Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 21 maja 2025 18:36
  • Data zakończenia: 21 maja 2025 19:00

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W hierarchicznym modelu sieci komputery użytkowników stanowią część warstwy

A. dostępu
B. dystrybucji
C. rdzenia
D. szkieletowej
W modelu hierarchicznym sieci komputerowej, warstwa dostępu jest kluczowym elementem odpowiedzialnym za bezpośrednie połączenie z urządzeniami końcowymi, takimi jak komputery użytkowników, drukarki i inne urządzenia peryferyjne. To właśnie w tej warstwie dochodzi do fizycznego podłączenia oraz zarządzania dostępem do zasobów sieciowych. Przykładem zastosowania warstwy dostępu są technologie Ethernet, Wi-Fi oraz różnorodne przełączniki sieciowe, które pełnią rolę punktów dostępowych. W praktyce, warstwa dostępu implementuje różne mechanizmy zabezpieczeń, takie jak kontrola dostępu do sieci (NAC), co pozwala na zarządzanie, które urządzenia mogą korzystać z zasobów sieciowych. Dobrą praktyką w projektowaniu sieci jest segmentacja ruchu w warstwie dostępu, co zwiększa bezpieczeństwo i wydajność całej sieci. Zastosowanie standardów, takich jak IEEE 802.11 dla bezprzewodowych sieci lokalnych, zapewnia większą interoperacyjność i efektywność działań w tej warstwie.

Pytanie 2

Narzędzie używane do przechwytywania oraz analizy danych przesyłanych w sieci, to

A. sniffer
B. spywer
C. keylogger
D. viewer
Wybory takie jak spywer, viewer i keylogger wskazują na nieporozumienia dotyczące funkcji i zastosowań narzędzi w obszarze analizy sieci. Spywer, często mylony z narzędziami monitorującymi, jest typem złośliwego oprogramowania, które szpieguje użytkowników, zbierając ich dane bez ich zgody. Jego celem jest zwykle kradzież informacji osobistych, co jest sprzeczne z zasadami etycznymi związanymi z monitorowaniem ruchu sieciowego. Viewer to z kolei ogólny termin odnoszący się do narzędzi wizualizacyjnych, które służą do wyświetlania danych, ale nie mają one zdolności do przechwytywania ruchu sieciowego, co czyni je nieodpowiednimi w kontekście tego pytania. Keylogger to inny rodzaj złośliwego oprogramowania, które rejestruje naciśnięcia klawiszy, co również nie ma związku z analizy ruchu sieciowego. Kluczowym błędem myślowym w tym przypadku jest mylenie narzędzi do analizy z narzędziami złośliwymi, co prowadzi do niewłaściwych wniosków na temat ich funkcji i potencjalnych zastosowań w sieci. Przy wyborze narzędzi do monitorowania ruchu sieciowego istotne jest rozróżnienie pomiędzy legalnymi narzędziami do analizy oraz złośliwym oprogramowaniem, które może stanowić zagrożenie dla bezpieczeństwa.

Pytanie 3

Podczas wyłączania systemu operacyjnego na monitorze pojawił się błąd, znany jako bluescreen 0x000000F3 Bug Check 0xF3 DISORDERLY_SHUTDOWN - nieudane zamykanie systemu, spowodowane niewystarczającą ilością pamięci. Co ten błąd może oznaczać?

A. przegrzanie CPU
B. niewystarczający rozmiar pamięci wirtualnej
C. uszkodzenie systemowej partycji
D. uruchamianie zbyt wielu programów podczas startu komputera
Przegrzanie procesora, uszkodzenie partycji systemowej oraz uruchamianie zbyt wielu aplikacji przy starcie komputera mogą być przyczynami różnych problemów z komputerem, lecz nie są one bezpośrednio związane z błędem 0x000000F3. Przegrzanie procesora prowadzi do ograniczenia wydajności oraz tymczasowego wyłączania systemu w celu zapobieżenia uszkodzeniom sprzętu. Choć może to powodować problemy z działaniem systemu, nie jest przyczyną błędów podczas zamykania systemu. Uszkodzenie partycji systemowej może skutkować różnymi błędami, jednak zazwyczaj objawia się to innymi komunikatami błędów, a nie specyficznie błędem o kodzie F3. Uruchamianie nadmiaru aplikacji przy starcie może rzeczywiście prowadzić do wolniejszego działania systemu, ale nie jest bezpośrednio przyczyną problemu z zamykaniem. Typowym błędem myślowym jest przypisywanie różnych objawów systemowych do jednego problemu bez analizy ich rzeczywistych przyczyn. W rzeczywistości, skuteczne zarządzanie pamięcią systemową i odpowiednie ustawienia pamięci wirtualnej powinny być kluczowym elementem w diagnostyce problemów z zamykaniem systemu. Aby skutecznie rozwiązywać problemy związane z wydajnością systemu, warto wykorzystywać narzędzia diagnostyczne oraz analizować logi systemowe w celu zidentyfikowania rzeczywistych przyczyn problemów.

Pytanie 4

Jakie polecenie w systemie Linux przyzna pełne uprawnienia wszystkim użytkownikom do zasobów?

A. chmod 533
B. chmod 777
C. chmod 000
D. chmod 666
Wybór polecenia 'chmod 533' nie jest poprawny, ponieważ przypisuje ono ograniczone uprawnienia, co oznacza, że użytkownicy nie będą mogli w pełni korzystać z zasobów. Wartość '5' w systemie ósemkowym odpowiada uprawnieniom odczytu i wykonania, ale nie zapisu. Użytkownik, któremu nadano te uprawnienia, nie będzie mógł wprowadzać zmian w plikach, co może prowadzić do problemów w środowiskach, gdzie współpraca jest kluczowa. W przypadku 'chmod 000', który przypisuje brak jakichkolwiek uprawnień dla wszystkich użytkowników, pliki stają się całkowicie niedostępne, uniemożliwiając jakiekolwiek operacje na nich. Taka sytuacja jest często pomyłkowo wykorzystywana do zabezpieczania plików, lecz w praktyce grozi zablokowaniem nie tylko dostępu zewnętrznego, ale także uniemożliwieniem dostępu dla samego właściciela. Z kolei 'chmod 666' umożliwia odczyt i zapis dla właściciela, grupy oraz innych użytkowników, co stwarza ryzyko przypadkowego nadpisania plików przez nieautoryzowane osoby. W kontekście administracji systemami Linux kluczowe jest zrozumienie, że nadawanie zbyt szerokich uprawnień może prowadzić do poważnych naruszeń bezpieczeństwa, a odpowiednie zarządzanie dostępem jest fundamentalne w utrzymaniu integralności oraz poufności danych.

Pytanie 5

Jakie czynności nie są realizowane przez system operacyjny?

A. umożliwianiem mechanizmów synchronizacji zadań oraz komunikacji między nimi
B. nadzorowaniem i alokowaniem pamięci operacyjnej dla aktywnych zadań
C. zarządzaniem czasem procesora oraz przydzielaniem go poszczególnym zadaniom
D. generowaniem źródeł aplikacji systemowych
Wszystkie inne odpowiedzi wskazują na kluczowe funkcje, które system operacyjny pełni w środowisku komputerowym. System operacyjny dostarcza mechanizmy do synchronizacji zadań i komunikacji pomiędzy nimi, co jest kluczowe w kontekście wielozadaniowości. Dzięki tym mechanizmom, różne aplikacje mogą współdzielić zasoby i współpracować, co jest niezbędne w nowoczesnych systemach operacyjnych. Planowanie oraz przydział czasu procesora są również fundamentalnymi rolami, które OS musi pełnić, aby zapewnić, że wszystkie uruchomione zadania otrzymują odpowiednią ilość czasu procesora, co z kolei wpływa na wydajność całego systemu. Kontrola i przydział pamięci operacyjnej dla uruchomionych zadań to kolejny kluczowy aspekt, który zapewnia, że każda aplikacja ma dostęp do pamięci, której potrzebuje, aby działać poprawnie. Błędne zrozumienie roli systemu operacyjnego, które może prowadzić do wyboru odpowiedzi, może wynikać z mylenia procesów tworzenia oprogramowania z funkcjami zarządzania zasobami. W rzeczywistości, OS działa jako mediator między aplikacjami a sprzętem komputerowym, a jego głównym celem jest efektywne zarządzanie zasobami, a nie tworzenie aplikacji. Takie nieporozumienie może być powszechne wśród osób, które nie mają głębokiej wiedzy na temat architektury systemów komputerowych i ich operacji.

Pytanie 6

Jakie urządzenie jest używane do mocowania pojedynczych żył kabla miedzianego w złączach?

Ilustracja do pytania
A. obcinacz izolacji
B. zaciskarka RJ45
C. nóż KRONE
D. szukacz kabli
Nóż KRONE to specjalistyczne narzędzie używane głównie do mocowania pojedynczych żył miedzianych kabli w złączach typu IDC (Insulation Displacement Connector). Zastosowanie noża KRONE polega na precyzyjnym umieszczaniu przewodników w gniazdach, co zapewnia trwałe połączenie bez konieczności zdejmowania izolacji. Narzędzie to jest niezbędne w telekomunikacji i instalacjach sieciowych, gdzie wymagana jest wysoka jakość połączeń. Dzięki mechanizmowi nacisku nóż KRONE automatycznie odcina nadmiar przewodu, co przyspiesza pracę i zwiększa jej efektywność. Standardy branżowe, takie jak EIA/TIA-568, zalecają użycie narzędzi IDC do zapewnienia stabilnych i niezawodnych połączeń. Praktyczne zastosowanie obejmuje montaż gniazd sieciowych, paneli krosowych oraz innych urządzeń wymagających połączeń kablowych. Dzięki ergonomicznej konstrukcji nóż ten minimalizuje ryzyko uszkodzenia przewodów i złączy, co jest istotne dla długoterminowej niezawodności instalacji. Wiedza o prawidłowym użyciu noża KRONE jest kluczowa dla każdego technika zajmującego się instalacjami telekomunikacyjnymi.

Pytanie 7

ACPI to interfejs, który umożliwia

A. wykonanie testu prawidłowego funkcjonowania podstawowych komponentów komputera, jak np. procesor.
B. przesył danych pomiędzy dyskiem twardym a napędem optycznym
C. konwersję sygnału analogowego na cyfrowy
D. zarządzanie ustawieniami i energią dostarczaną do różnych urządzeń komputera
Pierwsza z nieprawidłowych koncepcji zakłada, że ACPI jest odpowiedzialne za konwersję sygnału analogowego na cyfrowy. W rzeczywistości, proces ten wykonuje się za pomocą przetworników analogowo-cyfrowych (ADC), które są specjalistycznymi układami elektronicznymi. ACPI natomiast nie zajmuje się konwersją sygnałów, lecz zarządzaniem energią i konfiguracją sprzętową. Inną mylną koncepcją jest to, że ACPI przeprowadza testy poprawności działania podzespołów komputera, takich jak procesor. Takie testy są realizowane w ramach POST (Power-On Self-Test), które są pierwszymi procedurami uruchamianymi przez BIOS. ACPI nie ma na celu sprawdzania poprawności działania sprzętu, lecz zarządzania jego zasilaniem i konfiguracją po włączeniu systemu operacyjnego. Kolejny błąd to myślenie, że ACPI jest odpowiedzialne za transfer danych pomiędzy dyskiem twardym a napędem optycznym. Transfer danych realizowany jest przez różne protokoły komunikacyjne, takie jak SATA czy IDE, a ACPI nie ma w tym roli. Typowe błędy myślowe, które prowadzą do tych niepoprawnych wniosków, zazwyczaj wynikają z niejasności w definicjach technologii oraz ich funkcji. Osoby często mylą interfejsy i ich funkcjonalności, co może skutkować błędnym rozumieniem ich roli w architekturze komputerowej.

Pytanie 8

Wykonanie polecenia net use z:\\192.168.20.2\data /delete, spowoduje

A. odłączenie zasobów hosta 192.168.20.2 od dysku Z:
B. przyłączenie katalogu data  do dysku Z:
C. odłączenie katalogu  data92 od dysku Z:
D. przyłączenie zasobów hosta 192.168.20.2 do dysku Z:
W kontekście polecenia 'net use z:\\192.168.20.2\data /delete' istnieje wiele nieporozumień dotyczących jego działania oraz celu. W pierwszej kolejności, odpowiedzi sugerujące przyłączenie zasobów do dysku Z: są mylne, ponieważ użycie słowa '/delete' jednoznacznie wskazuje na operację usunięcia, a nie dodania. Osoby mogące mylić te pojęcia mogą sądzić, że wykonując operację, nawiązują nowe połączenie z zasobem, co jest fundamentalnym błędem w rozumieniu działania tego polecenia. Ponadto, istotnym aspektem jest zrozumienie, że 'data92' nie jest katalogiem, który odnosi się do zasobu wskazanego w pytaniu. Brak precyzyjnego określenia ścieżek i zasobów w pytaniach o połączenia sieciowe może prowadzić do nieporozumień, a w konsekwencji do błędnych decyzji. Często użytkownicy są nieświadomi, że litery dysków przypisuje się dla wygody i organizacji, a ich nieprawidłowe zarządzanie może prowadzić do utraty dostępu do ważnych zasobów. Ważne jest, aby przed wykonaniem operacji upewnić się, jakie zasoby są aktualnie połączone i jakie są ich przypisania, co jest kluczowym elementem zarządzania w sieci. Wpływa to na efektywność operacyjną oraz bezpieczeństwo systemu, więc zrozumienie tych zależności jest niezbędne dla każdego administratora systemu.

Pytanie 9

Ile podsieci tworzą komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25, 192.158.5.250/25?

A. 4
B. 1
C. 2
D. 3
Pojęcie podsieci w kontekście adresacji IP może być mylone, co prowadzi do niepoprawnych wniosków dotyczących liczby podsieci, w których pracują podane komputery. Wybierając odpowiedź sugerującą, że wszystkie komputery znajdują się w jednej lub dwóch podsieciach, można popełnić błąd w ocenie maski podsieci. Maski podsieci definiują zakres adresów, które mogą być używane w danej sieci. W przypadku adresów 192.168.5.12/25, 192.168.5.50/25 i 192.168.5.200/25 wszystkie te adresy dzielą tę samą maskę podsieci, co oznacza, że mogą współdzielić tę samą sieć i komunikować się ze sobą bez potrzeby routera. Z drugiej strony, adres 192.158.5.250/25 nie może być zakwalifikowany do tej samej grupy, ponieważ jego prefiks różni się od pozostałych. Przykładem błędnego rozumowania może być mylenie adresów w innej klasie z adresami w tej samej klasie, co prowadzi do nieuwzględnienia, że różne prefiksy delimitują różne sieci. Aby uzyskać dokładny obraz struktury podsieci w sieci komputerowej, konieczne jest zrozumienie znaczenia prefiksów i zastosowanie odpowiednich narzędzi do analizy sieci, takich jak kalkulatory podsieci, które pomagają wizualizować i zrozumieć jak adresacja IP i maski podsieci wpływają na dostępność i komunikację urządzeń w sieci.

Pytanie 10

Na rysunku ukazano rezultat testu okablowania. Jakie jest znaczenie uzyskanego wyniku pomiaru?

Ilustracja do pytania
A. Rozdzielenie pary
B. Błąd zwarcia
C. Błąd rozwarcia
D. Odwrócenie pary
Błąd zwarcia w okablowaniu oznacza, że dwie lub więcej żył kabla są ze sobą połączone, co powoduje nieprawidłowe działanie sieci. Na przedstawionym wyniku testu okablowania widzimy oznaczenie SHORT 34 co sugeruje że zwarcie występuje między żyłami numer 3 i 4. Zwarcia mogą być wynikiem uszkodzenia mechanicznego kabla nieprawidłowego montażu wtyczek lub użycia niskiej jakości komponentów. W praktyce takie zwarcie może prowadzić do całkowitego braku komunikacji w sieci lub losowych rozłączeń co znacząco wpływa na wydajność i niezawodność. Podczas instalacji okablowania sieciowego konieczne jest przeprowadzanie testów certyfikacyjnych z użyciem profesjonalnych testerów które pozwalają na wykrycie tego typu problemów. Dobre praktyki branżowe zalecają użycie kabli zgodnych z określonymi normami takimi jak ISO/IEC 11801 aby zminimalizować ryzyko wystąpienia usterek. Optymalizacja sieci wymaga regularnych inspekcji i serwisowania infrastruktury okablowania co pozwala na wczesne wykrycie ewentualnych anomalii i ich szybką naprawę poprawiając tym samym niezawodność i efektywność działania całego systemu.

Pytanie 11

Thunderbolt stanowi interfejs

A. szeregowy, dwukanałowy, dwukierunkowy, przewodowy
B. szeregowy, asynchroniczny, bezprzewodowy
C. równoległy, asynchroniczny, przewodowy
D. równoległy, dwukanałowy, dwukierunkowy, bezprzewodowy
Odpowiedź 'szeregowy, dwukanałowy, dwukierunkowy, przewodowy' jest poprawna, ponieważ interfejs Thunderbolt, stworzony przez firmę Intel we współpracy z Apple, rzeczywiście operuje w trybie szeregowym. Oznacza to, że dane są przesyłane jeden po drugim, co pozwala na osiąganie dużych prędkości transferu, sięgających nawet 40 Gbps w najnowszych wersjach. Dwukanałowość oznacza, że Thunderbolt wykorzystuje dwa kanały do przesyłania danych, co podwaja przepustowość w porównaniu do jednego kanału. Dwukierunkowość pozwala na jednoczesne wysyłanie i odbieranie danych, co jest kluczowe w zastosowaniach wymagających dużych przepustowości, takich jak edycja wideo w czasie rzeczywistym czy transfer dużych zbiorów danych. Przewodowy charakter interfejsu Thunderbolt oznacza, że wymaga on fizycznego połączenia kablowego, co zapewnia stabilność oraz mniejsze opóźnienia w transmisji. W praktyce, wykorzystanie Thunderbolt można zaobserwować w nowoczesnych laptopach, stacjach dokujących oraz zewnętrznych dyskach twardych, które korzystają z tej technologii do szybkiej komunikacji. Standard ten jest uznawany za jedną z najlepszych opcji do podłączania wysokowydajnych urządzeń. Dodatkowo, Thunderbolt obsługuje protokoły DisplayPort i PCI Express, co czyni go wszechstronnym rozwiązaniem dla różnych zastosowań.

Pytanie 12

Jakie polecenie w systemach operacyjnych Windows służy do prezentacji konfiguracji interfejsów sieciowych?

A. ifconfig
B. ipconfig
C. hold
D. tracert
Odpowiedź 'ipconfig' jest poprawna, ponieważ jest to narzędzie w systemach operacyjnych Windows, które służy do wyświetlania i konfiguracji ustawień interfejsów sieciowych. Umożliwia administratorom i użytkownikom łatwe sprawdzenie adresów IP, maski podsieci oraz bramy domyślnej dla wszystkich aktywnych interfejsów sieciowych. Przykładowo, użycie polecenia 'ipconfig /all' dostarcza szczegółowych informacji o każdym interfejsie, w tym o adresach MAC, statusie połączenia oraz konfiguracji DHCP. Jest to standardowe narzędzie w administracji sieciami, które często jest wykorzystywane w praktyce do diagnozowania problemów z połączeniami sieciowymi. Znajomość tego narzędzia jest kluczowa dla każdego, kto zajmuje się zarządzaniem sieciami komputerowymi, zarówno w środowisku lokalnym, jak i w większych infrastrukturach. Warto również dodać, że 'ipconfig' współpracuje z innymi poleceniami, takimi jak 'ping' lub 'tracert', co zwiększa jego użyteczność w diagnostyce sieci.

Pytanie 13

W terminalu systemu Windows, do zarządzania parametrami konta użytkownika komputera, takimi jak okres ważności hasła, minimalna długość hasła, czas blokady konta i inne, wykorzystywane jest polecenie

A. NET ACCOUNTS
B. NET CONFIG
C. NET USER
D. NET USE
Polecenie NET USER w systemie Windows służy do zarządzania użytkownikami konta, w tym do ustawiania polityki haseł. Umożliwia administratorom konfigurowanie ważnych parametrów, takich jak minimalna długość hasła, czas ważności hasła oraz blokowanie konta po określonym czasie nieaktywności. Przykładowo, używając komendy 'NET USER [nazwa_użytkownika] /expires:[data]', administrator może ustawić datę, po której dane konto przestanie być aktywne. Dzięki temu można efektywnie zarządzać bezpieczeństwem systemu oraz dostosować polityki haseł do standardów branżowych, takich jak NIST SP 800-63. Dobre praktyki wskazują, że regularne aktualizowanie haseł oraz ich odpowiednia długość są kluczowe dla ochrony danych. Ponadto, polecenie NET USER pozwala na sprawdzenie stanu konta oraz jego ustawień, co jest niezbędne w kontekście audytów bezpieczeństwa.

Pytanie 14

Jakie polecenie w systemie Linux rozpoczyna weryfikację dysku oraz pozwala na usunięcie jego usterek?

A. lshw
B. fsck
C. mkfs
D. fdisk
Odpowiedzi lshw, fdisk oraz mkfs nie są prawidłowymi narzędziami do sprawdzania i naprawy błędów na dysku. Lshw (list hardware) to polecenie, które służy do wyświetlania szczegółowych informacji o sprzęcie zainstalowanym w systemie, takich jak procesory, pamięć, dyski twarde oraz ich parametry. To narzędzie może być użyteczne do diagnostyki sprzętowej, ale nie ma funkcji związanych z sprawdzaniem stanu systemu plików ani ich naprawą. Fdisk to program do zarządzania partycjami dyskowymi, który pozwala na tworzenie, usuwanie i modyfikowanie partycji, a nie na sprawdzanie ich integralności. Korzystanie z fdisk do prób naprawy błędów systemu plików może prowadzić do utraty danych, ponieważ to narzędzie nie ma możliwości naprawy uszkodzeń, które mogą wystąpić w obrębie systemu plików. Mkfs, z kolei, to polecenie służące do formatowania dysków i tworzenia systemów plików. Użycie mkfs powoduje całkowite usunięcie wszystkich danych na danym urządzeniu, co czyni je nieodpowiednim narzędziem w kontekście naprawy błędów. Użytkownik powinien być świadomy, że wybór niewłaściwego narzędzia do zarządzania systemem plików może prowadzić do poważnych konsekwencji, takich jak utrata danych, co podkreśla znaczenie znajomości funkcji i zastosowań różnych poleceń w systemie Linux. Właściwe podejście do zarządzania systemem plików opiera się na używaniu dedykowanych narzędzi w odpowiednich sytuacjach, co jest zgodne z najlepszymi praktykami w zakresie administracji systemami operacyjnymi.

Pytanie 15

Na przedstawionym zdjęciu widoczna jest

Ilustracja do pytania
A. karta sieci bezprzewodowej
B. modem kablowy
C. moduł łączący komputer z UPS
D. karta telewizyjna
Karta sieci bezprzewodowej, jak ta przedstawiona na zdjęciu, jest kluczowym komponentem umożliwiającym komputerom łączenie się z sieciami Wi-Fi. Działa ona poprzez odbieranie i wysyłanie sygnałów radiowych między komputerem a routerem bezprzewodowym. Typowa karta sieciowa PCI, jak ta na obrazku, jest instalowana bezpośrednio na płycie głównej komputera i zapewnia znacznie większą stabilność połączenia w porównaniu do kart podłączanych przez USB. Wspiera różne standardy transmisji, takie jak IEEE 802.11n czy 802.11ac, które określają prędkość i zasięg połączenia. Dzięki zastosowaniu technologii MIMO (Multiple Input Multiple Output), takie karty mogą jednocześnie korzystać z wielu anten, co zwiększa przepustowość i jakość połączenia. W kontekście praktycznym, karty sieciowe bezprzewodowe są powszechnie stosowane w biurach i domach, gdzie rozbudowa infrastruktury kablowej jest niepraktyczna lub kosztowna. Znajomość działania takich kart jest istotna z punktu widzenia zarządzania sieciami lokalnymi, konfiguracji routerów oraz rozwiązywania problemów z łącznością. Dobre praktyki branżowe zalecają regularną aktualizację sterowników karty, aby zapewnić optymalną wydajność i bezpieczeństwo połączenia.

Pytanie 16

W którym systemie liczbowym zapisano zakresy We/Wy przedstawione na ilustracji?

Ilustracja do pytania
A. W systemie dziesiętnym
B. W systemie ósemkowym
C. W systemie szesnastkowym
D. W systemie binarnym
Odpowiedź szesnastkowym jest prawidłowa ponieważ zakresy We/Wy są zapisane z użyciem systemu szesnastkowego który jest powszechnie stosowany w informatyce do reprezentacji danych na poziomie sprzętowym i programowym System szesnastkowy używa podstawy 16 co oznacza że używa 16 cyfr 0-9 i liter A-F gdzie litera A odpowiada liczbie dziesięć a F piętnaście Jest on intuicyjny do użycia w komputerach ponieważ jeden szesnastkowy znak reprezentuje cztery bity co ułatwia konwersję i interpretację danych w systemach binarnych i sprzętowych W przedstawionych zakresach We/Wy prefiks 0x oznacza że liczby są zapisane w systemie szesnastkowym Co więcej w kontekście zarządzania zasobami systemowymi jak porty We/Wy czy adresy pamięci szesnastkowy format jest standardem pozwalając na bardziej efektywne adresowanie szczególnie w architekturach komputerowych takich jak x86 Daje to programistom i inżynierom komputerowym możliwość dokładniejszej kontroli i optymalizacji interakcji z hardwarem Dzięki szerokiemu zastosowaniu i jasności reprezentacji format szesnastkowy stanowi podstawę pracy z systemami na niskim poziomie co czyni go nieodzownym elementem w arsenale profesjonalistów w dziedzinie IT

Pytanie 17

Jaki port na tylnym panelu płyty głównej jest w dokumentacji określany jako port zgodny z normą RS232C?

A. LPT
B. PS/2
C. COM
D. USB
Wybór portu LPT wskazuje na nieporozumienie dotyczące standardów komunikacyjnych. Port LPT, znany również jako port równoległy, był używany głównie do podłączania drukarek i nie ma związku z standardem RS232C. W przeciwieństwie do komunikacji szeregowej, porty równoległe przesyłają dane jednocześnie na wielu liniach, co umożliwia szybszą transmisję w porównaniu do portów szeregowych w niektórych zastosowaniach. Port PS/2, z kolei, jest używany do podłączania klawiatur i myszy, co również wyklucza go z kategorii portów szeregowych. USB to zmodernizowany standard, który zyskuje na popularności dzięki swojej wszechstronności i możliwości podłączania wielu typów urządzeń, ale nie jest bezpośrednio związany z RS232C. Zrozumienie różnic pomiędzy tymi portami jest kluczowe dla skutecznego projektowania systemów komputerowych, ponieważ błędny wybór złącza może prowadzić do problemów z komunikacją i kompatybilnością urządzeń. Ważne jest, aby przed podjęciem decyzji o wyborze portu, zrozumieć, jakie są jego właściwości i przeznaczenie oraz jak te aspekty wpływają na ogólną architekturę systemu.

Pytanie 18

Użytkownik uszkodził płytę główną z gniazdem dla procesora AM2. Płytę z uszkodzeniami można wymienić na model z gniazdem, nie zmieniając procesora oraz pamięci

A. FM2
B. AM2+
C. FM2+
D. AM1
Odpowiedź AM2+ jest prawidłowa, ponieważ gniazdo AM2+ jest kompatybilne z procesorami AM2, co oznacza, że użytkownik nie musi wymieniać swojego procesora ani pamięci. Gniazdo AM2+ obsługuje te same procesory, co AM2, a dodatkowo wprowadza wsparcie dla szybszych pamięci RAM DDR2 oraz DDR3, co może zwiększyć wydajność systemu. W praktyce, jeśli użytkownik zdecyduje się na wymianę płyty głównej na model AM2+, uzyska możliwość przyszłej modernizacji, wykorzystując nowsze procesory, które mogą być stosowane w tym gnieździe. To podejście jest zgodne z najlepszymi praktykami branżowymi, gdzie planowanie przyszłych ulepszeń jest kluczowe dla maksymalizacji wartości inwestycji w sprzęt komputerowy. Dobrą praktyką jest również dokładne sprawdzenie specyfikacji płyty głównej przed zakupem, aby upewnić się, że będzie ona wspierać pożądane komponenty.

Pytanie 19

Która z zaprezentowanych na rysunkach topologii odpowiada topologii siatki?

Ilustracja do pytania
A. Rys. D
B. Rys. A
C. Rys. B
D. Rys. C
Topologia siatki, przedstawiona na rysunku A jest strukturą sieciową, gdzie każdy węzeł jest bezpośrednio połączony z każdym innym. Tego typu topologia zapewnia najwyższy poziom redundancji i niezawodności, ponieważ awaria jednego połączenia nie wpływa na komunikację pomiędzy innymi węzłami. Przykładowo w systemach krytycznych takich jak centra danych czy sieci wojskowe, topologia siatki jest wykorzystywana do zapewnienia ciągłości działania. Standardy branżowe takie jak IEEE 802.1AX dotyczące agregacji łączy wspierają tego typu konfiguracje, umożliwiając równoważenie obciążenia i zwiększenie przepustowości. Dobre praktyki w projektowaniu takiej sieci obejmują uwzględnienie wysokich kosztów implementacji i złożoności zarządzania, jednakże zyski w postaci minimalnego opóźnienia transmisji i optymalnej niezawodności często przeważają nad wadami. Topologia siatki jest także idealna dla sieci o wysokiej dostępności wymagających dynamicznego routingu i pełnej skalowalności, umożliwiając szybkie rekonfiguracje sieci bez przestojów w działaniu systemu.

Pytanie 20

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji oświetleniowej powinna wynosić

A. 30cm
B. 50cm
C. 20cm
D. 40cm
Wybór odległości mniejszej od 30 cm, takiej jak 20 cm, 40 cm czy 50 cm, nie uwzględnia kluczowych aspektów związanych z zakłóceniami elektromagnetycznymi oraz kompatybilnością elektromagnetyczną (EMC). Zbyt mała odległość, na przykład 20 cm, może prowadzić do znacznych zakłóceń sygnału, co jest szczególnie problematyczne w nowoczesnych instalacjach, gdzie przesył danych jest często realizowany na wyższych częstotliwościach. W praktyce oznacza to, że takie połączenia mogą być bardziej podatne na błędy transmisji, co z kolei wpływa na wydajność sieci. Z kolei wybór zbyt dużej odległości, jak 50 cm, może być niepraktyczny w warunkach ograniczonej przestrzeni, jednak nie jest to podejście zalecane z punktu widzenia efektywności wykorzystania przestrzeni instalacyjnej. Kluczowym błędem myślowym w tym kontekście jest niedocenianie wpływu, jaki bliskość kabli energetycznych ma na jakość sygnałów w przesyłach danych. Osoby planujące instalacje powinny ściśle przestrzegać wytycznych dotyczących odległości, aby zapewnić optymalne działanie systemu i zminimalizować potencjalne problemy z zakłóceniami. Właściwe stosowanie standardów, takich jak PN-EN 50174-2, jest kluczowe dla zapewnienia trwałości i niezawodności instalacji telekomunikacyjnych.

Pytanie 21

Jak skonfigurować dziennik w systemie Windows Server, aby rejestrować zarówno udane, jak i nieudane próby logowania użytkowników oraz działania na zasobach dyskowych?

A. aplikacji i usług.
B. zabezpieczeń.
C. ustawień.
D. systemu.
Odpowiedź "zabezpieczeń" jest prawidłowa, ponieważ dziennik zabezpieczeń w systemie Windows Server jest miejscem, w którym rejestrowane są wszelkie zdarzenia związane z bezpieczeństwem, w tym próby logowania użytkowników oraz operacje na zasobach dyskowych. Dziennik ten umożliwia administratorom systemów monitorowanie i analizowanie aktywności użytkowników oraz identyfikowanie potencjalnych zagrożeń. Na przykład, udane i nieudane próby logowania mogą dostarczyć informacji o nieautoryzowanym dostępie, a analiza zmian na poziomie zasobów dyskowych może pomóc w wykryciu nadużyć, takich jak nieautoryzowane modyfikacje plików. Dobre praktyki w zakresie bezpieczeństwa informacji, takie jak te określone w normach ISO/IEC 27001, zalecają regularne przeglądanie dzienników zabezpieczeń w celu oceny skuteczności kontroli zabezpieczeń oraz reagowania na incydenty. Właściwe konfigurowanie i monitorowanie dziennika zabezpieczeń to kluczowy element zarządzania bezpieczeństwem w organizacji.

Pytanie 22

Do weryfikacji funkcjonowania serwera DNS na systemach Windows Server można zastosować narzędzie nslookup. Jeżeli w poleceniu jako argument zostanie podana nazwa komputera, np. nslookup host.domena.com, to system sprawdzi

A. aliasu zdefiniowanego dla rekordu adresu domeny.
B. obie strefy przeszukiwania, najpierw wstecz, a potem do przodu.
C. strefy przeszukiwania do przodu.
D. strefy przeszukiwania wstecz.
Wybór strefy przeszukiwania wstecz jako odpowiedzi na to pytanie jest niepoprawny, ponieważ strefa ta działa w odwrotny sposób. Strefa przeszukiwania wstecz jest używana do przekształcania adresów IP na odpowiadające im nazwy hostów. Zatem, jeżeli podalibyśmy adres IP w narzędziu nslookup, moglibyśmy uzyskać nazwę hosta, ale nie jest to poprawne w kontekście podawania nazwy domeny. Koncepcja strefy przeszukiwania do przodu, która jest głównym aspektem omawianego pytania, odnosi się do przekształcania nazw na adresy IP, co czyni ją odpowiednią w przypadku zapytania o nazwę hosta. Wybór aliasu wprowadzonego dla rekordu adresu domeny również nie jest adekwatny, ponieważ nslookup nie jest narzędziem do analizy aliasów, lecz do rozwiązywania nazw. Istnieje także mylne przekonanie, że nslookup jednocześnie przeszukuje obie strefy, co jest błędne; narzędzie to zawsze zaczyna od strefy przeszukiwania do przodu przy podawaniu nazwy. Takie nieporozumienia mogą prowadzić do trudności w prawidłowym rozwiązywaniu problemów z DNS oraz w skutecznym zarządzaniu infrastrukturą sieciową. Zrozumienie różnicy między tymi strefami jest kluczowe dla prawidłowego korzystania z narzędzi diagnostycznych i efektywnego zarządzania systemami DNS.

Pytanie 23

Który z przyrządów służy do usuwania izolacji?

Ilustracja do pytania
A. A
B. D
C. B
D. C
Narzędzie oznaczone jako C jest profesjonalnym przyrządem do ściągania izolacji z przewodów. Jest to narzędzie precyzyjne, często nazywane ściągaczem izolacji lub stripperem. Umożliwia ono bezpieczne i efektywne usunięcie warstwy izolacyjnej z przewodów bez uszkadzania samego przewodu. Takie narzędzia są powszechnie stosowane w branży elektrotechnicznej i telekomunikacyjnej do przygotowywania przewodów do łączenia, lutowania lub montażu złącz. Standardy branżowe, takie jak IEC 60364, wskazują na konieczność właściwego przygotowania przewodów elektrycznych w celu zapewnienia bezpieczeństwa i niezawodności połączeń. Ściągacze izolacji wyposażone są w regulowane ostrza, co pozwala na dostosowanie ich do różnej grubości izolacji, co z kolei minimalizuje ryzyko uszkodzenia przewodnika. Praktyczne zastosowanie tego narzędzia obejmuje prace instalacyjne, serwisowe oraz produkcyjne, gdzie szybkość i precyzja są kluczowe. Używanie odpowiednich narzędzi zgodnie z ich przeznaczeniem jest podstawą profesjonalizmu w pracy z instalacjami elektrycznymi.

Pytanie 24

Jaki protokół umożliwia terminalowe połączenie zdalne z urządzeniami, zapewniając przy tym transfer danych w sposób zaszyfrowany?

A. SSH (Secure Shell)
B. Remote
C. Telnet
D. SSL (Secure Socket Layer)
SSH (Secure Shell) to protokół używany do bezpiecznego łączenia się ze zdalnymi systemami, oferujący wysoki poziom zabezpieczeń dzięki szyfrowaniu danych. Działa na poziomie aplikacji i umożliwia zdalne logowanie oraz wykonywanie poleceń na serwerach. Zastosowanie SSH jest szerokie, od administracji serwerami, przez transfer plików przy użyciu SCP (Secure Copy Protocol), po zarządzanie infrastrukturą w chmurze. Protokół ten jest zgodny z najlepszymi praktykami w zakresie bezpieczeństwa, jako że zapewnia integralność, poufność oraz autoryzację użytkowników. W przeciwieństwie do protokołu Telnet, który przesyła dane w postaci niezaszyfrowanej, SSH chroni przed podsłuchem i atakami typu man-in-the-middle. Ponadto, SSH wspiera różne metody uwierzytelniania, w tym klucze publiczne i prywatne, co pozwala na znaczne podniesienie poziomu bezpieczeństwa. Dzięki standardom takim jak RFC 4251, SSH stał się podstawowym narzędziem w obszarze zdalnego dostępu, które powinno być stosowane w każdej organizacji.

Pytanie 25

Który adres stacji roboczej należy do klasy C?

A. 127.0.0.1
B. 172.0.0.1
C. 223.0.0.1
D. 232.0.0.1
Adres 223.0.0.1 jest adresem klasy C, co wynika z jego pierwszego oktetu, który mieści się w zakresie od 192 do 223. Adresy klasowe w IPv4 są klasyfikowane na podstawie pierwszego oktetu, a klasy C są przeznaczone dla małych sieci, w których można mieć do 254 hostów. Adresy klasy C są powszechnie stosowane w organizacjach, które potrzebują mniejszych podsieci. Przykładowo, firma z 50 komputerami może przypisać im zakres adresów zaczynający się od 223.0.0.1 do 223.0.0.50, co skutkuje efektywnym zarządzaniem adresacją. Warto również znać, że adresy klasy C korzystają z maski podsieci 255.255.255.0, co pozwala na wydzielenie 256 adresów IP w danej podsieci (z czego 254 są użyteczne dla hostów). Znajomość klas adresowych i ich zastosowania jest istotna w kontekście projektowania sieci oraz ich efektywnego zarządzania, a także w kontekście bezpieczeństwa i optymalizacji ruchu sieciowego.

Pytanie 26

Co oznacza skrót 'RAID' w kontekście systemów komputerowych?

A. Remote Access Internet Dashboard
B. Redundant Array of Independent Disks
C. Rapid Application Integration Development
D. Random Access Identification Device
W kontekście systemów komputerowych, pomyłki w rozwinięciu skrótu RAID mogą wynikać z niezrozumienia jego funkcji. Odpowiedź sugerująca 'Random Access Identification Device' może być błędnym skojarzeniem z pamięcią RAM czy identyfikacją urządzeń, co nie ma związku z przechowywaniem danych. 'Rapid Application Integration Development' to termin z obszaru tworzenia oprogramowania, który dotyczy szybkiego integrowania aplikacji, co nie odnosi się do struktury dysków twardych. 'Remote Access Internet Dashboard' może brzmieć jak usługa zdalnego zarządzania, co również nie pasuje do definicji RAID. Częste błędne myślenie to zakładanie, że każda technologia złożona z akronimu musi dotyczyć najnowszych trendów w IT, zamiast konkretnych, istniejących już długo rozwiązań. RAID jest technologią skupioną na niezawodności i wydajności dysków, a nie na funkcjach sieciowych, aplikacyjnych czy identyfikacyjnych. Zrozumienie jego roli w systemach komputerowych wymaga skupienia się na aspektach fizycznego przechowywania danych i ich ochrony przed utratą.

Pytanie 27

Do kategorii oprogramowania określanego jako malware (z ang. malicious software) nie zalicza się oprogramowanie typu:

A. exploit
B. scumware
C. keylogger
D. computer aided manufacturing
Wszystkie pozostałe odpowiedzi dotyczą różnych rodzajów malware, które mają na celu szkodzenie lub nieautoryzowane wykorzystanie systemów komputerowych. Exploit to technika wykorzystywana przez cyberprzestępców do atakowania luk w oprogramowaniu, co może prowadzić do nieautoryzowanego dostępu lub kradzieży danych. W kontekście bezpieczeństwa, exploit jest narzędziem, które może być używane w ramach ataków, aby zyskać kontrolę nad systemem. Keylogger to rodzaj malware, który rejestruje wprowadzone dane, takie jak hasła czy inne wrażliwe informacje. To z kolei stawia użytkowników w niebezpieczeństwie, gdyż ich dane mogą być wykorzystywane przez oszustów. Scumware to kategoria oprogramowania, która wyświetla niechciane reklamy lub zbiera informacje o użytkownikach bez ich zgody. Wszelkie te formy malware są skoncentrowane na szkodzeniu użytkownikom, co kontrastuje z funkcjonalnością oprogramowania CAM, które ma na celu wspieranie i ulepszanie procesów produkcyjnych. Zrozumienie różnic między tymi typami oprogramowania jest kluczowe dla efektywnego zarządzania bezpieczeństwem w organizacjach oraz dla ochrony danych osobowych i firmowych.

Pytanie 28

W formacie plików NTFS, do zmiany nazwy pliku potrzebne jest uprawnienie

A. modyfikacji
B. odczytu
C. odczytu i wykonania
D. zapisu
Uprawnienie do modyfikacji w systemie plików NTFS (New Technology File System) jest kluczowe dla wykonywania operacji związanych ze zmianą nazwy pliku. W kontekście NTFS, uprawnienie to pozwala użytkownikowi na modyfikację atrybutów pliku, co obejmuje nie tylko zmianę jego zawartości, ale również zmianę jego nazwy. W praktyce oznacza to, że jeśli użytkownik ma przypisane uprawnienia do modyfikacji, jest w stanie przekształcać pliki poprzez ich renaming, co jest istotne w wielu scenariuszach zarządzania danymi. Na przykład, w przypadku organizacji dokumentów, użytkownicy mogą zmieniać nazwy plików, aby lepiej odzwierciedlały ich zawartość, co ułatwia późniejsze wyszukiwanie. Warto zaznaczyć, że standardy dobrej praktyki w zarządzaniu systemami plików sugerują, aby przydzielać uprawnienia w sposób, który minimalizuje ryzyko nieautoryzowanych zmian, a także zapewnia odpowiednią kontrolę dostępu. Analizując to zagadnienie, należy również pamiętać o znaczeniu uprawnień do odczytu i zapisu, jednak same te uprawnienia nie wystarczą do przeprowadzenia operacji zmiany nazwy, co podkreśla znaczenie uprawnienia do modyfikacji.

Pytanie 29

Oblicz koszt realizacji okablowania strukturalnego od 5 punktów abonenckich do panelu krosowego, wliczając wykonanie kabli łączących dla stacji roboczych. Użyto przy tym 50 m skrętki UTP. Każdy punkt abonencki posiada 2 gniazda typu RJ45.

MateriałJednostkaCena
Gniazdo podtynkowe 45x45, bez ramki, UTP 2xRJ45 kat.5eszt.17 zł
UTP kabel kat.5e PVC 4PR 305mkarton305 zł
RJ wtyk UTP kat.5e beznarzędziowyszt.6 zł

A. 345,00 zł
B. 350,00 zł
C. 152,00 zł
D. 255,00 zł
Nieprawidłowe odpowiedzi wynikają z niepełnej analizy kosztów związanych z wykonaniem okablowania strukturalnego. Błędne założenie że 50 m skrętki UTP kosztuje tyle co cały karton może prowadzić do przeszacowania wydatków. Cena kartonu 305 m skrętki wynosi 305 zł co daje 1 zł za metr tymczasem niektóre odpowiedzi mogą opierać się na błędnej kalkulacji przyjmując całość 305 zł co jest nieekonomiczne. Dodatkowo pomijanie kosztów wszystkich potrzebnych wtyków RJ45 również wpływa na nieadekwatne oszacowanie kosztów. Każdy punkt abonencki wymaga dwóch wtyków RJ45 dla gniazd oraz dodatkowych dwóch wtyków dla kabli połączeniowych. Przy 5 punktach abonenckich potrzeba 20 sztuk wtyków co generuje znaczne koszty które nie zostały uwzględnione w niepoprawnych odpowiedziach. Pominięcie kosztów gniazd podtynkowych lub niepoprawne ich oszacowanie przy 17 zł za sztukę dla każdego z 5 punktów również prowadzi do błędnej kalkulacji. Typowe błędy to zakładanie że koszty instalacji mogą być zaniżone poprzez niedoszacowanie ilości użytych materiałów oraz nieuwzględnienie wszystkich elementów takich jak dodatkowe wtyki do kabli połączeniowych co znacząco wpływa na ogólną sumę wydatków. Przy planowaniu okablowania strukturalnego należy pamiętać o uwzględnieniu wszystkich komponentów zgodnie z ich rzeczywistym wykorzystaniem oraz kosztami jednostkowymi aby uniknąć błędnych szacunków budżetowych i zapewnić zgodność z branżowymi normami i standardami.

Pytanie 30

Ile punktów abonenckich (2 x RJ45) powinno być zainstalowanych w biurze o powierzchni 49 m2, zgodnie z normą PN-EN 50167?

A. 9
B. 1
C. 4
D. 5
Wybór niewłaściwej liczby punktów abonenckich w pomieszczeniu biurowym przeważnie wynika z błędnych założeń dotyczących potrzeb infrastruktury sieciowej. Na przykład, odpowiedź wskazująca na 1 punkt abonencki, może sugerować, że biuro będzie miało minimalne zapotrzebowanie na dostęp do internetu, co jest dalekie od rzeczywistości w nowoczesnym środowisku pracy. W dobie intensywnego korzystania z technologii, gdzie wiele urządzeń wymaga stałego dostępu do sieci, taka liczba punktów abonenckich jest niewystarczająca. Z kolei odpowiedź na 4 punkty zakłada, że każde urządzenie biurowe, jak komputer czy drukarka, będzie miało dedykowane połączenie, jednak nie uwzględnia potencjalnych potrzeb w przyszłości, takich jak dodanie nowych stanowisk pracy lub urządzeń. W przypadku 9 punktów, istnieje ryzyko nadmiaru, co może prowadzić do nieefektywnego wykorzystania zasobów oraz zwiększenia kosztów instalacji. Normy, takie jak PN-EN 50167, pomagają w określeniu standardów dla infrastruktury, jednak kluczowe jest odpowiednie ich zastosowanie w praktyce, co wymaga zrozumienia potrzeb użytkowników oraz specyfiki pracy w danym biurze. Podsumowując, wybór niewłaściwej liczby punktów abonenckich może wynikać z błędnej analizy potrzeb, co skutkuje niewystarczającą lub nadmierną infrastrukturą, nieadekwatną do dynamicznych wymagań współczesnego środowiska biurowego.

Pytanie 31

AES (ang. Advanced Encryption Standard) to standard szyfrowania, który?

A. wykorzystuje symetryczny algorytm szyfrujący
B. nie może być wdrożony w sprzęcie
C. nie może być stosowany do szyfrowania plików
D. jest następcą DES (ang. Data Encryption Standard)
Wybrane odpowiedzi sugerują błędne zrozumienie zasad działania algorytmu AES oraz kontekstu jego wykorzystania. Stwierdzenie, że AES nie może być wykorzystany przy szyfrowaniu plików, jest nieprawdziwe, ponieważ algorytm ten znalazł szerokie zastosowanie w różnych formatach plików, w tym w dokumentach, zdjęciach, a także w archiwach. Wręcz przeciwnie, wiele systemów plików i aplikacji do przechowywania danych opiera się na AES, aby zapewnić ich bezpieczeństwo. Ponadto, twierdzenie, że AES jest poprzednikiem DES, jest mylące, ponieważ to DES był wcześniejszym standardem, a AES został opracowany jako jego następca, który oferuje większe bezpieczeństwo i lepszą wydajność. Z kolei informacja o tym, że AES nie może być zaimplementowany sprzętowo, jest fałszywa; AES jest efektywnie implementowany w wielu urządzeniach sprzętowych, takich jak procesory i dedykowane układy scalone, co pozwala na szybką i wydajną obsługę szyfrowania. Te nieprawidłowe przekonania mogą prowadzić do dezinformacji na temat możliwości i zastosowań algorytmu AES, co jest niebezpieczne w kontekście planowania architektur bezpieczeństwa danych.

Pytanie 32

Najbardziej nieinwazyjnym, a zarazem efektywnym sposobem naprawy komputera zainfekowanego wirusem typu rootkit jest

A. zainstalowanie najskuteczniejszego oprogramowania antywirusowego i uruchomienie go w trybie monitorowania - z biegiem czasu wirus zostanie automatycznie wykryty
B. usunięcie podejrzanych procesów z Menedżera zadań
C. uruchomienie specjalnego programu do wykrywania rootkitów z zewnętrznego nośnika (np. LiveCD)
D. ponowne zainstalowanie systemu operacyjnego
Przeinstalowanie systemu operacyjnego, choć może wydawać się skuteczną metodą na pozbycie się wirusa, często prowadzi do utraty danych oraz wymaga znacznych zasobów czasowych i ludzkich. W przypadku rootkitów, które mogą modyfikować struktury systemowe, ponowna instalacja może nie być wystarczająca, jeśli wirus był aktywny w czasie instalacji, co może prowadzić do powrotu infekcji. Zainstalowanie programu antywirusowego i oczekiwanie na jego działanie jest myśleniem, które opiera się na założeniu, że wirusy zawsze zostaną wykryte, co nie jest prawdą, zwłaszcza w przypadku rootkitów, które są zaprojektowane tak, aby unikać wykrycia. Wiele programów antywirusowych ma ograniczone możliwości w walce z tym typem złośliwego oprogramowania, a poleganie na nich może prowadzić do fałszywego poczucia bezpieczeństwa. Usuwanie podejrzanych procesów z Menadżera zadań to działanie tymczasowe i ryzykowne. Procesy mogą być ukryte lub zmieniane przez rootkity, co sprawia, że ich ręczne usuwanie jest nieefektywne i potencjalnie niebezpieczne. W praktyce, najskuteczniejszym działaniem w przypadkach infekcji rootkitem jest użycie narzędzi do skanowania z zewnętrznego nośnika, co jest zgodne z najlepszymi praktykami w branży bezpieczeństwa IT. Te metody nie tylko eliminują wirusa, ale również zapewniają solidną analizę systemu, co jest kluczowe w obstawianiu bezpieczeństwa danych.

Pytanie 33

Technika określana jako rytownictwo dotyczy zasady funkcjonowania plotera

A. tnącego
B. solwentowego
C. laserowego
D. grawerującego
Odpowiedzi związane z ploterami laserowymi, solwentowymi i tnącymi nie są zgodne z techniką rytownictwa, która odnosi się wyłącznie do grawerowania. Ploter laserowy działa na zasadzie wykorzystania wiązki laserowej do cięcia lub grawerowania, co różni się zasadniczo od mechanicznego podejścia grawerowania. W przypadku ploterów solwentowych, ich głównym zadaniem jest drukowanie grafik na powierzchni materiałów, a nie grawerowanie czy cięcie. Te urządzenia stosują tusze solwentowe, które są bardziej odpowiednie do aplikacji zewnętrznych, ale nie mają zastosowania w kontekście rytownictwa. Ploter tnący, z drugiej strony, wykonuje wyłącznie cięcia na materiałach, a nie grawerowanie, co czyni go niewłaściwym do omówionej techniki. Zrozumienie różnicy między tymi technologiami jest kluczowe. Przykładowo, przy wyborze odpowiedniego urządzenia do produkcji oznakowania, umiejętność rozróżnienia między grawerowaniem a cięciem jest fundamentalna. Typowe błędy myślowe, które prowadzą do mylenia tych technik, to brak wiedzy na temat różnych funkcji i zastosowań poszczególnych typów ploterów oraz ich specyfikacji technicznych. Właściwa analiza i dobór technologii są kluczowe dla efektywności procesów produkcyjnych w branży reklamowej i przemysłowej.

Pytanie 34

Na zdjęciu widoczny jest

Ilustracja do pytania
A. reflektor.
B. tester kablowy.
C. zaciskarkę wtyków RJ45
D. zaciskarka do wtyków.
Zaciskarka do wtyków RJ45 jest narzędziem niezbędnym w telekomunikacji i instalacjach sieciowych. Służy do montażu końcówek na kablach sieciowych kategorii 5e, 6 i wyższych, co jest kluczowe dla zapewnienia stabilnego połączenia sieciowego. To narzędzie umożliwia precyzyjne zaciskanie żył wtyku, co jest nieodzowne dla utrzymania integralności sygnału. W praktyce, zaciskarka jest wykorzystywana podczas tworzenia okablowania strukturalnego w budynkach biurowych, domach oraz centrach danych. Standardy takie jak TIA/EIA-568 wskazują na konieczność precyzyjnego zaciskania, aby uniknąć problemów z przesyłem danych. Użycie zaciskarki do wtyków RJ45 jest nie tylko praktyczne, ale i ekonomiczne, umożliwiając dostosowanie długości kabli do specyficznych potrzeb instalacyjnych, co redukuje odpady i koszty. Warto również zauważyć, że prawidłowe użycie tego narzędzia wymaga pewnej wprawy, a także wiedzy na temat układu przewodów we wtykach, co jest regulowane przez standardy kolorystyczne, takie jak T568A i T568B.

Pytanie 35

Który instrument służy do pomiaru długości oraz tłumienności przewodów miedzianych?

A. Woltomierz
B. Miernik mocy
C. Reflektometr TDR
D. Omomierz
Omomierz nie jest odpowiednim przyrządem do pomiaru długości i tłumienności przewodów miedzianych, mimo że służy do pomiaru oporu elektrycznego. Jego zastosowanie ogranicza się głównie do określenia wartości oporu w obwodach elektrycznych, co może być użyteczne w diagnostyce uszkodzeń, ale nie dostarcza informacji o długości przewodów ani ich tłumienności. Woltomierz natomiast mierzy napięcie elektryczne, co również nie ma zastosowania w kontekście pomiarów długości kabli ani ich właściwości tłumiących. Miernik mocy, jak sama nazwa wskazuje, służy do pomiaru mocy elektrycznej w obwodach, co również nie ma związku z danymi parametrami przewodów. Zrozumienie, że każdy z tych przyrządów ma swoje specyficzne funkcje, jest kluczowe w pracy z systemami elektrycznymi. Pomylenie ich zastosowań może prowadzić do poważnych błędów w diagnostyce i konserwacji systemów. Dlatego ważne jest, aby przed wyborem odpowiedniego narzędzia dobrze zrozumieć jego funkcjonalność oraz zastosowanie w praktyce, co wpłynie na efektywność pracy oraz bezpieczeństwo całego systemu.

Pytanie 36

Gdy użytkownik zauważy, że ważne pliki zniknęły z dysku twardego, powinien

A. wykonać defragmentację tego dysku
B. zabezpieczyć dysk przed zapisaniem nowych danych
C. przeprowadzić test S.M.A.R.T. na tym dysku
D. zainstalować oprogramowanie diagnostyczne
Podjęcie działań takich jak przeprowadzenie testu S.M.A.R.T., defragmentacja dysku czy instalacja programów diagnostycznych nie jest odpowiednie w sytuacji utraty plików. Test S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) ma na celu monitorowanie stanu technicznego dysku twardego, ale nie jest narzędziem do odzyskiwania danych. Pomimo że może wskazać na potencjalne problemy z dyskiem, nie zatrzyma procesu zapisu danych, który może prowadzić do ich nadpisania. Defragmentacja, z kolei, jest operacją mającą na celu uporządkowanie fragmentów plików na dysku, co w sytuacji utraty danych jest zupełnie nieodpowiednie. W trakcie defragmentacji również może dojść do nadpisania obszarów pamięci, gdzie znajdowały się utracone pliki. Zainstalowanie programów diagnostycznych, choć może być przydatne w długofalowym monitorowaniu stanu dysku, również nie jest działaniem, które powinno się podjąć natychmiast po zauważeniu utraty danych. Właściwe podejście w takiej sytuacji polega na minimalizacji ryzyka nadpisania danych, co wymaga natychmiastowego zaprzestania wszelkich operacji zapisu, a nie ich monitorowania czy reorganizacji. Ignorowanie tych zasad może prowadzić do trwałej utraty ważnych informacji, co potwierdzają standardy najlepszych praktyk w zakresie odzyskiwania danych.

Pytanie 37

Jaki procesor pasuje do płyty głównej o podanej specyfikacji?

Ilustracja do pytania
A. D
B. A
C. B
D. C
Procesor Intel Celeron z odpowiedzi A jest kompatybilny z płytą główną, ponieważ oba posiadają gniazdo socket 1150. Socket jest fizycznym i elektrycznym interfejsem pomiędzy procesorem a płytą główną. Użycie odpowiedniego gniazda jest kluczowe, aby zapewnić prawidłowe działanie całego systemu. Płyty główne z gniazdem 1150 są zgodne z procesorami Intel wyprodukowanymi w technologii Haswell. Jest to ważne, gdyż dobór kompatybilnych komponentów wpływa na stabilność i wydajność systemu. Praktyczne zastosowanie tej wiedzy obejmuje składanie komputerów, gdzie wybór odpowiednich części zapewnia optymalne działanie. Socket 1150 obsługuje również pamięć DDR3, co jest zgodne z opisem płyty głównej. Wybór odpowiedniego procesora jest kluczowym elementem w projektowaniu systemów komputerowych, a zastosowanie standardów i dobrych praktyk, takich jak dopasowanie socketu, minimalizuje ryzyko problemów z kompatybilnością, co jest istotne w kontekście profesjonalnej budowy komputerów.

Pytanie 38

Na ilustracji przedstawiono część procesu komunikacji z serwerem, która została przechwycona przez aplikację Wireshark. Jaki to serwer?

Ilustracja do pytania
A. WWW
B. FTP
C. DNS
D. DHCP
DHCP czyli Dynamic Host Configuration Protocol to protokół sieciowy używany do automatycznego przypisywania adresów IP urządzeniom w sieci. Proces komunikacji DHCP można podzielić na cztery główne etapy: Discover Offer Request i ACK. Etap Discover polega na wysłaniu przez klienta DHCP zapytania do sieci w celu odnalezienia dostępnych serwerów DHCP. Na ten sygnał odpowiada serwer DHCP wysyłając pakiet Offer zawierający proponowany adres IP. Gdy klient zaakceptuje ofertę wysyła do serwera prośbę DHCP Request potwierdzając tym samym wybór adresu IP. Ostatecznie serwer DHCP wysyła potwierdzenie ACK zatwierdzając przypisanie adresu IP dla klienta. Praktyczne zastosowanie DHCP jest powszechne w sieciach domowych oraz korporacyjnych co pozwala na efektywne zarządzanie adresacją IP bez potrzeby ręcznego konfigurowania każdego urządzenia. DHCP jest zdefiniowany w standardzie RFC 2131 i jest uważany za niezawodną metodę automatyzacji procesu przypisywania adresów IP co zmniejsza ryzyko błędów związanych z ręczną konfiguracją adresów w dużych sieciach.

Pytanie 39

Na przedstawionym zrzucie panelu ustawień rutera można zauważyć, że serwer DHCP

Ilustracja do pytania
A. przydziela adresy IP z zakresu 192.168.1.1 - 192.168.1.100
B. może przydzielać maksymalnie 154 adresy IP
C. przydziela adresy IP z zakresu 192.168.1.1 - 192.168.1.10
D. może przydzielać maksymalnie 10 adresów IP
Serwer DHCP skonfigurowany na routerze może przydzielić maksymalnie 10 adresów IP, ponieważ w polu 'Maximum Number of DHCP Users' ustawiono wartość 10. Oznacza to, że serwer DHCP może obsłużyć tylko 10 różnych urządzeń jednocześnie, przypisując im adresy IP z dostępnego zakresu. Jest to często stosowana konfiguracja w małych sieciach, gdzie liczba urządzeń jest ograniczona i nie ma potrzeby alokacji większej liczby adresów. Przydzielanie adresów IP przez DHCP ułatwia zarządzanie siecią, ponieważ eliminuje potrzebę ręcznego konfigurowania każdego urządzenia. Podczas konfiguracji DHCP ważne jest, aby zwrócić uwagę na zakres adresów dostępnych dla użytkowników, co może być ograniczone przez maskę podsieci. Dobrą praktyką jest ustawienie odpowiedniej liczby użytkowników DHCP, aby uniknąć sytuacji, w której zabraknie dostępnych adresów IP dla nowych urządzeń. W przypadku większych sieci warto rozważyć segmentację sieci i zastosowanie większego zakresu adresacji. Stosowanie DHCP wspiera automatyzację i elastyczność w zarządzaniu dynamicznie zmieniającą się infrastrukturą IT.

Pytanie 40

W sieci o adresie 192.168.20.0 użyto maski podsieci 255.255.255.248. Jak wiele adresów IP będzie dostępnych dla urządzeń?

A. 14
B. 510
C. 6
D. 1022
Odpowiedź 6 jest poprawna ze względu na zastosowanie maski podsieci 255.255.255.248, co oznacza, że używamy 3 bitów do identyfikacji hostów w danej podsieci. Maska ta pozwala na utworzenie 2^3 = 8 adresów IP w danej podsieci. Jednakże, z tych 8 adresów, jeden jest zarezerwowany jako adres sieciowy (192.168.20.0), a drugi jako adres rozgłoszeniowy (192.168.20.7). Zatem, liczba dostępnych adresów IP dla urządzeń w tej podsieci wynosi 8 - 2 = 6. Dla praktyki, taka konfiguracja jest często stosowana w małych sieciach, gdzie potrzebujemy ograniczonej liczby adresów IP dla urządzeń, a jednocześnie zachowujemy prostotę zarządzania i bezpieczeństwo. Warto zauważyć, że zgodnie z zasadami IPv4, efektywne planowanie adresów IP jest kluczowe dla optymalizacji wydajności sieci. W praktyce, wykorzystanie maski 255.255.255.248 jest dobrym przykładem na to, jak można zminimalizować marnotrawstwo adresów IP w małych sieciach.