Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 maja 2025 21:47
  • Data zakończenia: 28 maja 2025 22:11

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i przeprowadzić sztuczne oddychanie
B. przeprowadzić reanimację poszkodowanego i wezwać pomoc
C. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
D. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do zbiornika sprężonego powietrza
B. Do zbiornika oleju hydraulicznego
C. Do siłownika jednostronnego działania
D. Do siłownika dwustronnego działania
Podłączenie przyłącza "T" do zbiornika sprężonego powietrza, czy do siłownika jednostronnego lub dwustronnego nie jest dobrym pomysłem z kilku przyczyn. Po pierwsze, zawory hydrauliczne są stworzone do zarządzania olejem, a nie sprężonym powietrzem. Te dwa mają zupełnie różne właściwości. Jakbyśmy ich użyli zamiennie, to może to prowadzić do dziwnych problemów z działaniem systemu i, co gorsza, uszkodzenia elementów. Przyłącza do siłowników mają inne funkcje – tam olej wpływa, żeby siłownik mógł działać. Z doświadczenia wiem, że niezrozumienie funkcji tych przyłączy to prosta droga do awarii hydrauliki. Normy branżowe wymagają, żeby każdy element był odpowiednio podłączony, inaczej może być nie tylko nieefektywnie, ale też niebezpiecznie. W hydraulice każdy podzespół ma swoje zadanie, więc warto to mieć na uwadze, żeby wszystko działało tak, jak powinno.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
B. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
C. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
D. założyć opaskę uciskową powyżej miejsca urazu
Założenie opaski uciskowej powyżej rany jest kluczowym działaniem w przypadku krwotoku tętniczego. Krwotok tętniczy charakteryzuje się intensywnym krwawieniem, które może prowadzić do szybkiej utraty krwi i wstrząsu hipowolemicznego. Opaska uciskowa działa poprzez wywieranie stałego ucisku na naczynia krwionośne, co ogranicza przepływ krwi do miejsca rany, a tym samym zmniejsza utratę krwi. Ważne jest, aby opaskę założyć powyżej rany, aby skutecznie zablokować krwawienie. Należy również pamiętać, że opaska uciskowa powinna być stosowana tylko w sytuacjach, gdy inne metody, takie jak bezpośredni ucisk na ranę, nie przynoszą efektu. W praktyce, opaskę należy założyć jak najszybciej, a następnie jak najszybciej wezwać pomoc medyczną. W przypadku urazów kończyn, opaska powinna być umieszczona jak najwyżej, aby odpowiednio ograniczyć przepływ krwi. Zachowanie tej procedury jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi standardami w zakresie pierwszej pomocy.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Wilgotność powietrza
B. Spust kondensatu
C. Poziom oleju
D. Ciśnienie w systemie
Poziom oleju w smarownicy jest kluczowym parametrem, który należy kontrolować, aby zapewnić prawidłowe funkcjonowanie systemu pneumatycznego. Olej jest niezbędny do smarowania ruchomych elementów maszyn oraz do redukcji tarcia, co bezpośrednio wpływa na ich żywotność oraz efektywność pracy. Zbyt niski poziom oleju może prowadzić do nadmiernego zużycia komponentów, a w skrajnych przypadkach do ich uszkodzenia. W praktyce, regularne kontrole poziomu oleju powinny być częścią rutynowego przeglądu technicznego instalacji pneumatycznej, zgodnie z zaleceniami producentów urządzeń oraz normami branżowymi, takimi jak ISO 8573. Konsekwentne monitorowanie poziomu oleju oraz jego jakości w smarownicach przyczynia się do zwiększenia niezawodności systemów pneumatycznych, co jest kluczowe w procesach przemysłowych, gdzie ciągłość produkcji jest priorytetem.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. oceny stopnia naprężenia
B. weryfikacji czystości paska
C. sprawdzenia wymiarów
D. analizy stopnia zużycia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
B. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
C. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
D. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 20

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. poprzez schładzanie
B. poprzez podgrzewanie
C. absorcyjny
D. adsorpcyjny
Odpowiedź 'absorpcyjnego' jest prawidłowa, ponieważ proces osuszania przez środek osuszający polega na wchłanianiu wilgoci oraz oleju z powietrza. W procesach absorpcyjnych, substancja osuszająca, zwykle w postaci żelu krzemionkowego lub innych materiałów higroskopijnych, wchłania cząsteczki wody oraz innych zanieczyszczeń z powietrza. Zastosowanie technologii absorpcyjnej jest szczególnie widoczne w przemyśle, gdzie czystość powietrza jest kluczowa dla zachowania wydajności i jakości produkcji. Na przykład, w systemach pneumatycznych stosuje się osuszacze absorpcyjne, które skutecznie redukują wilgoć, co zapobiega korozji elementów mechanicznych oraz uszkodzeniom narzędzi. Ponadto, w standardach branżowych takich jak ISO 8573, podkreśla się znaczenie kontrolowania poziomu wilgoci w sprężonym powietrzu, co potwierdza konieczność stosowania odpowiednich środków osuszających.

Pytanie 21

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
B. wylutowania uszkodzonej diody oraz wlutowania nowej diody
C. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
D. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
B. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
C. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
D. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
Wskazane odpowiedzi nieprawidłowo definiują pojęcie pneumohydraulicznego wzmacniacza ciśnienia, co może prowadzić do mylnych wniosków. Propozycje takie jak akumulator hydrauliczny połączony szeregowo z siłownikiem pneumatycznym czy przemiennik pneumohydrauliczny w zestawieniu z siłownikiem hydraulicznym nie uwzględniają fundamentalnych zasad działania tych urządzeń. Akumulator hydrauliczny, będący elementem systemów hydraulicznych, przechowuje energię w postaci ciśnienia cieczy, lecz samodzielnie nie przekształca energii pneumatycznej w hydrauliczną, co jest kluczowym zjawiskiem w pneumohydraulicznych wzmacniaczach ciśnienia. Z kolei przemiennik pneumohydrauliczny jest urządzeniem, które może być wykorzystywane w kontekście różnych systemów, lecz jego rola nie jest związana z połączeniem siłowników w wymieniony sposób. Typowym błędem w myśleniu jest mylenie ról poszczególnych elementów układu oraz niewłaściwe łączenie różnych technologii, co prowadzi do nieefektywności systemu. Aby zrozumieć, jak prawidłowo konstruować tego typu systemy, ważne jest przyswojenie zasad funkcjonowania zarówno hydrauliki, jak i pneumatyki, oraz zapoznanie się z odpowiednimi normami branżowymi, które regulują ich stosowanie.

Pytanie 25

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. umieszczania elementu w odpowiedniej lokalizacji
B. chwytania elementu z odpowiednią siłą
C. ochrony ramienia robota przed przeciążeniem
D. ochrony ramienia robota przed zderzeniem z operatorem
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. akumulatory kwasowe
B. elementy termoelektryczne
C. prądnice synchroniczne
D. ogniwa fotowoltaiczne
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 31

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. szybkiego spustu
B. regulacji ciśnienia
C. przełączania obiegu
D. podwójnego sygnału
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, manometr, smarownica
B. filtr, zawór dławiący, manometr, smarownica
C. sprężarka, filtr, zawór redukcyjny, manometr
D. filtr, zawór redukcyjny, manometr, smarownica
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. przełącznika instalacyjnego systemu
C. wskaźnika działania systemu
D. ochrony prądowej systemu
Kiedy analizujemy inne odpowiedzi, łatwo zauważyć, dlaczego są one mylne. Na przykład, określenie fotorezystora jako sygnalizatora pracy układu jest nieprecyzyjne. Fotorezystor nie sygnalizuje stanu pracy układu, lecz reaguje na poziom światła. Takie myślenie może prowadzić do błędnej koncepcji działania wyłączników zmierzchowych, które mają na celu automatyzację oświetlenia na podstawie warunków świetlnych, a nie stanu operacyjnego układu. Ponadto, twierdzenie, że fotorezystor działa jako włącznik instalacyjny, jest również błędne. Włącznik instalacyjny to urządzenie, które manualnie kontroluje przepływ energii do urządzenia, a fotorezystor automatycznie dostosowuje działanie w zależności od otoczenia. W tym kontekście, pomylenie tych funkcji może skutkować niezrozumieniem procesu automatyzacji oświetlenia. Również koncepcja, że fotorezystor pełni rolę zabezpieczenia prądowego, jest nieprawidłowa, ponieważ zabezpieczenia prądowe mają na celu ochronę obwodów przed przeciążeniem lub zwarciem, co jest całkowicie odrębne od funkcji detekcji światła. Wszelkie nieporozumienia w tych kwestiach mogą prowadzić do nieefektywnego projektowania systemów oświetleniowych, a także zwiększać ryzyko awarii sprzętu lub nieprawidłowego działania instalacji. Ważne jest, aby dobrze rozumieć różnice między tymi rolami, aby móc prawidłowo zaprojektować i zastosować systemy automatyzacji w praktyce.

Pytanie 36

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. NAND
B. OR
C. AND
D. NOR
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. grupy siłowników z modułem rozszerzającym
B. programatora z siłownikiem
C. programatora ze sterownikiem
D. silnika z pompą hydrauliczną
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.