Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 maja 2025 16:51
  • Data zakończenia: 19 maja 2025 17:10

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
B. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
C. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
D. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
Błędne odpowiedzi często wynikają z niedostatecznego zrozumienia hierarchii działania elementów w układzie hydraulicznym. W wielu przypadkach mylone są funkcje zaworów sterujących i reagujących na sygnały obiektowe, co prowadzi do chaosu w logice działania systemu. Zawory reagujące na sygnały obiektowe są kluczowe, ponieważ to one odbierają informacje o stanie systemu, a ich umiejscowienie na początku procesu jest niezbędne do prawidłowego przetwarzania sygnałów. Jeśli ich kolejność zostanie zmieniona, może to prowadzić do niewłaściwego działania całego układu, co z kolei skutkuje zwiększonym ryzykiem awarii. Ponadto, zrozumienie kolejności pracy zaworów roboczych i wykonawczych jest istotne, ponieważ każdy element musi być aktywowany w odpowiednim momencie, aby zapewnić płynność pracy maszyny. W praktyce, błędna sekwencja może skutkować nieefektywnym wykorzystaniem energii hydraulicznej, co przekłada się na straty finansowe i czasowe w procesie produkcyjnym. Warto również zwrócić uwagę na standardy branżowe, które precyzują, jak powinny być projektowane i instalowane układy hydrauliczne, aby zapewnić ich optymalną wydajność i bezpieczeństwo. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji w późniejszym etapie eksploatacji systemu.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie niekorzystne zmiany w właściwościach cieczy hydraulicznych można zidentyfikować bezpośrednio w miejscu eksploatacji układu?

A. Zawartość cząsteczek metali i wartość kwasowa
B. Starzenie termiczne oraz obecność powietrza
C. Zawartość osadów i wartość zasadowa
D. Obecność wody oraz lepkość cieczy
Starzenie termiczne i obecność powietrza to zmiany, które można łatwo wykryć w cieczy hydraulicznej bez konieczności przeprowadzania skomplikowanych testów laboratoryjnych. Starzenie termiczne objawia się m.in. poprzez zmianę koloru cieczy, co może wskazywać na degradację jej właściwości. Z kolei obecność powietrza jest zauważalna przez tworzenie się bąbelków, co może prowadzić do poważnych problemów, takich jak kawitacja. Przykładem zastosowania tej wiedzy jest regularne monitorowanie cieczy hydraulicznych w systemach maszynowych, co pozwala na wczesne wykrywanie problemów i zapobieganie awariom. Zgodnie z zaleceniami branżowymi, takie jak ISO 4406, monitorowanie jakości cieczy jest kluczowe dla utrzymania efektywności układów hydraulicznych. Wykrywanie starzenia termicznego i obecności powietrza jest zatem istotnym krokiem w zapewnieniu niezawodności i długowieczności systemów hydraulicznych, co jest korzystne zarówno z perspektywy operacyjnej, jak i ekonomicznej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W jednofazowym silniku indukcyjnym napędzającym urządzenie mechatroniczne uszkodzeniu uległ kondensator pracy o parametrach znamionowych 2,5 uF / 450 V. Którym z wymienionych kondensatorów należy zastąpić uszkodzony, aby naprawić urządzenie?

Dane techniczne:
Napięcie znamionowe450 V
Częstotliwość znamionowa50 ÷ 60 Hz
Tolerancja pojemności±5%
Oczekiwana żywotność10 000 h (HPFNT)
Stopień ochronyIP00
ModelPojemność [μF]Wymiary D x H [mm]
MK 450-1130 x 57
MK 450-1,51,530 x 57
MK 450-2230 x 57
MK 450-2,52,530 x 57
MK 450-101035 x 57
MK 450-12,512,535 x 70
MK 450-202040 x 70
MK 450-252540 x 70
MK 450-505040 x 70

A. MK 450-20
B. MK 450-25
C. MK 450-2,5
D. MK 450-2
Kondensator oznaczony jako 'MK 450-2,5' jest poprawnym zamiennikiem uszkodzonego kondensatora o parametrach 2,5 uF / 450 V. Kluczowym czynnikiem przy doborze kondensatora jest zgodność zarówno z pojemnością, jak i napięciem znamionowym. W przypadku silników indukcyjnych, kondensatory są niezbędne do poprawnego rozruchu i funkcjonowania silnika, dlatego ich wybór ma fundamentalne znaczenie. Zastosowanie kondensatora o niewłaściwej pojemności może prowadzić do obniżenia wydajności silnika lub jego uszkodzenia. W praktyce, zastosowanie kondensatora MK 450-2,5, który spełnia te wymagania, zapewnia optymalną pracę silnika oraz minimalizuje ryzyko awarii. Warto również pamiętać, że stosowanie kondensatorów o wyższej pojemności lub napięciu może nie być zalecane, gdyż może to prowadzić do nieprawidłowego działania systemu. Zgodnie z normami branżowymi, należy zawsze dobierać komponenty zgodnie z ich specyfikacją techniczną. W przypadku wątpliwości, warto konsultować się z dokumentacją producenta lub specjalistą.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaki czujnik powinien zostać zainstalowany na obudowie siłownika, aby monitorować położenie tłoczyska z magnesem?

A. Piezoelektryczny
B. Kontaktronowy
C. Optyczny
D. Ultradźwiękowy
Czujnik kontaktronowy jest idealnym rozwiązaniem do wykrywania położenia tłoczyska z magnesem w siłownikach. Działa na zasadzie zjawiska magnetycznego, co oznacza, że gdy magnes znajdujący się na tłoczysku zbliża się do czujnika, jego styk zamyka się, co pozwala na precyzyjne określenie pozycji. Kontaktrony charakteryzują się dużą wytrzymałością na warunki atmosferyczne i mechaniczne, co czyni je niezawodnymi w trudnych warunkach pracy. W praktyce są szeroko stosowane w automatyce przemysłowej, gdzie precyzyjne pomiary położenia są kluczowe. Dodatkowo, zgodnie z normami ISO 13849 dotyczącymi bezpieczeństwa maszyn, czujniki kontaktronowe mogą być wykorzystywane w systemach bezpieczeństwa, co zwiększa ich wszechstronność. Wybór czujnika kontaktronowego na korpusie siłownika jest zatem zgodny z najlepszymi praktykami branżowymi i zapewnia niezawodność oraz bezpieczeństwo systemów automatyki.

Pytanie 24

Nieszczelności występujące w systemie smarowania lub w obiegu cieczy chłodzącej, zauważone w trakcie pracy urządzenia hydraulicznego, powinny być usunięte podczas

A. ogólnego remontu maszyny
B. przeglądu technicznego w trakcie przestoju
C. planowych napraw średnich realizowanych po demontażu całej maszyny
D. planowych napraw bieżących bez rozkładania całej maszyny
Wybór przeglądu technicznego w czasie przestoju jako momentu na usunięcie nieszczelności w układzie smarowania lub cieczy chłodzącej jest trafny z wielu powodów. Nieszczelności te mogą prowadzić do poważnych problemów operacyjnych, takich jak przegrzewanie się maszyny czy jej uszkodzenie, co w konsekwencji może skutkować wstrzymaniem produkcji. Przegląd techniczny w czasie przestoju to idealny moment na przeprowadzenie dokładnej inspekcji, ponieważ pozwala na zidentyfikowanie i naprawienie problemów bez ryzyka wpływu na wydajność pracy. W ramach przeglądu można również przeprowadzić dodatkowe czynności, takie jak uzupełnienie płynów eksploatacyjnych czy wymiana zużytych elementów. Dobre praktyki branżowe wskazują na konieczność przeprowadzania takich inspekcji w regularnych odstępach czasowych, co podnosi bezpieczeństwo i efektywność pracy urządzeń hydraulicznych. Dlatego odpowiedź na to pytanie potwierdza świadomość znaczenia regularnych przeglądów w kontekście utrzymania ruchu maszyn.

Pytanie 25

Podwyższenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy o 20 Hz spowoduje

A. zatrzymanie działania silnika
B. niestabilną pracę silnika
C. spadek prędkości obrotowej wirnika silnika
D. wzrost prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy prowadzi do zwiększenia prędkości obrotowej wirnika. Wynika to z zasady, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio związana z częstotliwością zasilania, określaną przez równanie: n = (120 * f) / p, gdzie n to prędkość w obrotach na minutę, f to częstotliwość zasilania, a p to liczba par biegunów. Wzrost częstotliwości o 20 Hz zwiększa liczbę zmian pola magnetycznego, co z kolei przyspiesza ruch wirnika. Przykładowo, w aplikacjach przemysłowych, takich jak napędy elektryczne w dźwigach lub taśmach produkcyjnych, odpowiednia regulacja częstotliwości zasilania pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymagań procesu technologicznego. Ponadto, w praktyce stosuje się inwertery, które umożliwiają płynną regulację częstotliwości, pozwalając na oszczędności energii oraz zwiększenie efektywności pracy silników. Warto również zauważyć, że zmiany te są zgodne z normami IEC dotyczących napędów elektrycznych, które podkreślają znaczenie optymalizacji i efektywności energetycznej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W systemie hydraulicznym maksymalne ciśnienie robocze płynu wynosi 20 MPa. Jaki powinien być minimalny zakres pomiarowy manometru zamontowanego w tym systemie?

A. 0÷10 barów
B. 0÷160 barów
C. 0÷250 barów
D. 0÷25 barów
Wybór zakresu pomiarowego 0÷250 barów dla manometru zainstalowanego w układzie hydraulicznym, w którym maksymalne ciśnienie robocze wynosi 20 MPa, jest poprawny z kilku powodów. Po pierwsze, manometr powinien mieć zakres pomiarowy wyższy niż maksymalne ciśnienie, aby zapewnić dokładność i bezpieczeństwo pomiaru. Wybierając manometr o zakresie 0÷250 barów, uzyskujemy rezerwę bezpieczeństwa wynoszącą 5 MPa, co jest zgodne z praktykami branżowymi, gdzie standardem jest posiadanie co najmniej 25% zapasu nad maksymalne ciśnienie robocze. Takie podejście minimalizuje ryzyko przekroczenia zakresu pomiarowego i potencjalnych uszkodzeń urządzenia. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, gdzie ciśnienia robocze mogą się szybko zmieniać, dobór odpowiedniego manometru jest kluczowy dla bezpieczeństwa i efektywności procesów. Ponadto, manometry z wyższymi zakresami pomiarowymi są bardziej odporne na uszkodzenia mechaniczne oraz lepiej radzą sobie z wysokimi impulsami ciśnienia, co jest istotne w dynamicznych układach hydraulicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby zmierzyć dystans robota mobilnego od przeszkód, można zastosować m.in. czujniki

A. piezoelektryczne
B. tensometryczne
C. pirometryczne
D. ultradźwiękowe
Czujniki ultradźwiękowe są powszechnie stosowane w robotyce do pomiaru odległości, ponieważ działają na zasadzie emisji fal dźwiękowych o wysokiej częstotliwości, które po odbiciu od przeszkody wracają do czujnika. Dzięki temu możliwe jest precyzyjne określenie odległości do obiektów w otoczeniu robota. Przykładem zastosowania czujników ultradźwiękowych może być unikanie kolizji przez roboty mobilne, gdzie czujniki te umożliwiają wykrywanie przeszkód w czasie rzeczywistym, co jest kluczowe dla autonomicznych systemów nawigacyjnych. W branży stosuje się różne standardy, takie jak ISO 12100 dotyczący bezpieczeństwa maszyn, które podkreślają konieczność implementacji skutecznych systemów detekcji przeszkód. Ponadto, ultradźwiękowe czujniki odległości są często stosowane w połączeniu z algorytmami sztucznej inteligencji do analizy otoczenia, co zwiększa efektywność i bezpieczeństwo operacji robotów.

Pytanie 34

Jakiej litery używamy do oznaczania na schematach systemów sterowania wyjść sterownika PLC?

A. I
B. W
C. Q
D. X
Litera Q jest standardowo używana do oznaczania wyjść w systemach sterowania opartych na sterownikach PLC, ponieważ pochodzi od angielskiego słowa "output". W praktyce oznaczenie to jest niezwykle ważne dla zachowania przejrzystości oraz jednoznaczności schematów. Użycie litery Q pomaga inżynierom i technikom w szybkiej identyfikacji elementów wyjściowych w skomplikowanych układach sterujących. Na przykład, w wielu projektach automatyzacji przemysłowej, takich jak sterowanie silnikami, zaworami czy innymi urządzeniami wykonawczymi, oznaczenia Q ułatwiają dokumentację oraz diagnostykę. Stosowanie standardów w oznaczeniach, takich jak IEC 61131-3, gwarantuje, że schematy są zgodne z przyjętymi normami branżowymi, co ułatwia współpracę między zespołami inżynieryjnymi oraz zapewnia efektywność komunikacji w projektach. Dodatkowo, stosując jednolite oznaczenia, inżynierowie mogą szybciej wprowadzać zmiany w układzie, co zwiększa elastyczność i skraca czas realizacji projektów.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W systemie hydraulicznym zauważono spadek efektywności działania siłownika. Jakie działanie powinno być podjęte w pierwszej kolejności, aby naprawić tę usterkę?

A. Zamienić mocowania siłownika
B. Zamienić pompę hydrauliczną
C. Wymienić uszczelnienia siłownika
D. Ustawić wyższe ciśnienie na zaworze bezpieczeństwa
Wymiana uszczelnień siłownika jest kluczowym działaniem w przypadku zaobserwowania obniżenia jego sprawności. Uszczelnienia pełnią ważną rolę w utrzymaniu ciśnienia hydraulicznego w siłowniku, a ich zużycie prowadzi do wycieków oleju, co bezpośrednio wpływa na efektywność pracy siłownika. W praktyce, regularne serwisowanie i wymiana uszczelek powinny być standardową procedurą w eksploatacji systemów hydraulicznych, co pozwala na minimalizowanie ryzyka awarii oraz zapewnia dłuższą żywotność komponentów. Warto również zauważyć, że zgodnie z normami branżowymi, zaleca się stosowanie uszczelnień o odpowiednich parametrach technicznych dostosowanych do konkretnego zastosowania, co pomoże w osiągnięciu maksymalnej efektywności i niezawodności systemu hydraulicznego.

Pytanie 39

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAE
B. SCADA
C. CAM
D. CAD
SCADA, czyli Supervisory Control and Data Acquisition, to kluczowy system stosowany w automatyce przemysłowej, który umożliwia monitorowanie oraz kontrolowanie procesów technologicznych w czasie rzeczywistym. W praktyce SCADA zbiera dane z różnorodnych czujników i urządzeń, co pozwala na wizualizację procesów na interaktywnych panelach operatorskich. Tego typu systemy są stosowane w różnych branżach, w tym w energetyce, wodociągach, transporcie oraz przemyśle chemicznym. SCADA umożliwia nie tylko zbieranie danych, ale także ich analizę i generowanie raportów, co jest istotne dla podejmowania decyzji zarządzających. Dodatkowo, systemy SCADA często integrują różne protokoły komunikacyjne, takie jak Modbus czy OPC, co zapewnia ich elastyczność i interoperacyjność. W dobie Przemysłu 4.0 SCADA odgrywa także kluczową rolę w implementacji IoT (Internet of Things), co otwiera nowe możliwości w zakresie automatyzacji i optymalizacji procesów przemysłowych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.