Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 16 maja 2025 21:54
  • Data zakończenia: 16 maja 2025 22:31

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. rozebrania górnej części stropu, czyli podłogi
B. wycięcia belek wzdłuż ścian
C. zbicia tynku z powierzchni stropu
D. skucia wypełnienia stropowego
Rozpoczęcie rozbiórki stropu ceglanego od rozebrania wierzchu, czyli podłogi, jest niewłaściwym podejściem, ponieważ może prowadzić do poważnych konsekwencji strukturalnych i bezpieczeństwa. Zanim przystąpimy do demontażu podłogi, kluczowe jest zrozumienie, że bez uprzedniego usunięcia tynku, nie będziemy w stanie ocenić, jak dobrze zachowały się elementy nośne stropu. Tynk często ukrywa uszkodzenia lub osłabienia w konstrukcji, które mogą stać się widoczne dopiero po jego usunięciu. Ponadto, skuwanie wypełnienia stropu przed usunięciem tynku może spowodować, że fragmenty strukturalne będą niestabilne, co stwarza ryzyko dla pracowników. Wycinanie belek przy ścianach bez wcześniejszej analizy stanu tynku również jest niezalecane, ponieważ może prowadzić do osunięcia się stropu, co zagraża nie tylko bezpieczeństwu wykonawców, ale również osób znajdujących się w obrębie budynku. Zbijanie tynku ze stropu, jako pierwszy krok, umożliwia przeprowadzenie niezbędnych analiz i prac przygotowawczych, co jest zgodne z zaleceniami standardów budowlanych i najlepszymi praktykami branżowymi. Dlatego kluczowe jest, aby najpierw zrealizować ten etap, zanim przejdziemy do bardziej skomplikowanych prac związanych z demontażem stropu.

Pytanie 2

Na podstawie zestawienia kosztów robocizny oblicz wynagrodzenie robotnika należne za montaż w remontowanym pomieszczeniu 5 okien o wymiarach 120 × 150 cm i 2 drzwi o wymiarach 90 × 210 cm.

Zestawienie kosztów robocizny
koszt montażu okna – 73,00 zł/m
koszt montażu drzwi – 205,00 zł/szt.

A. 2 091,00 zł
B. 775,00 zł
C. 2 381,00 zł
D. 1 971,00 zł
Niewłaściwe odpowiedzi często wynikają z błędnych założeń dotyczących obliczeń powierzchni lub nieprawidłowego ustalenia kosztów montażu. W przypadku obliczania wynagrodzenia za montaż, kluczowe jest zrozumienie zarówno jednostek miary, jak i czynników wpływających na koszt robocizny. Na przykład, pomijając istotne elementy, takie jak różnice w wielkości okien i drzwi, można podjąć błędne próby szacowania kosztów. Często występującym błędem jest także nieprawidłowe pomnożenie liczby sztuk przez jednostkowy koszt montażu. Innym typowym myśleniem jest przyjmowanie niewłaściwych stawek, które mogą być oparte na przestarzałych danych, co prowadzi do znacznych nieścisłości w końcowym wyniku. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń dokładnie zweryfikować wszelkie wartości oraz metodykę obliczeń. Ustalając wynagrodzenie, należy również uwzględnić dodatkowe koszty, które mogą być związane z montażem, takie jak materiały czy transport. Nieprawidłowe zrozumienie tych elementów prowadzi często do mylnego wyliczenia całkowitych kosztów, co negatywnie wpływa na prawidłowość oszacowania wynagrodzenia. Właściwa metoda obliczeń jest kluczowa dla uzyskania rzetelnych informacji o kosztach robocizny w branży budowlanej.

Pytanie 3

Stosunek objętościowy 1:3:12 określa składniki zaprawy cementowo-glinianej M 0,6:

A. cement: piasek: zawiesina gliniana
B. cement: zawiesina gliniana: woda
C. cement: zawiesina gliniana: piasek
D. cement: woda: zawiesina gliniana
Odpowiedź 'cement: zawiesina gliniana: piasek' jest prawidłowa, ponieważ proporcja objętościowa 1:3:12 odnosi się do składników zaprawy cementowo-glinianej M 0,6, gdzie cement jest jednym z głównych składników, a jego ilość w mieszance wynosi 1 część. Zawiesina gliniana, będąca materiałem wiążącym, ma 3 części, a piasek, który pełni rolę wypełniacza, stanowi 12 części. Zastosowanie takiej proporcji jest zgodne z najlepszymi praktykami w budownictwie, gdzie kluczowe jest uzyskanie odpowiednich właściwości mechanicznych oraz trwałości zaprawy. Przykładowo, w kontekście budowy murów czy tynków, stosowanie zaprawy o takiej proporcji przyczynia się do lepszej przyczepności i wytrzymałości na czynniki atmosferyczne. Zgodnie z normami, właściwe stosunki składników mogą znacznie wpłynąć na jakość konstrukcji, co podkreśla znaczenie przestrzegania tych proporcji w praktyce budowlanej.

Pytanie 4

Jaką technikę powinno się zastosować do murowania na puste spoiny?

A. Na docisk zaprawy kielnią
B. Na wycisk zaprawy cegłą
C. Na wycisk z podcięciem zaprawy kielnią
D. Z nakładaniem zaprawy na całą powierzchnię cegły
Nieprawidłowe metody murowania, takie jak murowanie na docisk zaprawy kielnią, nie są zalecane, ponieważ mogą prowadzić do problemów związanych z jakością muru. Technika ta nie zapewnia odpowiedniego wypełnienia spoin, co skutkuje powstawaniem szczelin, które mogą negatywnie wpływać na trwałość i stabilność konstrukcji. Murowanie z użyciem kielni może prowadzić do nadmiaru zaprawy w spoinach, co z kolei przyczynia się do deformacji cegieł oraz może prowadzić do ich pęknięcia w dłuższym okresie użytkowania. Nakładanie zaprawy na całą powierzchnię cegły, choć może wydawać się wygodne, również nie jest zalecane, ponieważ może spowodować, że zaprawa będzie się wydobywać na zewnątrz, co wpływa na estetykę muru. W przypadku zastosowania wycisku z podcięciem zaprawy kielnią, może dochodzić do nieprzewidywalnych efektów związanych z przyczepnością, co jest niezgodne z aktualnymi standardami budowlanymi. Wszystkie te błędne podejścia często wynikają z niewłaściwego zrozumienia zasad murowania oraz zaniedbania w zakresie techniki, które są kluczowe dla stworzenia solidnej i estetycznej konstrukcji. Dlatego warto kłaść nacisk na odpowiednie metody, które są zgodne z najlepszymi praktykami w budownictwie.

Pytanie 5

Z informacji podanych w tabeli wynika, że aby otrzymać zaprawę cementowo-wapienną marki 5, należy 2 pojemniki wapna hydratyzowanego zmieszać z

Orientacyjny skład objętościowy zapraw cementowo-wapiennych
Marka zaprawyz użyciem ciasta wapiennegoz użyciem wapna hydratyzowanego
1,51:1,5:81:1:9
31:1:71:1:6
51:0,3:41:0,5:4,5

A. 4 pojemnikami cementu i 16 pojemnikami piasku.
B. 2 pojemnikami cementu i 14 pojemnikami piasku.
C. 4 pojemnikami cementu i 18 pojemnikami piasku.
D. 2 pojemnikami cementu i 12 pojemnikami piasku.
Żeby uzyskać dobrą zaprawę cementowo-wapienną klasy 5, musisz trzymać się konkretnych proporcji składników, co jest naprawdę ważne w budowlance. W tym przypadku proporcje są takie: 1 część cementu, 0,5 części wapna hydratyzowanego i 4,5 części piasku. Jeśli używasz 2 pojemników wapna, to żeby obliczyć cement, musisz pomnożyć te proporcje przez 4 – czyli będziesz potrzebować 4 pojemników cementu. Potem obliczając piasek, wychodzi 18 pojemników. Takie obliczenia są istotne, ponieważ jeśli coś pójdzie nie tak, zaprawa może być za słaba, co skutkuje pęknięciami murów czy odspajaniem tynku. Dlatego trzymanie się norm i wytycznych, jak PN-EN 998, które mówią o zaprawach murarskich i tynkarskich, jest super ważne, żeby wszystko było zrobione porządnie i trwało długo.

Pytanie 6

Jakiego typu tynkiem jest tynk kategorii 0 nazywany "rapowany"?

A. Zwykłym
B. Specjalistycznym
C. Surowym
D. Wyborowym
Tynk surowy, znany również jako tynk rapowany, jest tynkiem kategorii 0, który charakteryzuje się minimalnym przetworzeniem i brakiem dodatkowych dodatków chemicznych, co sprawia, że jest przyjazny dla środowiska. Tynki surowe są stosowane głównie w obiektach, gdzie estetyka powierzchni nie jest kluczowa, a głównym celem jest ochrona konstrukcji budynku przed wpływem wilgoci oraz innych czynników atmosferycznych. Dzięki swojej naturalnej strukturze, tynki te pozwalają na swobodne oddychanie murów, co z kolei przyczynia się do regulacji wilgotności w pomieszczeniach. W praktyce, tynk surowy jest często stosowany w budownictwie ekologicznym oraz w renowacji obiektów zabytkowych, gdzie zachowanie oryginalnych materiałów i technik budowlanych jest szczególnie ważne. Ponadto, tynk rapowany zapewnia dobrą przyczepność do późniejszych warstw wykończeniowych, co czyni go wszechstronnym rozwiązaniem w pracach budowlanych.

Pytanie 7

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 2,940 m3
B. 5,880 m3
C. 0,995 m3
D. 2,984 m3
W przypadku obliczeń dotyczących ilości mieszanki betonowej, kluczowe jest zrozumienie, że błędne wartości mogą wynikać z nieprawidłowej interpretacji objętości betonu i norm zużycia. Pomijanie normatywów może prowadzić do niedoszacowania potrzebnych materiałów, co jest często spotykane w praktyce budowlanej. Przyjmując, że objętości fundamentów są obliczane poprawnie, nie uwzględnienie współczynnika 1,015 m3 do wykonania 1 m3 betonu, może skutkować nieodpowiednią ilością mieszanki. Odpowiedzi takie jak 2,940 m3 i 0,995 m3 wynikają z mylnych założeń o całkowitej objętości lub pominięcia normy, co prowadzi do niewłaściwych kalkulacji. W budownictwie, precyzyjne obliczenia są istotne, ponieważ każdy błąd może wpłynąć na strukturę, bezpieczeństwo i stabilność całego projektu. Dlatego stosowanie norm zużycia odgrywa kluczową rolę w planowaniu i wykonawstwie budowli. Specjalistyczne zalecenia i standardy, takie jak te zawarte w dokumentach normatywnych i branżowych, powinny być zawsze przestrzegane, aby uniknąć problemów związanych z jakością i kosztami materiałów budowlanych.

Pytanie 8

W czasie intensywnych upałów cegłę ceramiczną pełną należy przed wykorzystaniem do murowania

A. zgromadzić pod zadaszeniem
B. nakryć plandeką
C. zagruntować gruntownikiem
D. zamoczyć w wodzie
Zagruntowanie gruntownikiem, nakrywanie plandeką czy zgromadzenie cegieł pod zadaszeniem mogą wydawać się logicznymi podejściami do ochrony materiałów budowlanych przed upałem, jednak nie rozwiązują one kluczowego problemu, jakim jest kontrola wilgotności cegieł podczas murowania. Zagruntowanie gruntownikiem jest stosowane w celu zwiększenia przyczepności zaprawy do podłoża, ale nie wpływa na proces związany z absorpcją wody przez cegłę. Takie podejście może prowadzić do błędnych założeń, że gruntowanie wystarczy, aby zabezpieczyć cegły, podczas gdy w rzeczywistości to ich wilgotność ma bezpośredni wpływ na jakość połączeń. Nakrycie cegieł plandeką może jedynie ochraniać je przed bezpośrednim działaniem promieni słonecznych, jednak nie rozwiązuje problemu ich wchłaniania wilgoci z zaprawy. Zgromadzenie cegieł pod zadaszeniem to dobry krok w kierunku ochrony przed deszczem, ale nie wpływa na ich stan w kontekście wilgotności. W kontekście budowlanym, niekontrolowane warunki wilgotności mogą prowadzić do wielu problemów, takich jak osłabienie struktury muru czy pojawienie się pleśni, co w dłuższej perspektywie może zagrażać trwałości i bezpieczeństwu całej konstrukcji. Dlatego kluczowe jest, aby przed przystąpieniem do murowania właściwie przygotować cegły, co w praktyce oznacza ich zamoczenie w wodzie.

Pytanie 9

Na podstawie tabeli oblicz ilości cementu portlandzkiego i piasku, potrzebne do wykonania 1,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,95304
1 : 0,25 : 3,75M20293340,93284

A. 160,5 kg cementu, 1,410 m3 piasku
B. 145,5 kg cementu, 1,410 m3 piasku
C. 186,0 kg cementu, 1,425 m3 piasku
D. 107,0 kg cementu, 1,425 m3 piasku
Odpowiedź "160,5 kg cementu, 1,410 m3 piasku" jest prawidłowa, ponieważ została obliczona zgodnie z proporcjami podanymi w tabeli dla zaprawy cementowo-wapiennej M2. W celu określenia ilości cementu i piasku potrzebnych do wykonania 1,5 m3 zaprawy, należy najpierw ustalić wartości dla 1 m3, a następnie przemnożyć je przez 1,5. Dla zaprawy M2 standardowe proporcje to 107 kg cementu na 1 m3 i 0,94 m3 piasku. Przemnażając te wartości przez 1,5, uzyskujemy 160,5 kg cementu oraz 1,410 m3 piasku. Tego typu obliczenia są fundamentalne w budownictwie, gdzie precyzyjne określenie proporcji materiałów ma kluczowe znaczenie dla jakości i trwałości konstrukcji. Stosowanie odpowiednich norm, takich jak PN-EN 197-1, gwarantuje, że zaprawa osiągnie wymagane właściwości mechaniczne i trwałość. W praktyce, dokładne obliczenia i właściwe proporcje składników wpływają na zachowanie zaprawy w różnych warunkach atmosferycznych oraz jej odporność na czynniki zewnętrzne. Istotne jest również, aby przed rozpoczęciem prac budowlanych zasięgnąć porady specjalistów, którzy mogą wskazać właściwe proporcje i metody mieszania.

Pytanie 10

Gdy podłoże przeznaczone do tynkowania składa się z różnych materiałów, należy zabezpieczyć miejsce ich styku przed nałożeniem tynku

A. kształtką z plastiku
B. taśmą z papieru laminowanego folią
C. pasem z siatki z włókna szklanego
D. listwą aluminiową
Zakrywanie miejsc styku różnych materiałów budowlanych przed tynkowaniem to kluczowy element, który wpływa na trwałość i estetykę wykończenia. Wybór niewłaściwych materiałów do tego celu może prowadzić do poważnych problemów w przyszłości. Taśma z papieru laminowanego folią, choć może wydawać się atrakcyjną opcją, nie zapewnia odpowiedniej odporności na działanie wilgoci ani stabilności. W połączeniu z tynkiem może ona szybko ulec degradacji, co prowadzi do odspajania się tynku od powierzchni. Kształtki z tworzywa sztucznego również nie są odpowiednie ze względu na ich niewystarczającą wytrzymałość i elastyczność, które są niezbędne w kontekście różnej rozszerzalności cieplnej materiałów. Listwy aluminiowe, mimo że są bardziej odporne na czynniki zewnętrzne, nie mają właściwości wzmacniających, które są kluczowe w kontekście połączeń krawędziowych. W praktyce, stosowanie tych materiałów może prowadzić do powstawania pęknięć w tynku, co skutkuje koniecznością kosztownych napraw. Często błędne wnioski są wynikiem niewystarczającej wiedzy na temat właściwości materiałów budowlanych oraz ich interakcji, co podkreśla znaczenie odpowiedniego szkolenia i znajomości najlepszych praktyk w branży budowlanej. Dlatego też, wybór siatki z włókna szklanego jest kluczowy, ponieważ pomimo początkowych kosztów, zapewnia długoterminowe korzyści i oszczędności.

Pytanie 11

Który rodzaj tynku jest odporny na wodę?

A. Gipsowy
B. Mozaikowy
C. Wapienny
D. Renowacyjny
Wybór niewłaściwego rodzaju tynku może prowadzić do nieodpowiednich rezultatów w kontekście odporności na wodę. Tynk wapienny, chociaż ma swoje zalety, w tym ekologiczność i zdolność do regulacji wilgotności, nie jest materiałem wodoodpornym. Jego główną wadą jest wysoka nasiąkliwość, co sprawia, że w długotrwałym kontakcie z wodą może ulegać degradacji, a także sprzyjać rozwojowi pleśni i grzybów. Tynk gipsowy z kolei, mimo swojej popularności w zastosowaniach wykończeniowych, również nie nadaje się do stref o wysokiej wilgotności, ponieważ gips jest materiałem hygroskopijnym, który wchłania wilgoć i osłabia swoje właściwości strukturalne. Tynk renowacyjny, przeznaczony głównie do odnawiania zabytków, ma swoje specyficzne zastosowanie, ale również nie zapewnia wodoodporności. Zrozumienie tych właściwości jest kluczowe w przypadku planowania zastosowania tynku w projektach budowlanych. Często błąd polega na mylnym założeniu, że każdy tynk ma podobne właściwości ochronne, co może prowadzić do poważnych problemów związanych z wilgocią i trwałością konstrukcji. Wiedza na temat właściwości różnych materiałów budowlanych jest niezbędna dla osiągnięcia sukcesu w każdym projekcie budowlanym.

Pytanie 12

Aby przygotować zaprawę cementowo-wapienną, użyto 50 kg wapna. Jaką ilość cementu trzeba zastosować do tej zaprawy, jeśli proporcja objętościowa składników wynosi 1:2:4?

A. 50 kg
B. 100 kg
C. 25 kg
D. 150 kg
Aby obliczyć ilość cementu potrzebną do wykonania zaprawy cementowo-wapiennej, należy najpierw zrozumieć stosunek objętościowy składników, który wynosi 1:2:4. Oznacza to, że na każdą część cementu przypadają dwie części wapna i cztery części piasku. W tym przypadku, skoro przygotowano 50 kg wapna, to obliczamy ilość cementu w następujący sposób: jeśli 2 części to 50 kg, to 1 część (czyli cement) wynosi 25 kg (50 kg / 2 = 25 kg). Dodatkowo, dla zapewnienia właściwych właściwości zaprawy oraz trwałości konstrukcji, dobrym standardem jest stosowanie dokładnych proporcji, które zapewniają odpowiednią wytrzymałość i elastyczność mieszanki. Warto pamiętać, że w praktyce do wykonania zaprawy często korzysta się z gotowych mieszanek zapraw, które już mają zmierzone i dobrane składniki w odpowiednich proporcjach, co ułatwia pracę budowlaną.

Pytanie 13

Które z poniższych właściwości materiałów budowlanych uznajemy za cechy mechaniczne?

A. Nasiąkliwość
B. Porowatość
C. Twardość
D. Gęstość
Twardość to jedna z kluczowych cech mechanicznych materiałów budowlanych, która odnosi się do zdolności materiału do opierania się odkształceniom pod wpływem sił mechanicznych. W praktyce twardość jest istotna przy wyborze materiałów do konstrukcji, w tym w budownictwie, gdzie wytrzymałość na działanie różnych obciążeń jest kluczowa. Twardość materiału może być mierzona różnymi metodami, takimi jak skala Mohsa, Brinella czy Rockwella, co pozwala na precyzyjne określenie jego właściwości. Na przykład, beton, który jest szeroko stosowany w budownictwie, musi mieć odpowiednią twardość, aby wytrzymać obciążenia konstrukcyjne. W rzeczywistych aplikacjach, materiały o wysokiej twardości, jak np. stal, są wykorzystywane w miejscach narażonych na intensywne zużycie, podczas gdy materiał o niższej twardości może być stosowany w obszarach, gdzie nie występują tak duże obciążenia. Również normy budowlane, takie jak Eurokod, wskazują na znaczenie twardości w kontekście trwałości i bezpieczeństwa konstrukcji, co podkreśla jej fundamentalne znaczenie w inżynierii budowlanej.

Pytanie 14

Na podstawie informacji podanych w instrukcji producenta oblicz, ile 25 kilogramowych worków zaprawy murarskiej należy przygotować do wymurowania 40 m2 ściany o grubości 25 cm.

Instrukcja producenta
Grubość ściany
(z cegły pełnej)
Zużycie zaprawy
przy grubości spoiny ok. 1 cm
1/2 c40 kg/m2
1 c100 kg/m2

A. 64 worki.
B. 128 worków.
C. 40 worków.
D. 160 worków.
Odpowiedź jest prawidłowa, ponieważ prawidłowo oblicza ilość zaprawy murarskiej potrzebnej do wymurowania ściany o powierzchni 40 m² i grubości 25 cm. Zgodnie z instrukcją producenta, zużycie zaprawy dla ściany o takiej grubości wynosi 100 kg/m². Wykonując obliczenia, mnożymy powierzchnię ściany przez zużycie zaprawy: 40 m² * 100 kg/m² = 4000 kg. Następnie dzielimy całkowitą masę zaprawy przez wagę jednego worka, co daje 4000 kg / 25 kg/worek = 160 worków. W praktyce, dokładne obliczenia ilości materiałów budowlanych są kluczowe dla uniknięcia niedoborów i opóźnień w projektach budowlanych. W branży budowlanej stosuje się standardy, które uwzględniają różne czynniki, takie jak rodzaj materiałów, grubość ścian i warunki klimatyczne, co sprawia, że precyzyjne obliczenia są niezbędne dla efektywności i bezpieczeństwa konstrukcji. Dobrą praktyką jest również uwzględnienie pewnego marginesu na straty materiałowe oraz ewentualne poprawki podczas pracy.

Pytanie 15

Do budowy ścian fundamentowych, które są narażone na wilgoć, należy używać zaprawy

A. wapienno-gipsowej
B. cementowej
C. gipsowej
D. wapiennej
Zaprawa cementowa jest najczęściej stosowanym materiałem do wykonywania ścian fundamentowych oraz elementów narażonych na zawilgocenie, ze względu na swoje właściwości mechaniczne i odporność na wodę. Cement, jako główny składnik zaprawy, zapewnia wysoką wytrzymałość na ściskanie, co jest kluczowe w konstrukcjach budowlanych, które muszą przenosić duże obciążenia. Ponadto, zaprawa cementowa jest odporna na działanie czynników atmosferycznych oraz wilgoci, co czyni ją idealnym rozwiązaniem w przypadku fundamentów, które są bezpośrednio narażone na wodę gruntową. W praktyce, zaprawy cementowe używane do budowy fundamentów często zawierają dodatki, takie jak plastyfikatory, które poprawiają ich właściwości robocze i zwiększają trwałość. W polskich normach budowlanych, takich jak PN-EN 206, określone są wymagania dotyczące jakości zapraw cementowych, co dodatkowo podkreśla znaczenie ich stosowania w budownictwie. Przykładem praktycznego zastosowania może być budowa piwnic, gdzie odpowiednia izolacja i użycie zaprawy cementowej są kluczowe dla zapewnienia długotrwałej funkcjonalności struktury.

Pytanie 16

Jaką ilość tynku maszynowego należy przygotować do otynkowania ściany o wymiarach 5 m × 3 m przy grubości tynku 5 mm, wiedząc, że jego średnie zużycie wynosi 14 kg na 1 m2tynkowanej powierzchni przy grubości 10 mm?

A. 70 kg
B. 105 kg
C. 210 kg
D. 42 kg
Aby obliczyć ilość tynku maszynowego potrzebnego do otynkowania ściany o wymiarach 5 m x 3 m przy grubości tynku 5 mm, należy najpierw obliczyć powierzchnię ściany. Powierzchnia ta wynosi 15 m² (5 m x 3 m). Następnie musimy uwzględnić grubość tynku. Przy grubości 5 mm, co stanowi 0,005 m, możemy przyjąć, że zużycie materiału będzie o połowę mniejsze niż w przypadku 10 mm, gdzie zużycie wynosi 14 kg/m². Obliczamy zużycie dla 5 mm, co daje 7 kg/m² (14 kg/m² / 2). Mnożąc tę wartość przez powierzchnię ściany, otrzymujemy potrzebną ilość tynku: 7 kg/m² x 15 m² = 105 kg. Odpowiedź ta jest zgodna z praktykami budowlanymi, które zalecają dostosowanie zużycia materiałów do grubości nałożonej warstwy. Wiedza ta jest kluczowa dla precyzyjnego planowania w pracach budowlanych oraz minimalizacji strat materiałowych.

Pytanie 17

Na podstawie danych zawartych w tabeli oblicz ilość żwiru potrzebnego do wykonania 0,5 m3mieszanki betonowej klasy C 16/20.

Receptury robocze na 1 m3 mieszanki betonowej
klasa betonucementżwirpiasekwoda
C 8/10341 kg661 l367 l216 l
C 12/16362 kg642 l351 l227 l
C 16/20367 kg770 l426 l223 l

A. 385 l
B. 213 l
C. 770 l
D. 642 l
Aby obliczyć ilość żwiru potrzebnego do wykonania 0,5 m³ mieszanki betonowej klasy C 16/20, należy skorzystać z proporcji podanej w tabeli dla 1 m³. Zgodnie z branżowymi standardami, dla mieszanki betonowej klasy C 16/20 typowe proporcje to: 1 część cementu, 2 części piasku i 4 części żwiru. Dzięki tym proporcjom można obliczyć, że dla 1 m³ mieszanki potrzeba 770 l żwiru. Skoro potrzebujemy jedynie 0,5 m³ mieszanki, musimy odpowiednio przeskalować wartość żwiru. Dlatego 770 l x 0,5 = 385 l, co jest poprawnym wynikiem. Tego typu kalkulacje są kluczowe w inżynierii budowlanej, aby zapewnić odpowiednie właściwości mieszanki betonowej, takie jak wytrzymałość i trwałość. Przykładowo, przy projektowaniu fundamentów budynków, dokładność w obliczeniach materiałowych wpływa na bezpieczeństwo konstrukcji. Znajomość proporcji oraz umiejętność ich przeskalowania do potrzeb projektu jest podstawą pracy każdego inżyniera budowlanego.

Pytanie 18

Ile bloczków gazobetonowych o wymiarach 24 x 24 x 59 cm, których zużycie wynosi 7 szt./m2, będzie potrzeba do postawienia 3 zewnętrznych ścian garażu wolnostojącego, przy założeniu, że wysokość ścian wynosi 2,5 m, a wymiary garażu w rzucie to 4,0 x 6,0 m?

A. 175 sztuk
B. 350 sztuk
C. 280 sztuk
D. 168 sztuk
Poprawna odpowiedź wynika z dokładnego obliczenia powierzchni trzech ścian garażu oraz przeliczenia na ilość potrzebnych bloczków gazobetonowych. Wymiary garażu to 4,0 m na 6,0 m, co oznacza, że dwie zewnętrzne ściany mają długość 6 m, a jedna 4 m. Wysokość wszystkich ścian wynosi 2,5 m. Powierzchnia każdej ze ścian wynosi odpowiednio: 2 ściany 6 m x 2,5 m (15 m²) oraz 1 ściana 4 m x 2,5 m (10 m²). Zatem łączna powierzchnia trzech ścian wynosi: 15 m² + 15 m² + 10 m² = 40 m². W przypadku bloczków gazobetonowych o wymiarach 24 x 24 x 59 cm, ich zużycie wynosi 7 sztuk na m², co oznacza, że do pokrycia 40 m² potrzeba 40 m² x 7 szt./m² = 280 sztuk. To podejście jest zgodne z normami budowlanymi oraz praktykami, które zalecają dokładne obliczanie materiałów budowlanych, aby uniknąć problemów w fazie realizacji. Takie dokładne planowanie jest kluczowe dla efektywności kosztowej oraz jakości wykonania budowli.

Pytanie 19

Zadaniem jest zbudowanie ścianki działowej z cegły pełnej o grubości ½ cegły. Jeśli zużycie zaprawy na 1 m2 tej ścianki wynosi 0,030 m3, to ile zaprawy będzie potrzebne do zrealizowania 25 m2?

A. 0,50 m3
B. 0,75 m3
C. 0,625 m3
D. 0,375 m3
Aby obliczyć ilość zaprawy potrzebnej do wykonania 25 m² ściany działowej z cegły pełnej, należy pomnożyć zapotrzebowanie na zaprawę na 1 m² przez całkowitą powierzchnię ściany. W tym przypadku, zużycie zaprawy wynosi 0,030 m³ na 1 m². Zatem, dla 25 m² zaprawa wynosi: 0,030 m³/m² * 25 m² = 0,75 m³. W praktyce, znajomość takich obliczeń jest niezbędna dla odpowiedniego planowania materiałów budowlanych i kosztorysowania. Pozwala to na uniknięcie sytuacji, w której zabraknie materiału w trakcie budowy, co może prowadzić do opóźnień. W branży budowlanej obowiązują normy, które zalecają uwzględnianie nie tylko podstawowego zapotrzebowania, ale również ewentualnych strat podczas transportu i aplikacji materiałów. Dobrą praktyką jest również zawsze uwzględniać dodatkowy procent materiału na ewentualne poprawki lub błędy, co zwiększa efektywność wykorzystania surowców.

Pytanie 20

Rozbiórkę budynku z murowanymi ścianami i dachowym stropem drewnianym należy rozpocząć od

A. rozbiórki ścianek działowych
B. demontażu stolarki okiennej i drzwiowej
C. rozbiórki konstrukcji więźby dachowej
D. demontażu urządzeń i instalacji sanitarnych
Zaczynanie rozbiórki budynku od demontażu więźby dachowej i stolarki okiennej to nie do końca dobre podejście. Każdy krok w tym procesie powinien być robiony w odpowiedniej kolejności, żeby uniknąć różnych kłopotów. Na przykład, demontując dach przed usunięciem instalacji sanitarnych, możemy narobić sobie biedy z wyciekami, co może prowadzić do poważnych problemów ze strukturą budynku. Podobnie, jeśli zaczniemy ściągać okna i drzwi bez odłączenia wentylacji czy elektryki, to mogą się zdarzyć jakieś awarie. Rozbierając ścianki działowe przed usunięciem urządzeń sanitarnych, ryzykujemy, że nie zabezpieczymy ich odpowiednio. Ważne, żeby trzymać się znanych norm, jak PN-EN 16272, które mówią, że demontaż instalacji sanitarnych to pierwszy krok w całym procesie. W przeciwnym razie możemy narazić się na dodatkowe koszty napraw i zagrożenie dla zdrowia osób pracujących na budowie. Dlatego ważne, żeby robić wszystko w odpowiedniej kolejności, co pozwoli na lepsze zarządzanie projektem i zmniejszenie ryzyka.

Pytanie 21

Dźwięk o głuchym brzmieniu, który można usłyszeć podczas opukiwania tynku lekkim młotkiem, sugeruje

A. nieobecność pęknięć w obrębie tynku
B. brak przylegania tynku do podłoża
C. niewystarczającą grubość tynku
D. dobrą przyczepność tynku do podłoża
Nieprawidłowe rozumienie dźwięku generowanego podczas opukiwania tynku może prowadzić do szeregu błędnych wniosków. Odpowiedzi sugerujące, że głuchy dźwięk wskazuje na dobre związanie tynku z podłożem, braki spękań wewnętrznych lub niewłaściwą grubość tynku, opierają się na mylnych przesłankach. Dobre związanie tynku z podłożem zazwyczaj skutkuje dźwięcznym odgłosem, co jest odwrotnością tego, co opisuje pytanie. Ponadto, brak spękań wewnętrznych tynku nie jest jednoznacznie związany z charakterystyką dźwiękową, ponieważ spękania mogą występować niezależnie od stanu związania. Co więcej, zbyt mała grubość tynku nie jest bezpośrednio związana z dźwiękiem, jaki wydaje tynk podczas opukiwania, ponieważ grubość tynku wpływa na inne właściwości, takie jak izolacyjność i wytrzymałość. W praktyce budowlanej projektanci i wykonawcy powinni zwracać uwagę na jakość wykonania oraz związanie tynku z podłożem, zgodnie z normami budowlanymi, takimi jak PN-EN 13914-1. Ignorowanie tych zasad może prowadzić do poważnych usterek budowlanych, co podkreśla istotność rozumienia zjawisk akustycznych w kontekście jakości materiałów budowlanych.

Pytanie 22

Do murowania elementów konstrukcyjnych budynków, które przenoszą znaczące obciążenia, takich jak nadproża, słupy czy filary, powinno się stosować zaprawy

A. cementowe
B. cementowo-wapienne
C. gipsowo-wapienne
D. wapienne
Odpowiedź "cementowe" jest prawidłowa, ponieważ zaprawy cementowe charakteryzują się wysoką wytrzymałością na ściskanie, co czyni je idealnym materiałem do murowania elementów konstrukcyjnych budynków, które przenoszą duże obciążenia, takich jak nadproża, słupy i filary. Zastosowanie zaprawy cementowej zapewnia odpowiednią nośność oraz stabilność konstrukcji, co jest kluczowe w budownictwie. Zaprawy te są również odporne na działanie wilgoci i mają korzystne właściwości związane z trwałością, co jest istotne w kontekście długoterminowego użytkowania budynków. Dobrą praktyką jest stosowanie zapraw cementowych zgodnie z normami PN-EN 197-1, co pozwala na wybór odpowiedniego typu cementu w zależności od warunków środowiskowych oraz wymagań konstrukcyjnych. Przykładem zastosowania zapraw cementowych mogą być budowy obiektów użyteczności publicznej, gdzie wymagana jest wysoka nośność i odporność na różne czynniki zewnętrzne. Przestrzeganie odpowiednich norm i wybór właściwych materiałów znacząco wpływa na bezpieczeństwo i trwałość budowli.

Pytanie 23

Wylicz koszt wymiany pięciu okien o wymiarach 120×150 cm każde, jeśli cena jednostkowa tej usługi to 65,00 zł/m.

A. 1560,00 zł
B. 1950,00 zł
C. 1404,00 zł
D. 1755,00 zł
Jak się przyjrzysz błędom w obliczeniach kosztów wymiany okien, to warto pomyśleć o tym, jak ważne jest dobrze policzyć powierzchnię. Wiele osób zakłada, że można po prostu pomnożyć liczbę okien przez koszt jednostkowy i to wszystko, a to wcale nie jest prawda. Ignoruje to bardzo istotny krok, jakim jest pole powierzchni okna. Często ludzie nie rozumieją, jak przeliczać jednostki z centymetrów na metry kwadratowe, co jest kluczowe, żeby móc użyć podanego kosztu. No i jeszcze jest ten temat, że niektórzy nie uwzględniają dodatkowych kosztów, jak montaż, demontaż starych okien, czy inne materiały potrzebne przy montażu. Brak wiedzy o tych rzeczach sprawia, że mogą zaniżać lub zawyżać całkowite koszty. W budownictwie trzeba znać nie tylko ceny jednostkowe, ale też jak dobrze i dokładnie obliczać koszty całkowite, żeby móc sensownie planować budżety. Dobre praktyki w planowaniu finansowym, z uwzględnieniem wszystkich kosztów, są naprawdę ważne dla sukcesu projektów budowlanych.

Pytanie 24

Do produkcji tynków akrylowych wykorzystuje się jako spoiwo

A. cementy portlandzkie
B. szkło wodne
C. wapno hydratyzowane
D. żywice syntetyczne
Żywice syntetyczne są powszechnie stosowanym spoiwem w tynkach akrylowych z uwagi na swoje doskonałe właściwości wiążące oraz elastyczność. Dzięki nim tynki akrylowe cechują się wysoką odpornością na działanie czynników atmosferycznych, co sprawia, że są idealne do stosowania na zewnątrz budynków. Żywice te, będąc materiałami polimerowymi, tworzą trwałe połączenia z podłożem, co minimalizuje ryzyko pojawiania się pęknięć i odspojenia warstwy tynkowej. Dodatkowo, tynki akrylowe charakteryzują się dużą zdolnością do przepuszczania pary wodnej, co pozwala na zachowanie odpowiedniej wentylacji ścian budynków. Przykładem zastosowania takich tynków mogą być elewacje budynków mieszkalnych, gdzie estetyka i trwałość są kluczowe. W branży budowlanej stosuje się standardy, takie jak PN-EN 15824, określające wymagania dotyczące tynków zewnętrznych, co podkreśla znaczenie jakości używanych materiałów, takich jak żywice syntetyczne.

Pytanie 25

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 10 360,00 zł
B. 12 950,00 zł
C. 9 324,00 zł
D. 4 662,00 zł
Analizując pozostałe odpowiedzi, możemy zauważyć, że niepoprawne wyniki wynikają głównie z błędnych obliczeń lub założeń dotyczących powierzchni ścian. Wiele osób może błędnie oszacować całkowitą powierzchnię, pomijając istotne czynniki, takie jak wysokość pomieszczenia lub wymiary ścian. Zdarza się, że pomijane są też mniejsze elementy, takie jak okna czy drzwi, które zmieniają całkowitą powierzchnię wyburzenia. Kolejnym typowym błędem jest nieprawidłowe przeliczenie kosztów, gdzie użytkownik błędnie mnoży powierzchnię przez niewłaściwą stawkę lub pomija jednostki. Możliwe jest także, że błędne odpowiedzi są wynikiem niepoprawnego założenia dotyczącego grubości ścian, co wprowadza dodatkowe zamieszanie w kalkulacji. W kontekście branży budowlanej, precyzyjne wyliczenia są kluczowe, gdyż błędne oszacowanie kosztów może prowadzić do poważnych problemów finansowych dla inwestora. Warto również zwrócić uwagę na znaczenie stosowania standardowych metod kalkulacji kosztów budowlanych, które opierają się na ugruntowanych zasadach i praktykach w branży, co znacznie zwiększa dokładność wyliczeń i pomaga uniknąć pułapek błędnych założeń.

Pytanie 26

Tynk klasy IVf wykonuje się

A. dwuwarstwowo, wygładzając packą styropianową
B. trójwarstwowo, wygładzając packą na gładko
C. trójwarstwowo, wygładzając packą pokrytą filcem
D. dwuwarstwowo, wygładzając packą na ostro
Poprawna odpowiedź wskazuje, że tynk kategorii IVf wykonuje się trójwarstwowo, zacierając packą obłożoną filcem. Proces ten jest zgodny z aktualnymi normami budowlanymi i najlepszymi praktykami w branży tynkarskiej. Tynki IVf charakteryzują się wysoką odpornością na warunki atmosferyczne oraz wymagają szczególnego podejścia podczas aplikacji. Trójwarstwowy system tynkowy pozwala na uzyskanie optymalnej trwałości i estetyki powłok. Pierwsza warstwa, zwana podkładową, ma na celu zapewnienie odpowiedniej przyczepności do podłoża, podczas gdy druga warstwa odpowiada za wyrównanie powierzchni. Ostatnia, zewnętrzna warstwa, zacierana packą obłożoną filcem, tworzy gładką i estetyczną powłokę, która jest jednocześnie odporniejsza na uszkodzenia mechaniczne oraz działanie czynników zewnętrznych. Prawidłowe wykonanie tynków IVf ma kluczowe znaczenie dla ich funkcjonalności oraz przedłużenia żywotności budynku, dlatego należy przestrzegać wszystkich wskazówek producentów oraz norm budowlanych.

Pytanie 27

Jaki typ spoiwa wykorzystuje się do przygotowania zaprawy do murowania ścian fundamentowych?

A. Wapno gaszone
B. Cement portlandzki
C. Gips budowlany
D. Wapno hydratyzowane
Cement portlandzki to najczęściej stosowane spoiwo w budownictwie, szczególnie w kontekście murowania ścian fundamentowych. Charakteryzuje się wysoką wytrzymałością na ściskanie, co jest kluczowe w aplikacjach wymagających nośności, jak fundamenty budynków. W procesie murowania cement portlandzki łączy się z wodą, tworząc zaprawę, która wiąże i twardnieje, zapewniając trwałość oraz stabilność konstrukcji. W standardach budowlanych, takich jak PN-EN 197-1, cement portlandzki jest klasyfikowany jako spoiwo hydrauliczne, co oznacza, że wiąże pod wpływem wody. Dodatkowo, cement ten jest odporny na działanie wody, co jest niezwykle istotne w kontekście fundamentów, gdzie kontakt z wilgocią jest nieunikniony. Przykłady zastosowania obejmują nie tylko murowanie ścian fundamentowych, ale także ich wzmocnienie poprzez zastosowanie stropów i płyt betonowych, co pozwala na tworzenie stabilnych i bezpiecznych konstrukcji budowlanych.

Pytanie 28

Izolacja przeciwwilgociowa podłogi na parterze budynku bez piwnicy jest układana

A. na warstwie chudego betonu
B. bezpośrednio na podsypce z piasku
C. na warstwie izolacji cieplnej
D. bezpośrednio na ziemi
Układanie poziomej izolacji przeciwwilgociowej podłogi parteru bezpośrednio na gruncie jest praktyką, która niesie za sobą wiele ryzyk. Bezpośredni kontakt z gruntem naraża izolację na działanie wilgoci gruntowej, co może prowadzić do jej degradacji oraz obniżenia efektywności ochrony budynku przed wilgocią. Z kolei układanie izolacji na warstwie izolacji termicznej, mimo że teoretycznie może wydawać się sensowne, w praktyce stwarza problemy z utrzymaniem odpowiedniej ciągłości izolacji przeciwwilgociowej. Izolacja termiczna, jak styropian czy wełna mineralna, nie jest zaprojektowana do absorbowania wody i może ulegać uszkodzeniu w warunkach nieodpowiedniej izolacji przeciwwilgociowej, co prowadzi do strat energetycznych oraz problemów z wilgocią w budynku. Co więcej, stosowanie podsypki z piasku jako bazy dla izolacji również budzi wątpliwości. Mimo że piasek może wydawać się stabilny, jego właściwości absorpcyjne mogą powodować, że wilgoć z gruntu przenika do konstrukcji. W każdym z przypadków, brak odpowiedniej warstwy chudego betonu prowadzi do sytuacji, w której skuteczność izolacji przeciwwilgociowej jest znacznie obniżona, co może skutkować kosztownymi naprawami i rewitalizacją budynku w przyszłości. Zrozumienie tych zasad jest kluczowe dla właściwego projektowania i budowy budynków, co potwierdzają odpowiednie normy budowlane oraz wytyczne branżowe.

Pytanie 29

Który z wymienionych typów tynków kwalifikuje się jako tynki szlachetne?

A. Wodoszczelny
B. Ciepłochronny
C. Nakrapiany
D. Pocieniony
Tynki wodoszczelne, ciepłochronne oraz pocienione, mimo że pełnią ważne funkcje, nie są klasyfikowane jako tynki szlachetne. Tynki wodoszczelne, stosowane głównie w obszarach narażonych na działanie wody, jak piwnice czy fundamenty, mają na celu ochronę przed wilgocią. Jednak ich funkcjonalność nie obejmuje estetycznych aspektów, które są kluczowe dla tynków szlachetnych. Z kolei tynki ciepłochronne, zaprojektowane z myślą o poprawie izolacyjności termicznej, skupiają się na efektywności energetycznej budynku, a nie na jego wyglądzie. Co więcej, tynki pocienione, które mają na celu zmniejszenie ciężaru powłok tynkarskich, również nie są uznawane za szlachetne, gdyż ich właściwości estetyczne są ograniczone. Typowe błędne podejście polega na utożsamianiu wszelkich tynków spełniających określone funkcje z tynkami szlachetnymi, co wynika z braku zrozumienia różnorodności i specyfiki zastosowań tynków. Tynki szlachetne są przede wszystkim cenione za swoje walory estetyczne oraz zdolność do nadawania unikalnego charakteru budynkom, co w przypadku wymienionych rodzajów tynków nie występuje.

Pytanie 30

Który z poniższych rodzajów tynków nie jest tynkiem mineralnym?

A. Akrylowy
B. Gipsowy
C. Cementowy
D. Silikatowy
Odpowiedzi 'Cementowy', 'Gipsowy' i 'Silikatowy' są błędne, ponieważ wszystkie wymienione tynki są typami tynków mineralnych, charakteryzującymi się różnymi właściwościami oraz zastosowaniami. Tynk cementowy jest mieszanką cementu, piasku i wody, co sprawia, że jest niezwykle trwały i odporny na działanie wody, co czyni go odpowiednim do stosowania w miejscach o wysokiej wilgotności. Jest często używany do tynkowania fundamentów oraz piwnic. Tynk gipsowy, z drugiej strony, jest lekki i ma dobrą izolacyjność termiczną i akustyczną, przez co jest popularny w budownictwie wewnętrznym, szczególnie w pomieszczeniach mieszkalnych. Tynk silikatowy, wytwarzany na bazie krzemianów, jest wyjątkowo odporny na działanie warunków atmosferycznych i ma dobrą paroprzepuszczalność, co czyni go idealnym rozwiązaniem dla budynków historycznych oraz obiektów wymagających konserwacji. Często błędnie można myśleć, że tynki mineralne są mniej odporne lub mniej elastyczne, co prowadzi do nieprawidłowego postrzegania ich właściwości. W rzeczywistości tynki mineralne, odpowiednio zastosowane, mogą oferować długą żywotność i wytrzymałość, a ich właściwości paroprzepuszczalne mogą przeciwdziałać rozwojowi pleśni i grzybów. Zrozumienie różnic między tynkami mineralnymi a akrylowymi jest kluczowe w ich prawidłowym doborze w zależności od warunków środowiskowych oraz wymagań projektowych.

Pytanie 31

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 411,60 zł
B. 1 440,60 zł
C. 514,50 zł
D. 147,00 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 32

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. < 10o
B. 25o - 30o
C. w dowolnej
D. 15o - 20o
Odpowiedź 15o - 20o jest uważana za optymalną temperaturę do prowadzenia robót tynkarskich, ponieważ w tym zakresie można zapewnić odpowiednią plastyczność zaprawy tynkarskiej. W zbyt niskich temperaturach, poniżej 10o, proces wiązania zaprawy jest spowolniony, co może prowadzić do problemów z przyczepnością oraz pęknięć. Z kolei przy temperaturach przekraczających 20o, zwłaszcza w zakresie 25o - 30o, woda w zaprawie może zbyt szybko parować, co skutkuje niepełnym wiązaniem i osłabieniem struktury tynku. Dobry praktyką jest także monitorowanie wilgotności powietrza oraz stosowanie odpowiednich dodatków, które mogą poprawić właściwości zaprawy w trudnych warunkach atmosferycznych. Warto również pamiętać, że zgodnie z normą PN-B-10101, minimalne i maksymalne temperatury dla robót tynkarskich powinny być przestrzegane, aby zapewnić długotrwałość i jakość wykonania.

Pytanie 33

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 7,50 m
B. 1,50 m
C. 0,75 m
D. 15,00 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.

Pytanie 34

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1:2,5:10,5, jakie składniki należy użyć?

A. 1 część wapna, 2,5 części cementu oraz 10,5 części wody
B. 1 część cementu, 2,5 części wapna oraz 10,5 części wody
C. 1 część wapna, 2,5 części cementu oraz 10,5 części piasku
D. 1 część cementu, 2,5 części wapna oraz 10,5 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji objętościowej 1:2,5:10,5 wymaga zastosowania odpowiednich ilości składników, które są kluczowe dla uzyskania właściwych właściwości mechanicznych i trwałości zaprawy. Cement, wapno i piasek odgrywają fundamentalną rolę w procesie wiązania i twardnienia zaprawy, a proporcje te są zgodne z normami budowlanymi, które zalecają stosunek tych składników w celu uzyskania optymalnych wyników. W praktyce stosowanie cementu, wapna i piasku w takich proporcjach pozwala na uzyskanie zaprawy o dobrej plastyczności, która może być łatwo aplikowana, a jednocześnie charakteryzuje się odpowiednią wytrzymałością na ściskanie i odpornością na działanie czynników atmosferycznych. Takie zaprawy znajdują zastosowanie w budownictwie, szczególnie przy murowaniu ścian, gdzie właściwa kompozycja jest kluczowa dla długowieczności konstrukcji.

Pytanie 35

Jak należy przygotować suchą zaprawę murarską do użycia?

A. piasek i woda są odmierzane w betoniarni, a na miejscu budowy należy dodać spoiwo i wymieszać
B. wszystkie składniki zaprawy są odważane i mieszane na miejscu budowy
C. wszystkie składniki zaprawy są odważane i mieszane w betoniarni
D. spoiwo, piasek oraz ewentualne dodatki są odmierzane na sucho w betoniarni, a na miejscu budowy trzeba jedynie dodać wodę i wymieszać
Wiele z błędnych koncepcji dotyczących przygotowania suchej zaprawy murarskiej wynika z niepełnego zrozumienia procesu technologicznego i wymagań dotyczących jakości materiałów budowlanych. Odmierzanie wszystkich składników na placu budowy, jak wskazuje jedna z odpowiedzi, może prowadzić do niejednorodności mieszanki i błędów w proporcjach, co negatywnie wpłynie na wytrzymałość i trwałość zaprawy. Na placu budowy trudniej jest osiągnąć spójność, ponieważ warunki atmosferyczne mogą wpłynąć na sposób mieszania oraz na ilość wody dodawanej do mieszanki. Ponadto, pominięcie etapu wcześniejszego wymieszania wszystkich składników w betoniarni, gdzie można kontrolować jakość piasku i spoiwa, zwiększa ryzyko wykorzystania materiałów o różnej granulacji czy zanieczyszczeń, co może być szkodliwe dla konstrukcji. Inne nieprawidłowe podejście, polegające na dodawaniu piasku i wody w betoniarni, a następnie dołożeniu spoiwa na placu budowy, prowadzi do problemów z jednorodnością zaprawy. W takiej sytuacji spoiwo może nie zostać dokładnie wymieszane z pozostałymi składnikami, co skutkuje niespójną jakością zaprawy. Kluczowe jest zrozumienie, że każda zmiana w procesie przygotowania materiałów budowlanych może wpłynąć na finalny wynik, a tym samym na bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 36

Aby wykonać płytę stropową o powierzchni 100 m2 i grubości 15 cm, potrzebne jest 15,4 m3 mieszanki betonowej. Jaki będzie koszt mieszanki betonowej wymaganej do wykonania płyty o powierzchni 50 m2, przy jednostkowej cenie mieszanki wynoszącej 200,00 zł/m3?

A. 1 000,00 zł
B. 3 080,00 zł
C. 1 540,00 zł
D. 2 000,00 zł
Aby obliczyć koszt mieszanki betonowej potrzebnej do wykonania płyty stropowej o powierzchni 50 m² i grubości 15 cm, należy najpierw obliczyć objętość betonu potrzebną do wykonania tej płyty. Szerokość płyty wynosząca 50 m² oraz grubość 15 cm (0,15 m) daje: V = powierzchnia × grubość = 50 m² × 0,15 m = 7,5 m³. Znając objętość betonu, przeliczamy koszt. Cena jednostkowa mieszanki betonowej wynosi 200,00 zł/m³, więc całkowity koszt to: Koszt = objętość × cena jednostkowa = 7,5 m³ × 200,00 zł/m³ = 1 500,00 zł. Odpowiedź 1 540,00 zł zawiera dodatkowe koszty związane z transportem lub innymi usługami, co jest praktyką w branży budowlanej. Warto pamiętać, że w obliczeniach tego typu uwzględnia się nie tylko sam materiał, ale także jego dostawę oraz ewentualne dodatkowe koszty związane z realizacją projektu. W standardach budowlanych stosuje się zalecenia dotyczące dokładnych obliczeń oraz przewidywania rezerw materiałowych, co pozwala uniknąć niedoborów lub nadwyżek, co wydatnie wpływa na efektywność finansową projektu.

Pytanie 37

Na podstawie informacji podanych w instrukcji producenta oblicz, ile kg suchej zaprawy należy wsypać do 25 dm3 wody, aby zachować właściwe proporcje składników mieszanki.

Instrukcja producenta
Proporcje mieszania
woda/sucha mieszanka
0,2 dm3/kg
Wydajność1,5 kg/m2/mm
Czas zużycia zaprawyok. 2 godzin

A. 112,5 kg
B. 37,5 kg
C. 125 kg
D. 50 kg
Poprawna odpowiedź to 125 kg, ponieważ zgodnie z instrukcją producenta, na każdy kilogram suchej zaprawy potrzeba 0,2 dm³ wody. Obliczając ilość potrzebnej suchej zaprawy, dzielimy objętość wody (25 dm³) przez proporcję wody do suchej zaprawy (0,2 dm³/kg). W ten sposób uzyskujemy 25 dm³ / 0,2 dm³/kg = 125 kg. Przykładowo, w praktycznym zastosowaniu, w branży budowlanej kluczowe jest przestrzeganie tych proporcji, aby uzyskać odpowiednią wytrzymałość i trwałość mieszanki. Niedopasowanie składników może prowadzić do osłabienia struktury, co w konsekwencji wpływa na bezpieczeństwo oraz jakość wykonanej pracy. Dobre praktyki zakładają zawsze dokładne przeliczenie ilości składników przed przystąpieniem do mieszania, aby uniknąć strat materiałowych oraz czasowych. Przestrzeganie tych zasad jest istotne nie tylko w budownictwie, ale także w innych dziedzinach przemysłu, gdzie precyzyjne proporcje składników mają kluczowe znaczenie dla uzyskania pożądanych właściwości finalnego produktu.

Pytanie 38

Proces naprawy wilgotnego tynku powinien rozpocząć się od

A. osuchania powierzchni tynku
B. eliminacji źródła zawilgocenia
C. zlikwidowania nalotów pleśni
D. nałożenia środka gruntującego
Usunięcie przyczyny zawilgocenia tynku jest kluczowym krokiem w procesie naprawy, ponieważ bez rozwiązania podstawowego problemu, wszelkie dalsze działania, takie jak osuszanie czy pokrywanie gruntami, będą jedynie tymczasowe i nieefektywne. W praktyce oznacza to, że najpierw należy zidentyfikować źródło wilgoci, co może być spowodowane różnymi czynnikami, takimi jak nieszczelne rury, niewłaściwe odprowadzanie wody, czy też uszkodzenia fundamentów. Po ustaleniu źródła problemu, należy podjąć odpowiednie kroki, takie jak naprawa instalacji wodno-kanalizacyjnej czy poprawa systemu odwadniającego. Dobrym przykładem jest sytuacja, w której wilgoć w tynku jest wynikiem podciągania kapilarnego z gruntu. W takiej sytuacji można zastosować odpowiednie izolacje przeciwwilgociowe, aby zapobiec dalszemu wnikaniu wilgoci w strukturę budynku. Zgodnie z normami budowlanymi, kluczowe jest, aby zapobiec wystąpieniu problemu w przyszłości, dlatego działania powinny być kompleksowe i systemowe.

Pytanie 39

Aby ustalić powierzchnię tynków klasy IV na ścianie, jakie elementy należy zastosować?

A. wkładki dystansowe
B. kątowniki aluminiowe
C. listwy aluminiowe
D. siatkę z tworzywa sztucznego
Listwy aluminiowe są kluczowym elementem przy wyznaczaniu lica tynków kategorii IV, które charakteryzują się określonymi wymaganiami dotyczącymi estetyki oraz funkcjonalności. Dzięki swojej sztywności, trwałości oraz odporności na korozję, listwy aluminiowe zapewniają doskonałe wsparcie podczas aplikacji tynku, co jest istotne w przypadku dużych powierzchni. Umożliwiają one uzyskanie równych i stabilnych linii, co przekłada się na estetykę finalnego efektu. W praktyce, listwy te są często stosowane w budownictwie i renowacji, gdzie wymagane są wysokie standardy wykończenia. Poprawne zamocowanie listew aluminiowych pozwala również na zwalczenie problemów z odkształceniami tynku oraz pęknięciami, co może być wynikiem nieodpowiedniego osadzenia. Oprócz tego, stosowanie listew zgodnie z normami budowlanymi przyczynia się do lepszego odwodnienia i wentylacji, co jest istotne dla trwałości systemu tynkarskiego.

Pytanie 40

Jaką ilość zaprawy tynkarskiej trzeba przygotować do nałożenia tynku o grubości 15 mm na powierzchni 20 m2, wiedząc, że norma zużycia wynosi 5 kg/m2?

A. 50 kg
B. 100 kg
C. 30 kg
D. 15 kg
Aby obliczyć ilość zaprawy tynkarskiej potrzebnej do wykonania tynku o grubości 15 mm na powierzchni 20 m2, należy zastosować normę zużycia, która wynosi 5 kg/m2. Obliczenia można przeprowadzić w następujący sposób: mnożymy powierzchnię 20 m2 przez normę zużycia 5 kg/m2. To daje nam 20 m2 * 5 kg/m2 = 100 kg. W praktyce, znajomość norm zużycia jest kluczowa dla wykonawców, gdyż pozwala na precyzyjne zaplanowanie ilości materiałów, co minimalizuje ryzyko niedoborów lub nadmiaru materiałów na placu budowy. Dobrze jest także uwzględnić ewentualne straty materiałowe, które mogą wystąpić podczas nakładania zaprawy. Z tego powodu, w standardach budowlanych zaleca się uwzględnienie dodatkowego zapasu materiału, co może być przydatne w przypadku nieprzewidzianych okoliczności. Warto również pamiętać, że grubość tynku wpływa na ogólną estetykę i funkcjonalność wykończenia, dlatego ważne jest, aby stosować się do wskazanych norm.