozcieńczalniki do farb i lakierów, nie może przeważać nad kwestią iskrobezpieczeństwa. Wydajność może przyciągać uwagę jako znaczący wskaźnik efektywności produkcji, jednak w kontekście substancji niebezpiecznych, zbyt duża wydajność może prowadzić do zminimalizowania zabezpieczeń, co stwarza ryzyko. Niezawodność jest istotna dla zapewnienia ciągłości i stabilności produkcji, lecz w przypadku wystąpienia awarii w systemie bez odpowiednich zabezpieczeń przeciwiskrowych, skutki mogą być katastrofalne. Bezobsługowość, mimo że zwiększa wygodę użytkowania i zmniejsza konieczność interwencji ze strony operatorów, może prowadzić do sytuacji, w których nie podejmuje się wystarczających działań kontrolnych dla zapobiegania zagrożeniom. Najistotniejsze w tym przypadku jest zapewnienie podstawowego bezpieczeństwa, które nie jest możliwe bez uwzględnienia normiskrobezpieczeństwa, co powinno być priorytetem w każdym projekcie związanym z automatyzacją procesów przemysłowych w strefach ryzyka. Pomijając zagadnienia iskrobezpieczeństwa, projektant naraża nie tylko zdrowie pracowników, ale również generuje potencjalne straty finansowe związane z przerwami w produkcji oraz odpowiedzialnością prawną.

Pytanie 17

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik nadmiarowy
B. Wyłącznik różnicowoprądowy
C. Stycznik elektromagnetyczny
D. Przekaźnik termobimetalowy
Wyłącznik nadmiarowy, stycznik elektromagnetyczny oraz wyłącznik różnicowoprądowy to urządzenia, które pełnią różne funkcje w systemach elektrycznych, ale nie są odpowiednie do zabezpieczenia silnika indukcyjnego przed przeciążeniem. Wyłącznik nadmiarowy, mimo że jest używany do ochrony przed przeciążeniem, działa na zasadzie automatycznego wyłączania obwodu przy przekroczeniu określonego prądu. Jednak nie jest on dostosowany do specyficznych warunków pracy silników indukcyjnych, gdzie ważne jest szybkie reagowanie na zmiany obciążenia. Stycznik elektromagnetyczny, z drugiej strony, służy do załączania i wyłączania obwodów elektrycznych, a jego zadanie polega na kontrolowaniu przepływu energii elektrycznej, a nie na monitorowaniu stanu przeciążenia. Wyłącznik różnicowoprądowy jest przeznaczony głównie do ochrony ludzi przed porażeniem prądem elektrycznym, a jego działanie opiera się na wykrywaniu różnicy prądu między przewodami zasilającymi, co nie ma związku z przeciążeniem silnika. Wybór niewłaściwego urządzenia do ochrony silnika może prowadzić do uszkodzenia sprzętu, a także do niebezpieczeństwa dla użytkowników. Dlatego ważne jest, aby w odpowiedni sposób dobierać komponenty zabezpieczające zgodnie z ich funkcjami oraz zaleceniami producentów i normami branżowymi.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Reduktor, manometr, filtr powietrza, smarownica
B. Smarownica, manometr, reduktor, filtr powietrza
C. Manometr, reduktor, smarownica, filtr powietrza
D. Filtr powietrza, manometr, reduktor, smarownica
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 22

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
B. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
C. wylutowania uszkodzonej diody oraz wlutowania nowej diody
D. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
B. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
C. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
D. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 27

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. kasować za pomocą promieniowania ultrafioletowego
B. programować i usuwać elektrycznie
C. bezpowrotnie stracić po odłączeniu zasilania
D. tylko odczytywać
Odpowiedzi, które mówią o programowaniu i kasowaniu elektrycznym oraz utracie danych po wyłączeniu zasilania, są w kontekście pamięci EPROM nietrafione. Pamięć EPROM nie traci danych po odłączeniu prądu; jest to pamięć nieulotna. To znaczy, że dane się w niej trzymają, nawet jak wyłączymy zasilanie, co jest mega ważne w wielu aplikacjach. Poza tym, EPROM programuje się tylko przy użyciu promieniowania UV, a nie elektrycznie, jak w przypadku pamięci EEPROM, która z kolei pozwala na kasowanie i programowanie elektryczne. A odpowiedź, która mówi, że EPROM to tylko odczyt, jest też myląca, bo EPROM można zaprogramować przed użyciem, więc ma znacznie większe możliwości. Wydaje mi się, że te błędne myśli mogą wynikać z braku znajomości różnic między różnymi typami pamięci i z problemów ze zrozumieniem, jak dokładnie działają te mechanizmy. Znajomość tych różnic jest naprawdę ważna, jeśli chcemy dobrze stosować technologię pamięci w projektowaniu systemów elektronicznych.

Pytanie 28

Po wymianie łożysk należy przykręcić pokrywę łożyska śrubami metrycznymi M6x80. Wskaż na podstawie tabeli, jaka powinna być wartość momentu dociągającego.

Nazwa elementuMoment dociągający dla śrub [Nm]
M5M6M8M10M12M16M20
Tabliczka łożyska--254575170275
Pokrywa łożyska58152020--
Skrzynka zaciskowa-47,512,5-20-

A. 8 Nm
B. 25 Nm
C. 4 Nm
D. 15 Nm
Moment dociągający śrub M6x80 wynoszący 8 Nm jest zgodny z normami branżowymi dotyczącymi montażu łożysk. Właściwie dobrany moment pozwala na odpowiednie przyleganie elementów oraz zapobiega ich luzowaniu się w trakcie eksploatacji. Przykręcanie pokrywy łożyska z właściwym momentem jest kluczowe dla zapewnienia trwałości i stabilności całej konstrukcji. Zbyt niski moment dociągający może prowadzić do luzów, co w konsekwencji może powodować uszkodzenia łożysk oraz innych komponentów. Z kolei zbyt wysoki moment może prowadzić do uszkodzenia gwintów lub deformacji elementów, co również wpływa negatywnie na funkcjonowanie maszyny. Dlatego ważne jest, aby stosować się do zaleceń producenta oraz norm technicznych przy dokręcaniu elementów. Przykłady zastosowania tej wiedzy obejmują montaż łożysk w silnikach, skrzyniach biegów oraz innych mechanizmach, gdzie precyzyjne dociąganie śrub ma kluczowe znaczenie dla bezpieczeństwa i wydajności.

Pytanie 29

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowe wspomaganie projektowania
B. Komputerowa kontrola jakości
C. Komputerowe wspomaganie wytwarzania
D. Komputerowe przygotowanie produkcji
Wybór niepoprawnych określeń wynikł z nieporozumienia dotyczącego terminologii związanej z projektowaniem i produkcją. 'Komputerowe wspomaganie projektowania' (CAD) odnosi się do oprogramowania używanego do tworzenia i modyfikacji modeli oraz rysunków inżynieryjnych. Chociaż CAD odgrywa kluczową rolę w procesie projektowania, nie jest to skrót związany z wytwarzaniem. 'Komputerowa kontrola jakości' odnosi się do procesów związanych z zapewnieniem jakości produktów, co jest bardzo ważnym aspektem w każdym zakładzie produkcyjnym, ale nie jest bezpośrednio związane ze wspomaganiem samego procesu wytwarzania. Z kolei 'komputerowe przygotowanie produkcji' to termin, który może odnosić się do różnych działań związanych z planowaniem i organizowaniem produkcji, ale nie skupia się bezpośrednio na aspekcie produkcyjnym, który jest kluczowy w CAM. Typowym błędem myślowym jest pomieszanie funkcji projektowania oraz wytwarzania, co prowadzi do mylnego utożsamiania tych dwóch obszarów. Ważne jest, aby zrozumieć, że CAM koncentruje się na automatyzacji procesów produkcyjnych, a nie na fazie projektowania czy kontroli jakości.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. dwukrotnie
C. dziewięciokrotnie
D. trzykrotnie
Wybór odpowiedzi, która zakłada trzykrotny, sześciokrotny lub dwukrotny wzrost wydzielającego się ciepła w wyniku trzykrotnego zwiększenia natężenia prądu, opiera się na błędnym zrozumieniu zależności między mocą, natężeniem prądu a rezystancją. Warto pamiętać, że zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu. Jeśli ktoś uważa, że moc wzrasta tylko trzykrotnie, myli się, ponieważ moc nie jest liniowo związana z natężeniem prądu. Dla natężenia prądu wynoszącego "I", moc wynosi P = I²R, a dla natężenia "3I", moc wynosi P' = (3I)²R = 9I²R. To oznacza, że moc wzrasta dziewięciokrotnie, a nie trzykrotnie, jak sugeruje błędne odpowiedzi. W praktyce, takie nieporozumienia mogą prowadzić do niewłaściwego projektowania obwodów elektrycznych, co z kolei może prowadzić do przegrzewania się komponentów i ich uszkodzeń. Zrozumienie tych kluczowych zasad jest niezbędne dla inżynierów i techników pracujących z urządzeniami elektrycznymi. Warto podkreślić, że ignorowanie takich relacji między parametrami obwodów może skutkować niebezpiecznymi sytuacjami oraz zwiększeniem kosztów eksploatacji związanych z koniecznością naprawy lub wymiany uszkodzonych elementów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. temperatury powietrza
B. objętości cieczy
C. napięcia elektrycznego
D. ciśnienia cieczy
Podczas analizy dostępnych odpowiedzi warto zauważyć, że czujnik Pt 100 jest nieodpowiedni do pomiaru napięcia elektrycznego, ciśnienia cieczy ani objętości cieczy. Czujnik napięcia opiera się na zupełnie innych zasadach działania, gdzie wykorzystuje się różnice potencjałów elektrycznych, a nie zmiany oporności materiału. W przypadku ciśnienia cieczy, pomiary odbywają się zazwyczaj za pomocą manometrów lub czujników piezorezystancyjnych, które reagują na siłę wywieraną przez ciecz na przetwornik. Z kolei pomiar objętości cieczy zazwyczaj przeprowadza się przy użyciu przepływomierzy, które mierzą ilość cieczy przepływającej przez określony punkt w jednostce czasu, a nie poprzez analizę oporności materiału. Zrozumienie fundamentalnych właściwości czujników pomiarowych jest kluczowe, ponieważ różne typy czujników są projektowane do specyficznych zastosowań, które wymagają unikalnych cech. Wybór nieodpowiednich czujników do danego zadania prowadzi do błędnych wyników pomiarów i może skutkować poważnymi konsekwencjami w systemach, gdzie precyzja jest kluczowa, jak w medycynie czy przemyśle chemicznym. Dlatego istotne jest, aby przy wyborze odpowiednich czujników kierować się ich zasadą działania oraz przeznaczeniem, co jest zgodne z dobrymi praktykami w zakresie inżynierii pomiarowej.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Cyfrowy tachometr jest narzędziem do mierzenia

A. naprężeń w metalach
B. prędkości obrotowej wału silnika
C. natężenia przepływu powietrza
D. lepkości cieczy
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.