Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 22 maja 2025 13:29
  • Data zakończenia: 22 maja 2025 13:31

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W przypadku którego z połączeń występuje zjawisko rozszerzalności cieplnej metali?

A. Skurczowego
B. Nitowanego
C. Kołkowego
D. Bagnetowego
Odpowiedź skurczowa jest prawidłowa, ponieważ zjawisko rozszerzalności cieplnej metali jest kluczowym aspektem w technikach łączenia, które wykorzystują różnice w temperaturze do osiągnięcia pożądanej geometrii i szczelności. W przypadku połączeń skurczowych, metalowe elementy są najpierw podgrzewane, co powoduje ich rozszerzenie. Po zakończeniu procesu grzewczego, materiały te są następnie łączone, a ich chłodzenie prowadzi do skurczenia się metali, co z kolei generuje siły dociskowe. Przykładami zastosowania połączeń skurczowych są różne elementy konstrukcji maszyn, gdzie wykorzystuje się materiał połączony z dużą precyzją oraz w przemyśle motoryzacyjnym, gdzie osie i wały są często łączone w ten sposób, aby zapewnić odpowiednią stabilność i trwałość. W kontekście inżynieryjnym, standardy takie jak ISO 9001 podkreślają znaczenie jakości połączeń, co czyni umiejętność korzystania ze skurczowych połączeń niezbędną w projektowaniu i wytwarzaniu. Zrozumienie tego zjawiska ma kluczowe znaczenie dla inżynierów i techników, aby mogli skutecznie stosować metody łączenia w praktyce.

Pytanie 2

Które z wymienionych elementów maszyn nie mogą być naprawiane?

A. Prowadnice
B. Łożyska toczne
C. Korpusy
D. Koła zębate
Prowadnice, korpusy oraz koła zębate to elementy maszyn, które mimo iż podlegają zużyciu, są zazwyczaj możliwe do naprawy. Prowadnice są odpowiedzialne za precyzyjne prowadzenie ruchu w maszynach, a ich uszkodzenie często można zniwelować poprzez szlifowanie lub wymianę uszkodzonych segmentów. Korpusy, które stanowią strukturalne wsparcie dla całej maszyny, mogą być również reperowane, zwłaszcza gdy są wykonane z materiałów takich jak stal czy aluminium. W przypadku drobnych uszkodzeń, takich jak wgniecenia czy pęknięcia, można zastosować spawanie lub inne techniki naprawcze. Koła zębate, kluczowe dla przekazywania napędu, mogą być regenerowane poprzez obróbkę mechaniczną, co oznacza, że ich geometria może zostać przywrócona do stanu używalności, a zużyte zęby uzupełnione. Typowe błędy myślowe polegają na założeniu, że wszystkie elementy maszyny, które uległy uszkodzeniu, muszą być wymieniane. W rzeczywistości, odpowiednio zaplanowane procedury konserwacji i regeneracji mogą wydłużyć żywotność wielu komponentów, co jest zgodne z zasadami zrównoważonego rozwoju i efektywności ekonomicznej w przemyśle. W kontekście utrzymania ruchu w przemyśle, umiejętność rozróżnienia pomiędzy elementami, które można naprawić, a tymi, które należy wymieniać, jest kluczowa dla optymalizacji kosztów oraz minimalizacji przestojów w produkcji.

Pytanie 3

Stal szybkotnąca jest stosowana do produkcji

A. rur ciągnionych
B. noży tokarskich
C. profili zamkniętych
D. blach trapezowych
Stal szybkotnąca, znana również jako stal HSS (High-Speed Steel), jest materiałem charakteryzującym się wyjątkowymi właściwościami, dzięki którym jest idealnym wyborem do produkcji narzędzi skrawających, w tym noży tokarskich. Stal szybkotnąca zawiera dodatki takie jak wolfram, molibden i kobalt, które poprawiają jej twardość i odporność na wysokie temperatury, co jest kluczowe w procesach obróbczych, gdzie występuje znaczne tarcie i ciepło. Przykładowo, noże tokarskie wykonane z HSS mogą pracować z dużymi prędkościami obrotowymi, co zwiększa efektywność obróbki i redukuje czas produkcji. W praktyce, narzędzia te są powszechnie stosowane w przemyśle, szczególnie w obróbce metali, gdzie wymagane są precyzyjne cięcia i długotrwała trwałość. Dobre praktyki w branży sugerują regularne sprawdzanie stanu narzędzi skrawających, a także dostosowywanie parametrów obróbczych do specyfikacji materiału, co w przypadku stali HSS przyczynia się do uzyskania optymalnych wyników.

Pytanie 4

Jakie urządzenie kontrolno-pomiarowe jest wykorzystywane do wykrywania pęknięć na wale korbowym?

A. Sprawdzian do gwintów zewnętrznych
B. Suwmiarka uniwersalna
C. Wzorzec chropowatości
D. Defektoskop elektromagnetyczny
Suwmiarka uniwersalna jest przydatna, ale nie nadaje się do wykrywania pęknięć w materiałach. Jej głównym przeznaczeniem jest pomiar długości i średnic, a nie ocena, czy coś jest całe czy nie, co ma znaczenie przy pęknięciach na wale korbowym. Suwmiarka nie widzi niewidocznych wad, które mogą być groźne dla silnika. Sprawdzian do gwintów zewnętrznych to narzędzie specyficzne do oceny gwintów, ale też nie nadaje się do wykrywania pęknięć w metalowych częściach. Co do chropowatości, wzorzec chropowatości bada jakość powierzchni i chropowatość, co jest ważne, ale nie ma związku z uszkodzeniami strukturalnymi. Dlatego to, jakie narzędzia wybierzemy do pomiarów, powinno być dobrze przemyślane, bo źle dobrane mogą prowadzić do poważnych problemów, jak usterki maszyn czy wypadki.

Pytanie 5

Do budowy wanny, która ma służyć do przechowywania soku jabłkowego, należy użyć stali

A. konstrukcyjnej
B. ocynkowanej
C. chromowo-niklowej
D. narzędziowej
Ocynkowana stal jest materiałem, który pomimo swoich zalet, takich jak niska cena i odporność na korozję, nie nadaje się do kontaktu z produktami spożywczymi, a zwłaszcza z kwasowymi substancjami, takimi jak sok jabłkowy. Powłoka cynkowa, która ma na celu ochronę przed rdzą, może ulegać rozpuszczeniu w kontakcie z kwasami, co prowadzi do zanieczyszczenia kapsułki sokiem. To naraża produkt na kontakt z szkodliwymi substancjami, co jest niezgodne z przepisami dotyczącymi bezpieczeństwa żywności. Narzędziowa stal, z kolei, jest projektowana z myślą o wysokiej twardości i wytrzymałości, co czyni ją idealną do produkcji narzędzi, jednak nie jest odpowiednia dla aplikacji związanych z przechowywaniem żywności, z uwagi na jej potencjalną kruchość i ograniczoną odporność na korozję w środowisku kwasowym. Stal konstrukcyjna, chociaż wytrzymała, również nie posiada właściwości antykorozyjnych, które są niezbędne w kontekście długoterminowego przechowywania soku. Wybór niewłaściwego materiału może prowadzić do degradacji jakości soku, co negatywnie wpływa na jego smak i bezpieczeństwo. Zrozumienie różnic pomiędzy tymi rodzajami stali jest kluczowe dla zapewnienia efektywnego i trwałego rozwiązania w przemyśle spożywczym.

Pytanie 6

Z jakiego materiału powinien być wykonany nóż tokarski do obróbki stali?

A. Żeliwa szarego
B. Stali szybkotnącej
C. Włókna węglowego
D. Aluminium hutniczego
Nóż tokarski przeznaczony do obróbki stali powinien być wykonany ze stali szybkotnącej, ponieważ ten materiał charakteryzuje się wysoką odpornością na ścieranie oraz zdolnością do utrzymania ostrości pod wpływem dużych prędkości obrotowych i temperatur. Stal szybkotnąca jest stopem zawierającym wolfram, molibden, kobalt oraz inne pierwiastki, co przyczynia się do jej doskonałych właściwości mechanicznych. Przykładowo, w obróbce stali na tokarkach CNC, narzędzia wykonane ze stali szybkotnącej nie tylko efektywnie tną materiał, ale także gwarantują dłuższy czas użytkowania, co zmniejsza koszty produkcji i zwiększa wydajność. Standardy przemysłowe, takie jak ISO 4948, określają klasyfikację stali szybkotnącej oraz ich zastosowanie w narzędziach skrawających, co potwierdza jej dominującą rolę w obróbce metalu. W kontekście przemysłu, narzędzia te są kluczowe w procesach produkcyjnych, w których wymagana jest precyzja i niezawodność, co czyni stal szybkotnącą materiałem pierwszego wyboru.

Pytanie 7

Jakie rodzaje połączeń są rozłączne?

A. Lutowane
B. Gwintowe
C. Zgrzewane
D. Klejone
Lutowanie, zgrzewanie oraz klejenie to metody łączenia, które tworzą połączenia trwałe i jednocześnie nie są określane jako rozłączne. Lutowanie polega na łączeniu dwóch elementów przy użyciu stopu metalu o niższej temperaturze topnienia, co tworzy trwały związek, ale nie pozwala na łatwe demontowanie bez uszkodzenia połączenia. Zgrzewanie natomiast, które polega na łączeniu materiałów poprzez ich miejscowe stopienie, również skutkuje połączeniem na stałe, co sprawia, że demontaż staje się procesem skomplikowanym i nie zawsze możliwym bez zniszczenia elementów. Klejenie, z drugiej strony, polega na zastosowaniu substancji klejącej do połączenia materiałów, co choć może wydawać się łatwe do usunięcia, często prowadzi do uszkodzenia powierzchni materiałów po demontażu. Typowym błędem myślowym w tej kwestii jest mylenie trwałości z rozłącznością. Rozważając różne metody połączeń, kluczowe jest zrozumienie, że różnią się one pod względem siły i możliwości demontażu. W wielu zastosowaniach przemysłowych oraz w budownictwie wybór metody łączenia powinien być przemyślany, aby zapewnić odpowiednią trwałość oraz łatwość konserwacji, co jest niezbędne w kontekście norm i standardów branżowych.

Pytanie 8

Aby zrealizować produkcję rury okrągłej z blachy, konieczne jest użycie

A. wytaczarki
B. prasy hydraulicznej
C. frezarki poziomej
D. walcarki
Wybór walcarki jako narzędzia do wykonania rury okrągłej z blachy jest słuszny, ponieważ walcarka to maszyna przeznaczona do formowania metalu w kształty cylindryczne lub stożkowe. Proces walcowania polega na przekształcaniu płaskiego arkusza blachy poprzez jego przeprowadzenie między dwoma lub więcej walcami, co umożliwia uzyskanie pożądanej średnicy i grubości ścianki rury. Walcarki są powszechnie stosowane w przemyśle metalowym do produkcji rur, kształtowników i innych elementów z blachy. Dzięki precyzyjnemu ustawieniu walców, można osiągnąć wysoką jakość produkcji i zachować tolerancje wymiarowe, które są kluczowe w wielu zastosowaniach inżynieryjnych, np. w budowie rur do przesyłu gazu czy cieczy. Dobrą praktyką jest także stosowanie walcowników z automatycznymi ustawieniami, co zwiększa efektywność i powtarzalność procesu. Oprócz zastosowania w rurociągach, walcarki znajdują również szerokie zastosowanie w produkcji mebli metalowych oraz konstrukcji stalowych, co podkreśla ich uniwersalność i znaczenie w nowoczesnym przemyśle.

Pytanie 9

Jaka jest główna zaleta stosowania połączeń nitowych?

A. Niska odporność na wibracje
B. Łatwość demontażu
C. Trwałość i niezawodność
D. Niska wytrzymałość na rozciąganie
Połączenia nitowe są powszechnie stosowane w przemyśle maszynowym i konstrukcjach metalowych ze względu na swoją trwałość i niezawodność. Są one szczególnie przydatne w miejscach, gdzie spawanie jest trudne lub niemożliwe do zastosowania. Nity zapewniają trwałe połączenie, które jest odporne na zmienne warunki środowiskowe, takie jak wilgoć, wysoka temperatura czy wibracje, co czyni je idealnym rozwiązaniem w przemyśle lotniczym, stoczniowym czy budowlanym. W praktyce, połączenia nitowe są wykorzystywane w miejscach, gdzie wymagana jest duża wytrzymałość mechaniczna, a jednocześnie istotne jest zachowanie strukturalnej integralności. Dzięki swojej niezawodności, nity są często wybierane do zadań, gdzie bezpieczeństwo i długowieczność konstrukcji są kluczowe. W standardach branżowych, takich jak normy ISO czy ASTM, połączenia nitowe są często zalecane jako preferowana metoda łączenia w specyficznych aplikacjach przemysłowych. Połączenia te, mimo że mogą być bardziej czasochłonne w montażu niż inne metody, oferują jednak nieporównywalną trwałość i pewność strukturalną, co jest nieocenione w wielu zastosowaniach inżynieryjnych.

Pytanie 10

W której obrabiarce znajduje się stół krzyżowy?

A. Piły taśmowej pionowej
B. Wtryskarki dźwigniowej
C. Frezarki wspornikowej
D. Wytłaczarki planetarnej
Frezarka wspornikowa to maszyna, która wykorzystuje stół krzyżowy do precyzyjnego ustawiania obrabianego materiału w dwóch osiach - poziomej i pionowej. Stół krzyżowy, wyposażony w prowadnice, umożliwia dokładne przesuwanie detalu, co jest niezbędne w procesach frezowania, gdzie precyzja i powtarzalność są kluczowe. W frezarkach wspornikowych stół krzyżowy współpracuje z narzędziem skrawającym, co pozwala na wykonanie skomplikowanych kształtów i detali. Przykładowo, w przemyśle metalowym, frezarki wspornikowe używane są do produkcji elementów maszyn, gdzie wymagane są dokładne tolerancje wymiarowe. Ponadto, stół krzyżowy w tych obrabiarkach często posiada możliwość mocowania dodatkowych akcesoriów, co zwiększa wszechstronność maszyny i jej zdolność do obróbki różnych materiałów. Standardy przemysłowe, jak ISO 9001, podkreślają znaczenie precyzyjnych procesów obróbczych, co czyni frezarki wspornikowe odpowiednimi narzędziami w spełnianiu tych wymagań.

Pytanie 11

Do elementów diagnozowania maszyn i urządzeń nie należy badanie

A. hałasu oraz drgań.
B. szczelności.
C. liczby wyłączeń maszyny.
D. stanu powierzchni.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba wyłączeń maszyny nie jest bezpośrednim elementem diagnostyki, ale raczej wskaźnikiem jej wydajności lub awaryjności. Diagnostyka maszyn i urządzeń jak najbardziej koncentruje się na ocenie ich stanu technicznego, co obejmuje m.in. badanie stanu powierzchni, monitorowanie hałasu i drgań oraz kontrolę szczelności. Te aspekty są kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Na przykład, badania drgań mogą ujawnić problemy z łożyskami lub niewyważeniem, a analiza hałasu może wskazać na zużycie elementów mechanicznych. W praktyce, regularne przeprowadzanie takich badań pomaga w optymalizacji procesów produkcyjnych oraz w planowaniu działań konserwacyjnych, co z kolei przyczynia się do zmniejszenia kosztów eksploatacyjnych i zwiększenia niezawodności maszyn. Warto przy tym pamiętać o standardach takich jak ISO 10816, które dostarczają wytycznych dotyczących oceny drgań maszyn.

Pytanie 12

Na kształt powierzchni obrabianych nie wpływa

A. powstawanie narostu.
B. zastosowanie cieczy chłodzących.
C. zużycie krawędzi skrawającej.
D. odkształcenie plastyczne narzędzia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie cieczy chłodzących ma kluczowe znaczenie w procesach obróbczych, jednak nie wpływa bezpośrednio na odchyłkę kształtu powierzchni obrabianych. Ciecze chłodzące mają za zadanie zmniejszenie temperatury w strefie skrawania oraz poprawę usuwania wiórów, co przyczynia się do lepszej stabilności procesu obróbki. W praktyce, odpowiedni dobór cieczy chłodzącej może poprawić wydajność skrawania poprzez zmniejszenie tarcia oraz zużycia narzędzia, jednak sama w sobie nie ma wpływu na geometrię obrabianego detalu. Wiele standardów branżowych, takich jak ISO 10791-6, podkreśla znaczenie chłodzenia w procesach obróbczych, ale zwraca jednocześnie uwagę na inne parametry, jak geometria narzędzia czy technika skrawania, które mają decydujący wpływ na kształt i jakość obrabianej powierzchni. Przykładem zastosowania są operacje frezarskie, gdzie odpowiednio dobrana ciecz chłodząca nie tylko przedłuża żywotność narzędzi, ale również minimalizuje ryzyko deformacji detalu spowodowanej wysoką temperaturą. Z tego powodu, zrozumienie roli cieczy chłodzących w obróbce jest kluczowe dla uzyskania wysokiej jakości produktów.

Pytanie 13

Gumowe łączniki jako elementy elastyczne są wykorzystywane w celu

A. zwielokrotnienia drgań przenoszonych wewnątrz obudów maszyn
B. wzmocnienia amplitudy drgań przenoszonych wewnątrz urządzeń
C. powiększenia amplitudy drgań komponentów maszyn oraz ich struktur nośnych
D. ograniczenia drgań przekazywanych pomiędzy elementami maszyn

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łączniki gumowe odgrywają kluczową rolę w ograniczaniu drgań przekazywanych pomiędzy częściami maszyn, co jest istotne dla zachowania ich sprawności oraz wydajności. Działając jako elementy izolujące, łączniki te skutecznie tłumią drgania, co pozwala na zmniejszenie uszkodzeń mechanicznych oraz wydłużenie żywotności urządzeń. Przykładowo, w przypadku silników elektrycznych, zastosowanie łączników gumowych zmniejsza przenoszenie drgań na ramę maszyny, co ogranicza hałas oraz wibracje. W przemyśle motoryzacyjnym, łączniki te są używane w układach zawieszenia, aby poprawić komfort jazdy poprzez tłumienie drgań pochodzących z nawierzchni drogi. Zgodnie z normami ISO i dobrymi praktykami inżynieryjnymi, stosowanie łączników gumowych jest zalecane w projektowaniu maszyn, aby zapewnić ich stabilność i niezawodność w działaniu, co wpływa na bezpieczeństwo oraz efektywność operacyjną.

Pytanie 14

Obecność tarcia suchego, granicznego lub płynnego jest związana z

A. grubością warstwy smaru
B. rozmiarem styku pomiędzy zębami
C. temperaturą pracy komponentu
D. prędkością obrotową mechanizmu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Grubość warstwy smaru odgrywa kluczową rolę w występowaniu różnych rodzajów tarcia, w tym tarcia suchego, granicznego i płynnego. Tarcie suche występuje, gdy dwa ciała stykają się bez jakiejkolwiek substancji smarnej, co prowadzi do wysokiego zużycia i potencjalnych uszkodzeń. Tarcie graniczne występuje w sytuacji, gdy smar jest obecny, ale jego ilość jest niewystarczająca lub nie odpowiada wymaganiom aplikacji, co prowadzi do ochrony jedynie częściowej. Tarcie płynne, z kolei, zachodzi, gdy grubość warstwy smaru jest odpowiednia, co pozwala na pełne oddzielenie powierzchni współpracujących. W praktyce, właściwe dobranie grubości warstwy smaru jest kluczowe dla minimalizacji tarcia, co przekłada się na niższe zużycie energii oraz dłuższą żywotność elementów mechanicznych. W standardach branżowych, takich jak ISO 6743, określone są normy dotyczące różnych rodzajów smarów i ich odpowiednich zastosowań, co jest niezbędne do optymalizacji pracy maszyn i urządzeń.

Pytanie 15

Jakiego materiału nie używa się do produkcji łożysk ślizgowych?

A. Babbitu
B. PA6
C. PFTE
D. Boksytu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Boksyt, będący naturalnym minerałem aluminium, nie jest stosowany w produkcji łożysk ślizgowych ze względu na swoje właściwości fizyczne i chemiczne. Łożyska ślizgowe wymagają materiałów o wysokiej odporności na ścieranie, niskim współczynniku tarcia oraz dobrej trwałości w warunkach obciążenia. Materiały takie jak PA6 (poliamid) oraz PFTE (politetrafluoroetylen) są powszechnie używane, ponieważ charakteryzują się niskim współczynnikiem tarcia oraz dobrą odpornością na działanie różnych chemikaliów. Babbit, z kolei, to stop metali używany w łożyskach, który oferuje doskonałe właściwości smarne. W porównaniu do tych materiałów, boksyt nie ma zastosowania w tej dziedzinie, ponieważ nie spełnia wymagań dotyczących wytrzymałości oraz właściwości tribologicznych. Przykładowo, w przemyśle motoryzacyjnym i maszynowym stosuje się łożyska ślizgowe wykonane z PA6 lub PFTE dla zapewnienia długiej żywotności i niezawodności komponentów.

Pytanie 16

Tępa krawędź narzędzi skrawających prowadzi do

A. obniżenia kosztów jednostkowych produkcji
B. podniesienia wydajności obrabiarek tradycyjnych
C. redukcji ilości dostarczanego płynu chłodzącego do narzędzia
D. wzrostu zużycia energii elektrycznej przez obrabiarkę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stępienie ostrzy narzędzi skrawających wpływa na zwiększone zużycie energii elektrycznej przez obrabiarkę, ponieważ narzędzia o tępych ostrzach wymagają większej siły do skrawania materiału. W praktyce oznacza to, że przy takim narzędziu wzrasta opór podczas obróbki, co prowadzi do większego obciążenia silnika obrabiarki. W wyniku tego silnik musi pracować bardziej intensywnie, co przekłada się na wyższe zużycie energii. Dobrym przykładem są operacje frezowania, gdzie ze stępionym narzędziem może występować nie tylko większe zużycie energii, ale także gorsza jakość obrabianego detalu. Standardy branżowe wskazują, że regularne ostrzenie narzędzi skrawających jest kluczowe dla zachowania efektywności energetycznej oraz jakości produkcji. Ponadto, użycie narzędzi w dobrym stanie pozwala na optymalizację dużych kosztów operacyjnych, co jest szczególnie istotne w długoterminowych procesach produkcyjnych.

Pytanie 17

Aby wyczyścić powierzchnię roboczą pilnika, trzeba użyć

A. pilnika zamkowego
B. szczotki drucianej
C. skrobaka trójkątnego
D. szczotki z włosia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczotka druciana jest narzędziem odpowiednim do oczyszczania powierzchni roboczej pilnika, ponieważ jej włosie wykonane jest z metalowych drutów, co pozwala na skuteczne usuwanie zanieczyszczeń, resztek materiału i rdzy. W praktyce, stosowanie szczotki drucianej nie tylko przywraca funkcjonalność narzędzia, ale również zapewnia dłuższą jego żywotność. Użycie tego narzędzia jest zgodne z zaleceniami wielu branż, w tym przemysłu mechanicznego i stolarstwa, gdzie utrzymanie narzędzi w dobrym stanie technicznym jest kluczowe. Przykładowo, w warsztatach rzemieślniczych, po każdym użyciu pilnika, zaleca się jego oczyszczenie za pomocą szczotki drucianej, co nie tylko poprawia jakość pracy, ale również minimalizuje ryzyko uszkodzenia obrabianego materiału. Ponadto, regularne czyszczenie przynosi dodatkowe korzyści, takie jak zmniejszenie tarcia i poprawa precyzji obróbki, co jest kluczowe w zastosowaniach wymagających wysokiej dokładności.

Pytanie 18

Aby zapewnić precyzyjne przyleganie powierzchni głowicy zaworu do gniazda, należy przeprowadzić proces

A. wytaczania
B. docierania
C. polerowania
D. szlifowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Docieranie to proces, który ma na celu uzyskanie precyzyjnego przylegania powierzchni głowicy zaworu do gniazda zaworowego. Proces ten polega na delikatnym szlifowaniu dwóch powierzchni w celu usunięcia mikroskopijnych nierówności, co zwiększa ich kontakt i szczelność. W praktyce docieranie jest często stosowane w silnikach spalinowych, gdzie precyzyjne dopasowanie zaworów do gniazd ma kluczowe znaczenie dla osiągów silnika i jego efektywności. Uzyskanie odpowiedniej powierzchni przy użyciu techniki docierania wpływa na redukcję strat ciśnienia, co przekłada się na lepsze spalanie paliwa oraz zmniejszenie emisji zanieczyszczeń. W branży motoryzacyjnej i przemysłowej standardy jakości, takie jak ISO 9001, podkreślają znaczenie dokładności w obróbce mechanicznej, a docieranie jest jednym z kluczowych procesów zapewniających te standardy. Dzięki odpowiedniemu zastosowaniu narzędzi docierających oraz właściwej technice można uzyskać nie tylko lepsze parametry techniczne, ale również dłuższą żywotność zespołów silnikowych.

Pytanie 19

Jakie narzędzie służy do wykonywania zgrubnych pomiarów gorących detali podczas ręcznego kucia?

A. macek
B. przymiaru kreskowego
C. taśmy pomiarowej
D. suwmiarki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Macek jest narzędziem, które doskonale sprawdza się w pomiarze gorących elementów podczas kucia ręcznego. Główną zaletą macek jest ich zdolność do pomiaru temperatury materiałów metalowych, które mogą być zbyt gorące dla innych narzędzi pomiarowych, takich jak suwmiarki czy taśmy miernicze, które mogą ulec uszkodzeniu. Macek, zwykle wykonany z materiałów odpornych na wysokie temperatury, pozwala na szybkie i niezawodne określenie wymiarów w warunkach, gdzie inne metody byłyby niepraktyczne. Przykładem zastosowania jest pomiar długości elementów metalowych w trakcie procesu kucia, co jest kluczowe dla zapewnienia precyzyjnych wymiarów gotowego wyrobu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co czyni macek niezastąpionym narzędziem w warsztatach rzemieślniczych oraz w dużych zakładach przemysłowych. Dzięki swoim właściwościom, macki są preferowanym wyborem dla specjalistów zajmujących się obróbką cieplną metali, co potwierdza ich istotność w procesie kucia.

Pytanie 20

Który proces umożliwia ochronę elementów stalowych przed korozją?

A. Cynkowanie
B. Hartowanie
C. Spawanie
D. Frezowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cynkowanie to proces polegający na pokrywaniu stalowych elementów cienką warstwą cynku, co znacząco zwiększa ich odporność na korozję. Cynk tworzy barierę ochronną na powierzchni stali, która zapobiega bezpośredniemu kontaktowi metalu z czynnikami korozyjnymi, takimi jak wilgoć i tlen atmosferyczny. Co więcej, cynk działa również jako anoda ofiarna. Oznacza to, że w przypadku uszkodzenia powłoki cynkowej, cynk będzie się utleniał zamiast stali, chroniąc ją przed korozją. Jest to szczególnie istotne w przemyśle budowlanym, motoryzacyjnym i morskim, gdzie elementy stalowe są narażone na trudne warunki atmosferyczne. Cynkowanie jest powszechnie stosowane w produkcji części samochodowych, konstrukcji stalowych czy też narzędzi, ze względu na jego efektywność i relatywnie niski koszt. Proces cynkowania może być realizowany różnymi metodami, takimi jak zanurzeniowe cynkowanie ogniowe czy cynkowanie galwaniczne, które różnią się techniką aplikacji i grubością powłoki ochronnej. Wybór odpowiedniej metody zależy od specyficznych wymagań aplikacyjnych i środowiskowych danego projektu.

Pytanie 21

W procesie wykorzystywane są farby proszkowe

A. cynkowania
B. napylania
C. anodowania
D. miedziowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Farby proszkowe są kluczowym elementem w procesie napylania, który jest często stosowany w branży przemysłowej do pokrywania różnorodnych powierzchni. Proces ten polega na aplikacji suchych cząsteczek farby proszkowej na powierzchnię przy użyciu elektrostatyki, co zapewnia równomierne pokrycie oraz wysoką przyczepność. Po nałożeniu farby, elementy są podgrzewane w piecu, co prowadzi do stopienia proszku i utworzenia trwałej powłoki. Przykłady zastosowań obejmują malowanie części samochodowych, mebli oraz elementów elektrycznych. Dzięki swojej odporności na zarysowania, korozję i działanie chemikaliów, farby proszkowe cieszą się rosnącą popularnością. Warto również zauważyć, że stosowanie farb proszkowych jest zgodne z normami ochrony środowiska, ponieważ w procesie tym nie wykorzystuje się rozpuszczalników, a nadmiar farby można odzyskać i ponownie wykorzystać, co zmniejsza odpady oraz zanieczyszczenie. Standardy takie jak ISO 9001 i ISO 14001 często obejmują procesy związane z używaniem farb proszkowych, co podkreśla ich znaczenie w nowoczesnej produkcji.

Pytanie 22

Koła zębate powstają w procesie toczenia oraz

A. tłoczenia i przeciągania
B. wytłaczania i frezowania
C. kalandrowania i szlifowania
D. frezowania i dłutowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezowanie i dłutowanie to kluczowe procesy obróbcze stosowane w produkcji kół zębatych. Frezowanie polega na usuwaniu materiału za pomocą narzędzia skrawającego, które obraca się wokół własnej osi. Dzięki tej metodzie można osiągnąć wysoką precyzję w formowaniu zębatek, co jest istotne dla prawidłowego funkcjonowania mechanizmów przekładniowych. Dłutowanie z kolei jest procesem, który umożliwia uzyskanie kształtów zewnętrznych oraz wewnętrznych detali, idealnych do produkcji kół zębatych o złożonej geometrii. Przykładem zastosowania tych technologii jest produkcja kół zębatych do przekładni w samochodach, gdzie precyzyjny kształt zębów ma kluczowe znaczenie dla ich wydajności i trwałości. W branży inżynieryjnej obowiązują normy ISO dotyczące tolerancji wymiarowych, które są przestrzegane podczas obróbki kół zębatych, co zapewnia ich niezawodność i kompatybilność z innymi komponentami.

Pytanie 23

Zużycie prowadnic łoża tokarki skutkuje

A. minimalną ilością ciepła w obrabianym materiale
B. niedokładnością wymiarową w czasie toczenia
C. niewielką liczbą wiórów w trakcie obróbki skrawaniem
D. gładką powierzchnią obrabianych elementów na tokarkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niedokładności wymiarowe w toczeniu mogą wynikać z tego, jak zużyte są prowadnice łoża tokarki. Jak wiadomo, jeśli prowadnice są w dobrym stanie, narzędzie skrawające będzie poruszać się wzdłuż zaplanowanej drogi, co pomoże osiągnąć wymagania dotyczące wymiarów obrabianych elementów. Gdy jednak prowadnice się wytarły, narzędzie może nie działać w osiowym kierunku, co prowadzi do błędów. Na przykład, przy produkcji precyzyjnych części, jak wały korbowe, nawet małe różnice w dokładności mogą później sprawić poważne problemy w montażu. Moim zdaniem, zgodnie z normami ISO, regularne sprawdzanie stanu technicznego maszyn i ich konserwacja to klucz do uzyskania dobrej jakości produkcji.

Pytanie 24

Zębatki używane w urządzeniach RTV oraz AGD zazwyczaj produkowane są z

A. materiałów narzędziowych
B. tworzyw sztucznych
C. proszków ściernych
D. cynów lutowniczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koła zębate w sprzęcie RTV i AGD najczęściej wykonywane są z tworzyw sztucznych ze względu na ich korzystne właściwości mechaniczne, niską wagę oraz odporność na korozję. Tworzywa sztuczne, takie jak nylon, poliamidy czy poliwęglany, charakteryzują się dobrą wytrzymałością na ściskanie oraz niskim współczynnikiem tarcia, co w znaczący sposób zwiększa efektywność działania mechanizmów. Przykładem zastosowania mogą być mechanizmy napędowe w odtwarzaczach DVD lub sprzęcie audio, gdzie koła zębate muszą pracować płynnie, minimalizując hałas. Dodatkowo, produkcja kół zębatych z tworzyw sztucznych pozwala na łatwiejsze kształtowanie ich geometrii, co jest istotne w kontekście projektowania i prototypowania. Standardy ISO dotyczące materiałów dla przemysłu elektronicznego podkreślają znaczenie właściwych właściwości materiałów, co czyni tworzywa sztuczne idealnym wyborem dla tego typu zastosowań.

Pytanie 25

Guma to surowiec powszechnie wykorzystywany w produkcji

A. elektrod pokrytych.
B. zębatek.
C. wibroizolatorów
D. frezów cylindrycznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Guma jest materiałem o wyjątkowych właściwościach, które czynią ją idealnym do produkcji wibroizolatorów, czyli elementów służących do tłumienia drgań i redukcji hałasu. Wibroizolatory wykonane z gumy są powszechnie stosowane w różnych branżach, takich jak budownictwo, motoryzacja i przemysł, aby poprawić komfort i bezpieczeństwo. Dzięki elastyczności oraz zdolności do absorpcji energii, guma skutecznie minimalizuje przenoszenie drgań z maszyn na konstrukcje budowlane. Przykładem zastosowania wibroizolatorów gumowych może być ich użycie w fundamentach budynków czy w montażu maszyn przemysłowych, gdzie redukcja drgań wpływa na wydłużenie żywotności urządzeń oraz poprawę warunków pracy. Ponadto, zgodnie z normami ISO i dobrymi praktykami inżynieryjnymi, wibroizolatory z gumy powinny być odpowiednio zaprojektowane i przetestowane, aby zapewnić optymalną efektywność w danej aplikacji.

Pytanie 26

Kontrole stanowiskowe pozwalają na ustalenie

A. kluczowych wymiarów części na stanowisku roboczym
B. pełnej geometrii produkowanej części w warunkach laboratoryjnych
C. wad ukrytych struktury materiału obrabianego
D. wszystkich wymiarów produkowanej części

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdziany stanowiskowe są kluczowym narzędziem w procesie wytwarzania, które pozwala na weryfikację kluczowych wymiarów części w warunkach rzeczywistych, bezpośrednio na stanowisku roboczym. Ich głównym celem jest zapewnienie, że wszystkie istotne parametry wymiarowe są zgodne z projektem oraz spełniają wymagania jakościowe. Na przykład, w przypadku produkcji detali metalowych, sprawdziany mogą być stosowane do kontroli takich wymiarów jak średnice otworów, długości krawędzi czy równoległość powierzchni. W branży motoryzacyjnej, gdzie precyzja jest kluczowa, sprawdziany te pomagają uniknąć niezgodności, które mogą prowadzić do poważnych usterek w działaniu pojazdów. Zgodnie z normami ISO 9001, stosowanie sprawdzianów jest jednym z elementów zapewnienia jakości, które przyczynia się do zwiększenia efektywności produkcji oraz minimalizacji odpadów. Dzięki zastosowaniu sprawdzianów na stanowisku roboczym, inżynierowie mogą wprowadzać korekty w procesie produkcyjnym na bieżąco, co jest zgodne z ideą ciągłego doskonalenia i jakości produkcji.

Pytanie 27

Kawitacja to zjawisko, które zachodzi w trakcie pracy

A. sprzęgła
B. przekładni
C. pompy
D. podnośnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kawitacja to zjawisko, które najczęściej występuje w pompach, szczególnie w przypadku pomp wodnych, które są powszechnie stosowane w różnych aplikacjach inżynieryjnych. Kawitacja zachodzi, gdy miejscowe ciśnienie płynu spada poniżej ciśnienia parowania, co prowadzi do powstawania pęcherzyków pary. Gdy te pęcherzyki przemieszcza się do obszarów o wyższym ciśnieniu, gwałtownie implodują, co może prowadzić do poważnych uszkodzeń komponentów pompy, takich jak wirniki i obudowy. Przykładowo, w systemach hydraulicznych i układach chłodzenia, zjawisko kawitacji może prowadzić do obniżenia wydajności i zwiększenia kosztów konserwacji. W celu zminimalizowania ryzyka kawitacji, stosuje się różne techniki, takie jak dobór odpowiednich parametrów pracy pompy, kontrola ciśnienia ssawnego oraz zastosowanie wirników o zoptymalizowanym kształcie. Dobre praktyki w zakresie projektowania systemów hydraulicznych oraz regularne przeglądy techniczne pozwalają na utrzymanie wysokiej efektywności pomp oraz długowieczności ich komponentów.

Pytanie 28

Jakiego surowca należy użyć, aby w łatwy sposób połączyć rury podczas lutowania?

A. Stal
B. Staliwo
C. Miedź
D. Żeliwo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miedź to naprawdę super materiał do lutowania! Ma świetną przewodność cieplną, więc wszystko działa jak powinno. W branży hydraulicznej i przy instalacjach sanitarno-grzewczych lutowanie miedzi to norma. Łączenie jej z użyciem lutowia, które topnieje poniżej 450°C, daje trwałe i szczelne połączenia. Proces lutowania miedzi jest też dość szybki, co przydaje się w przemyśle. A jak wiadomo, miedź jest odporna na korozję, więc nadaje się idealnie do systemów wodociągowych. Pamiętaj tylko, że żeby wszystko zadziałało, trzeba odpowiednio przygotować powierzchnię – odpalać ją trzeba, użyć dobrego topnika, żeby lepiej się trzymało. Przykładem, gdzie lutowanie miedzi sprawdza się świetnie, jest montaż rur w instalacjach grzewczych. Tu ważne, żeby połączenia były szczelne, bo to klucz do efektywności całego systemu.

Pytanie 29

Nie można uznać za przyczynę uszkodzeń w trakcie produkcji

A. symetrycznego oświetlenia
B. błędów użytkownika
C. braku konserwacji
D. nieprzestrzegania cyklu napraw

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symetryczne oświetlenie jest istotnym elementem w procesach produkcyjnych, a jego brak może prowadzić do problemów w weryfikacji jakości, jednak samo w sobie nie jest bezpośrednią przyczyną uszkodzeń. W dobrych praktykach przemysłowych, symetryczne oświetlenie jest zalecane, aby zapewnić równomierne warunki pracy, co wpływa na wydajność i dokładność działań operacyjnych, ale nie prowadzi do uszkodzeń materiałów czy produktów. Na przykład, w halach produkcyjnych, odpowiednie oświetlenie pozwala pracownikom na dokładne monitorowanie detali, co może zmniejszać ryzyko błędów. Kiedy jednak mówimy o uszkodzeniach, to bardziej wpływ mają takie czynniki jak brak konserwacji maszyn, błędy ludzkie czy nieprzestrzeganie procedur naprawczych. Dlatego symetryczne oświetlenie, choć ważne, nie jest przyczyną uszkodzeń, co czyni tę odpowiedź poprawną.

Pytanie 30

W oparciu o dane w tabeli dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejOpisZastosowanieUwagi
CyjanoakrylowyPrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnyPrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do luster, do niektórych plastików narażonych na stąpanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowyPrzeznaczone są do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowyPrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.

A. Epoksydowy.
B. Cyjanokrylowy.
C. Neoprenowy.
D. Dyspersyjny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klej epoksydowy jest odpowiedni do łączenia elementów stalowych, szczególnie w warunkach, gdzie występują wibracje oraz wilgoć. Jego unikalna formuła chemiczna pozwala na tworzenie mocnych połączeń, które są odporne na różne obciążenia mechaniczne, takie jak skręcanie i uderzenia. W praktyce, kleje epoksydowe są szeroko stosowane w branży budowlanej i motoryzacyjnej, gdzie trwałość oraz odporność na czynniki zewnętrzne są kluczowe. Dodatkowo, kleje te mogą być stosowane w różnych aplikacjach, takich jak naprawy elementów metalowych w maszynach, spoiny w konstrukcjach stalowych, a także w produkcji sprzętu elektronicznego. W kontekście standardów branżowych, kleje epoksydowe spełniają wymogi norm ISO, co czyni je bezpiecznym wyborem w aplikacjach, gdzie wymagane jest wysokie bezpieczeństwo i trwałość. Warto również zaznaczyć, że przed zastosowaniem kleju epoksydowego, zaleca się odpowiednie przygotowanie powierzchni, co zwiększa jego skuteczność.

Pytanie 31

W jakim celu wykorzystuje się proces hartowania stali?

A. Zwiększenie twardości i wytrzymałości
B. Zmniejszenie plastyczności
C. Obniżenie temperatury topnienia
D. Zwiększenie przewodności elektrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces hartowania stali to zabieg cieplny, który polega na nagrzaniu materiału do odpowiedniej temperatury, a następnie szybkim schłodzeniu. Głównym celem tego procesu jest zwiększenie twardości i wytrzymałości stali. Podczas hartowania dochodzi do przemian strukturalnych w stali, przede wszystkim do przekształcenia austenitu w martenzyt. Martenzyt jest fazą, która charakteryzuje się dużą twardością i wytrzymałością mechaniczną. Dzięki temu stal staje się bardziej odporna na zużycie i obciążenia mechaniczne, co jest niezwykle ważne w przemyśle maszynowym. Hartowanie jest szeroko stosowane w produkcji narzędzi, części maszyn oraz elementów konstrukcyjnych, które muszą wytrzymać duże obciążenia. W praktyce oznacza to, że hartowane elementy mogą pracować dłużej bez uszkodzeń, co przekłada się na większą niezawodność urządzeń. Dodatkowo, hartowanie pozwala na optymalizację kosztów eksploatacyjnych dzięki ograniczeniu częstotliwości wymiany zużytych części.

Pytanie 32

Przy naprawie uszkodzonego gwintu w otworze, najczęściej stosuje się

A. wstawki gwintowe
B. rozszerzanie otworu
C. spawanie łukowe
D. klejenie na zimno

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stosowanie wstawek gwintowych jest jednym z najczęściej używanych i najbardziej efektywnych sposobów naprawy uszkodzonych gwintów. Wstawki te, często nazywane helicoilami, są specjalnie zaprojektowanymi spiralnymi elementami, które wprowadza się do uszkodzonego otworu w celu odtworzenia jego gwintu. Metoda ta jest nie tylko ekonomiczna, ale również bardzo skuteczna, ponieważ wstawki zwiększają wytrzymałość gwintu, a także poprawiają jego trwałość. W praktyce, wstawki gwintowe są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i maszynowym, gdzie zachowanie precyzyjnych wymiarów i wytrzymałości ma kluczowe znaczenie. Proces instalacji wstawki gwintowej obejmuje kilka etapów, począwszy od rozwiercenia uszkodzonego otworu, poprzez nacięcie nowego gwintu, aż do wprowadzenia wstawki. To podejście jest zgodne z dobrą praktyką inżynierską, ponieważ minimalizuje potrzebę wymiany całego elementu, co mogłoby być kosztowne i czasochłonne. Dlatego właśnie wstawki gwintowe są preferowaną metodą w naprawie uszkodzonych gwintów.

Pytanie 33

Z jakiego materiału nie produkuje się sprężyn?

A. Stali narzędziowej
B. Stali stopowej
C. Tworzywa sztucznego
D. Żeliwa szarego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żeliwo szare nie jest materiałem odpowiednim do produkcji sprężyn ze względu na swoje właściwości mechaniczne. Charakteryzuje się ono kruchością oraz niską wytrzymałością na rozciąganie, co czyni je nieodpowiednim do zastosowań wymagających elastyczności i wysokiej odporności na cykliczne obciążenia. Sprężyny wymagają materiałów, które mogą efektywnie magazynować energię oraz deformować się pod wpływem obciążenia, a następnie wracać do pierwotnego kształtu bez uszkodzeń. W przemyśle metalowym powszechnie wykorzystuje się do produkcji sprężyn stal stopową oraz stal narzędziową, które oferują odpowiednie parametry wytrzymałościowe oraz sprężystość. Przykładowo, stal stopowa, zawierająca dodatki takie jak chrom czy nikiel, zwiększa odporność na korozję, co jest istotne w przypadku komponentów narażonych na działanie niekorzystnych warunków atmosferycznych. Dodatkowo, sprężyny wykonane z tworzyw sztucznych, chociaż mniej powszechne, mogą być stosowane w zastosowaniach, gdzie wymagana jest lekkość oraz odporność na chemikalia, co potwierdzają standardy ISO dotyczące materiałów kompozytowych.

Pytanie 34

Jakie połączenia rozłączne wykorzystuje się przy montażu rur?

A. Zgrzewane
B. Klejone
C. Lutowane
D. Skręcane

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Połączenia skręcane to jeden z najczęściej wybieranych sposobów łączenia rur w montażu. Są naprawdę fajne, bo można je szybko zamontować i rozmontować bez większych problemów. Z tego, co widziałem, to te połączenia działają dzięki gwintom, co sprawia, że wszystko trzyma się mocno i da się łatwo rozłączyć, kiedy trzeba coś naprawić. Przede wszystkim, są super w hydraulice i pneumatyce, gdzie często coś trzeba wymieniać. W budownictwie i przemyśle korzysta się z nich do łączenia rur stalowych, mosiężnych i innych materiałów, co jest zgodne z normami, takimi jak PN-EN 10220 i PN-EN 15001. Naprawdę, te połączenia są niezawodne, zwłaszcza tam, gdzie jest wysokie ciśnienie. To czyni je świetnym wyborem w aplikacjach, które są bardziej krytyczne, jak systemy chłodnicze czy przemysł naftowy.

Pytanie 35

Cyna funkcjonuje jako spoiwo wykorzystywane w procesie

A. nawęglania
B. kalandrowania
C. wytłaczania
D. lutowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cyna jest powszechnie stosowanym spoiwem w procesie lutowania, który jest kluczowym elementem w tworzeniu połączeń elektrycznych oraz łączeniu elementów metalowych. Lutowanie, jako technika, wykorzystuje ciepło do stopienia spoiwa, które następnie wypełnia szczeliny między elementami, tworząc mocne i trwałe połączenie. Cyna jest preferowanym materiałem ze względu na swoje właściwości, takie jak niska temperatura topnienia oraz dobra przewodność elektryczna. Przykładem zastosowania lutowania z cyną jest produkcja obwodów drukowanych, gdzie lutuje się elementy elektroniczne do płytek. Ponadto, cyna jest często używana w lutowaniu rur miedzianych w instalacjach wodociągowych. W standardach branżowych, takich jak IPC-A-610, określono wymagania dotyczące jakości połączeń lutowanych, co podkreśla znaczenie dobrego lutowania dla niezawodności i trwałości produktów elektronicznych oraz innych zastosowań przemysłowych.

Pytanie 36

Która z metod łączenia materiałów pozwala na połączenie drewna z tworzywem sztucznym?

A. Lutowanie gazowe
B. Spawanie elektrodą otuloną
C. Zgrzewanie elektryczne oporowe
D. Klejenie na zimno

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klejenie na zimno to jedna z najczęściej stosowanych metod łączenia różnych materiałów, w tym drewna i tworzywa sztucznego. W tej technice wykorzystuje się specjalne kleje, które w procesie utwardzania nie wymagają podgrzewania, co jest szczególnie korzystne w przypadku materiałów wrażliwych na temperaturę. Kleje na zimno mogą być na bazie wody, rozpuszczalników lub substancji reaktywnych, co pozwala na osiągnięcie wysokiej jakości połączenia. Przykładem zastosowania klejenia na zimno jest produkcja mebli, gdzie często łączy się elementy drewniane z plastikowymi akcesoriami, takimi jak uchwyty czy wykończenia. W branży budowlanej oraz w projektach DIY technika ta cieszy się dużą popularnością ze względu na łatwość aplikacji i dostępność różnych produktów. Ważne jest, aby przed przystąpieniem do klejenia, odpowiednio przygotować powierzchnie, zapewniając ich czystość i suchość, co sprzyja lepszej adhezji. Stosowanie tej metody jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie doboru odpowiednich materiałów i zachowania norm producentów klejów.

Pytanie 37

Z jakiego materiału nie produkuje się sprężyn?

A. Stali stopowej.
B. Żeliwa szarego
C. Plastiku.
D. Stali narzędziowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żeliwo szare nie jest materiałem stosowanym do produkcji sprężyn ze względu na swoje właściwości. To stop żelaza z węglem, który dzięki swojej strukturze grafitowej charakteryzuje się dużą twardością i odkształcalnością, ale jednocześnie ma niską wytrzymałość na rozciąganie oraz ograniczoną elastyczność. Sprężyny muszą być wykonane z materiałów, które potrafią efektywnie magazynować i oddawać energię, co jest kluczowe w przypadku zastosowań w mechanice, automatyce i inżynierii. Idealnymi materiałami do produkcji sprężyn są stal stopowa oraz stal narzędziowa, które posiadają odpowiednie właściwości mechaniczne i wytrzymałościowe, umożliwiające ich efektywne zastosowanie w różnych warunkach. Przykładem mogą być sprężyny w zawieszeniach pojazdów, które muszą wytrzymywać dynamiczne obciążenia i adaptować się do zmieniających się warunków jazdy.

Pytanie 38

Która maszyna skrawająca pozwala na jednoczesne wiercenie wielu otworów?

A. Tokarka rewolwerowa
B. Wiertarka wielowrzecionowa
C. Cykliniarka tarczowa
D. Dłutownica pionowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiertarka wielowrzecionowa to maszyna, która umożliwia jednoczesne wiercenie wielu otworów w jednym cyklu pracy. Dzięki zastosowaniu kilku wrzecion, każde z nich może być wyposażone w narzędzie skrawające, co pozwala na efektywne i szybkie wykonanie dużej liczby otworów w różnych materiałach. To rozwiązanie jest szczególnie cenione w produkcji masowej, gdzie czas i precyzja mają kluczowe znaczenie. Na przykład, w branży motoryzacyjnej, wiertarki wielowrzecionowe są używane do tworzenia otworów w częściach karoserii, co przyspiesza proces montażu pojazdów. Dobre praktyki w użytkowaniu tych maszyn obejmują odpowiednie ustawienie parametrów skrawania, aby zminimalizować zużycie narzędzi i uzyskać wysoką jakość wykończenia. Ponadto, modernizacja i automatyzacja tych urządzeń, na przykład poprzez zastosowanie systemów CNC, znacząco zwiększa ich wydajność i precyzję działania, co jest zgodne z najnowszymi trendami w przemyśle produkcyjnym.

Pytanie 39

Jakiego typu proces technologiczny powinno się zastosować do produkcji metalowych komponentów obudowy komputera?

A. Odlew.
B. Obróbka skrawaniem.
C. Przeróbka plastyczna.
D. Druk 3D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeróbka plastyczna to proces technologiczny, w którym materiał, najczęściej metal, jest formowany w odpowiednie kształty poprzez działania mechaniczne, takie jak tłoczenie, walcowanie czy gięcie. Jest to szczególnie efektywna metoda produkcji metalowych elementów obudowy komputera, ponieważ pozwala na uzyskanie wysokiej precyzji oraz odpowiednich właściwości mechanicznych. Proces ten jest powszechnie stosowany w przemyśle elektronicznym, gdzie wymagana jest duża powtarzalność oraz jakość wykonania. Na przykład, obudowy komputerów często wykonuje się z blachy stalowej lub aluminiowej, które poddawane są tłoczeniu, co pozwala na szybkie i ekonomiczne wytwarzanie dużych serii elementów. Warto również zauważyć, że przeróbka plastyczna jest zgodna z normami ISO dotyczącymi procesów produkcyjnych, co zapewnia kontrolę jakości oraz zgodność z wymaganiami rynkowymi. Dodatkowo, zastosowanie przeróbki plastycznej wpływa na zmniejszenie ilości odpadów materiałowych w porównaniu do innych metod, takich jak obróbka skrawaniem.

Pytanie 40

Którego surowca nie wykorzystuje się w łożyskach ślizgowych?

A. Stopu aluminium
B. Boksytu
C. Stopu cyny
D. Wolframu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Boksyt, będący naturalnym minerałem aluminium, nie jest materiałem stosowanym w łożyskach ślizgowych ze względu na swoje właściwości fizyczne i chemiczne. Łożyska ślizgowe wymagają materiałów o wysokiej odporności na ścieranie, niskim współczynniku tarcia oraz dobrej odporności na obciążenia. Stop aluminium i stop cyny są powszechnie stosowane w przemyśle ze względu na ich dobre właściwości mechaniczne oraz niską gęstość, co przekłada się na lepsze osiągi w aplikacjach łożyskowych. Wolfram, z kolei, jest materiałem o wysokiej twardości i odporności na wysokie temperatury, co czyni go użytecznym w aplikacjach wymagających dużej niezawodności. W przypadku boksytu jego struktura i właściwości nie są przystosowane do pracy w łożyskach, co może prowadzić do szybkiego zużycia oraz awarii, co jest sprzeczne z zasadami projektowania efektywnych systemów łożyskowych.