Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 maja 2025 18:11
  • Data zakończenia: 19 maja 2025 18:38

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słabą zasadę
B. rozpuszczalnik organiczny
C. mieszaninę chromową
D. słaby kwas
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Na ilustracji numery rzymskie wskazują

A. I – chłodnicę, II – sublimat
B. I – rozdzielacz, II – destylat
C. I – chłodnicę, II – destylat
D. I – rozdzielacz, II – sublimat
Wybór odpowiedzi, w której I oznaczono jako rozdzielacz, a II jako sublimat, prowadzi do kilku kluczowych nieporozumień. Rozdzielacz jest urządzeniem, które służy do oddzielania różnych faz, na przykład cieczy od gazów, co nie jest jego funkcją w kontekście destylacji. Destylacja to proces, w którym składniki mieszaniny cieczy są oddzielane na podstawie różnicy ich temperatur wrzenia, a nie za pomocą rozdzielaczy. Sublimacja, z drugiej strony, to proces, w którym substancja przechodzi bezpośrednio ze stanu stałego do gazowego, omijając fazę ciekłą, co nie znajduje zastosowania w kontekście chłodnicy i destylacji. Odpowiedzi, które określają II jako sublimat, pomijają zrozumienie, że sublimacja nie jest zjawiskiem zachodzącym w pracy chłodnicy, a tym bardziej w procesie destylacyjnym. Często obserwowanym błędem jest niewłaściwe utożsamianie procesów termicznych i stanów skupienia substancji. Ważne jest, aby przy analizie procesów chemicznych zrozumieć różnice między podziałem na fazy oraz transformacjami fizycznymi, do których należy sublimacja. Dobrym przykładem są procesy odparowywania i skraplania, które są kluczowe w kontekście destylacji, a pomylenie tych pojęć prowadzi do nieprawidłowych wniosków dotyczących zastosowania urządzeń i ich funkcji. Konieczne jest przyswojenie sobie tych definicji, aby skutecznie operować w obszarze chemii i inżynierii procesowej.

Pytanie 5

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
B. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
C. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
D. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
Często niepoprawne uszeregowanie odczynników chemicznych może wynikać z tego, że nie do końca rozumiemy różnice między klasami czystości i ich stosowaniem. Jak ktoś pisze, że 'czysty' jest czystszy niż 'czysty do analizy', to wprowadza w błąd. 'Czysty' to substancja, która może mieć jakieś zanieczyszczenia chemiczne, przez co nie nadaje się do dokładnych analiz. A 'czysty do analizy' to taki, co był oczyszczony, żeby zminimalizować wpływ zanieczyszczeń na wyniki. W laboratoriach chemicznych powinno się stosować reagentów o określonym poziomie czystości, żeby zapewnić rzetelność badań. Jak się pomyli w uszeregowaniu, to można wpaść w problemy z normami i standardami, które określają wymagania czystości chemikaliów. Polecam zapoznać się z dokumentacją techniczną i wytycznymi o reagentach, żeby unikać błędów w rozumieniu poziomów czystości i ich użycia.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Gęstość próbki cieczy wyznacza się przy użyciu

A. spektrofotometru
B. piknometru
C. biurety
D. refraktometru
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 8

Proces, w którym woda jest usuwana z zamrożonego materiału poprzez sublimację lodu
(czyli bezpośrednie przejście do stanu pary z pominięciem stanu ciekłego) nazywa się

A. asocjacja
B. homogenizacja
C. pasteryzacja
D. liofilizacja
Liofilizacja to naprawdę ciekawy proces. W skrócie, chodzi o to, że z zamrożonego materiału usuwa się wodę poprzez sublimację, czyli jakby bezpośrednie przejście lodu w parę. To szczególnie ważne w branży spożywczej i farmaceutycznej, bo dzięki temu produkty utrzymują swoje właściwości, smak i wartości odżywcze. Możemy zobaczyć to w przypadku suszonych owoców, liofilizowanej kawy czy nawet leków, które muszą być stabilne. To, co mi się podoba, to że liofilizacja pozwala na długoterminowe przechowywanie bez konserwantów, co jest super zdrowe. W farmacji z kolei, to standard w produkcji niektórych leków, co sprawia, że łatwiej je transportować i podawać, bo rozpuszczają się w wodzie tuż przed użyciem. Po prostu świetna sprawa!

Pytanie 9

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. chroniące przed substancjami chemicznymi
B. zapewniające izolację termiczną
C. zwykłe gumowe
D. płócienne
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 10

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. destylację frakcyjną
B. destylację prostą
C. krystalizację
D. sedymentację
Krystalizacja jako metoda separacji opiera się na różnicach w tym, jak dobrze składniki się rozpuszczają w danym rozpuszczalniku. To działa najlepiej dla substancji stałych, a nie dla cieczy, jak ropa naftowa. W przypadku ropy różnice w temperaturach wrzenia są znacznie ważniejsze niż różnice w rozpuszczalności, przez co krystalizacja to nie najlepszy wybór. Sedymentacja to już inna sprawa, bo polega na oddzielaniu stałych cząstek od cieczy przez grawitację. To jest efektywna metoda dla zawiesin, ale nie nadaje się do oddzielania cieczy na podstawie punktów wrzenia. Użycie sedymentacji w przemyśle naftowym byłoby po prostu błędne, bo ropa to jednorodny płyn, a nie zawiesina. Destylacja prosta może działać, ale w przypadku ropy to za mało, bo ma ona tak skomplikowany skład i wiele frakcji. Destylacja prosta pozwala na separację tylko jednego składnika na raz, co jest mało efektywne, gdy mamy tyle różnych i cennych produktów z ropy. Błędny wybór metody może prowadzić do kiepskiej efektywności produkcji i marnowania surowców.

Pytanie 11

Proces wydobywania składnika z cieczy lub ciała stałego w mieszance wieloskładnikowej poprzez jego rozpuszczenie w odpowiednim rozpuszczalniku to

A. saturacja
B. destylacja
C. dekantacja
D. ekstrakcja
Destylacja to proces separacji składników mieszaniny na podstawie różnic w ich temperaturach wrzenia. W przeciwieństwie do ekstrakcji, destylacja nie polega na rozpuszczaniu składników w rozpuszczalniku, lecz na ich fizycznym oddzieleniu za pomocą parowania i skraplania. To prowadzi do mylenia tych dwóch procesów, ponieważ oba służą do uzyskiwania czystszych substancji, jednak mają zupełnie różne mechanizmy działania. Saturacja oznacza osiągnięcie stanu, w którym rozpuszczalnik nie może już rozpuścić więcej substancji, co jest niewłaściwym terminem w kontekście wyodrębniania składników. Dekantacja to proces oddzielania cieczy od osadu poprzez powolne wylewanie cieczy, co również różni się od procesu ekstrakcji, ponieważ nie polega na rozpuszczaniu substancji. W praktyce, błędne interpretacje tych procesów mogą prowadzić do pomyłek w doborze metod separacji, co z kolei może wpływać na efektywność produkcji, jakość końcowego produktu oraz bezpieczeństwo procesów chemicznych. Aby uniknąć tych błędów, ważne jest zrozumienie zasad rządzących każdym z tych procesów oraz ich zastosowań w różnych branżach, co jest kluczowe w praktycznej chemii i inżynierii chemicznej.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. na mokro
B. na sucho
C. mikrofalową
D. UV
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 15

Co oznacza zapis cz.d.a. na etykiecie opakowania odczynnika chemicznego?

A. zawiera co najmniej 0,1% zanieczyszczeń
B. zawiera maksymalnie 0,1% zanieczyszczeń
C. zawiera co najmniej 0,05% zanieczyszczeń
D. zawiera maksymalnie 0,05% zanieczyszczeń
Wybór odpowiedzi, że odczynnik zawiera minimum 0,05% zanieczyszczeń, jest nieprawidłowy, ponieważ nie uwzględnia istoty oznaczenia "cz.d.a.". Oznaczenie to implikuje, że substancje te są przeznaczone do zastosowań analitycznych i muszą spełniać określone normy czystości, które ograniczają zawartość zanieczyszczeń do maksymalnie 0,1%. Odpowiedź sugerująca, że odczynnik zawiera minimum 0,1% zanieczyszczeń, jest również błędna, ponieważ wprowadza w błąd co do definicji czystości. Ponadto odpowiedzi wskazujące na maksymalne zanieczyszczenie wynoszące 0,05% są niewłaściwe, ponieważ mogą prowadzić do nieporozumień w kontekście przygotowania próbek do analiz. W praktyce, odczynniki chemiczne używane w laboratoriach muszą spełniać rygorystyczne wymagania dotyczące czystości, aby zapewnić dokładność i powtarzalność wyników. Typowym błędem myślowym jest zakładanie, że niska granica zanieczyszczeń oznacza, że odczynniki muszą mieć jeszcze bardziej restrykcyjne normy, co nie jest zgodne z rzeczywistością. Właściwe zrozumienie terminologii i oznaczeń w zakresie chemii analitycznej jest kluczowe, aby uniknąć błędów w interpretacji i stosowaniu odczynników w praktyce. Z tego powodu, znajomość standardów czystości jest niezbędna dla każdego profesjonalisty pracującego w laboratorium.

Pytanie 16

Przedstawiono wyciąg z karty charakterystyki substancji chemicznej. Na podstawie informacji zawartej w zamieszczonym fragmencie karty wskaż wzór chemiczny substancji, której można użyć jako materiału neutralizującego lodowaty kwas octowy.

Kwas octowy lodowaty 99,5%

Materiały zapobiegające rozprzestrzenianiu się skażenia i służące do usuwania skażenia

Jeżeli to możliwe i bezpieczne, zlikwidować lub ograniczyć wyciek (uszczelnić, zamknąć dopływ cieczy, uszkodzone opakowanie umieścić w opakowaniu awaryjnym). Ograniczyć rozprzestrzenianie się rozlewiska przez obwałowanie terenu; zebrane duże ilości cieczy odpompować. Małe ilości rozlanej cieczy przysypać niepalnym materiałem chłonnym (ziemia, piasek oraz materiałami neutralizującymi kwasy, np. węglanem wapnia lub sodu, zmielonym wapieniem, dolomitem), zebrać do zamykanego pojemnika i przekazać do zniszczenia.

Zanieczyszczoną powierzchnię spłukać wodą. Popłuczyny zebrać i usunąć jako odpad niebezpieczny.

A. NaCl
B. CaSO4
C. (NH4)2SO>sub>4
D. CaCO3 • MgCO3
Wybór innych odpowiedzi, takich jak CaSO4, (NH4)2SO4 czy NaCl, jest niepoprawny ze względu na ich niewłaściwe właściwości chemiczne w kontekście neutralizacji lodowatego kwasu octowego. CaSO4, znany również jako gips, nie wykazuje wystarczających właściwości alkalicznych, aby skutecznie neutralizować kwasy. Jego zastosowanie w kontekście neutralizacji jest ograniczone, co sprawia, że nie jest odpowiednim środkiem w tej sytuacji. Z kolei (NH4)2SO4, czyli siarczan amonu, również nie ma właściwości neutralizujących kwasy; w rzeczywistości, może wprowadzić dodatkowe kwasy do środowiska reakcji, co prowadzi do niepożądanych skutków. NaCl, czyli sól kuchenna, jest solą neutralną, ale nie ma zdolności neutralizujących w przypadku kwasów. Zastosowanie nieodpowiednich substancji do neutralizacji może prowadzić do nieefektywnych reakcji oraz potencjalnych zagrożeń, takich jak powstawanie toksycznych gazów. Kluczowe jest zrozumienie, że neutralizacja kwasów wymaga substancji o odpowiednich właściwościach alkalicznych, co podkreśla znaczenie znajomości chemicznych reakcji oraz dobrych praktyk w laboratoriach i przemyśle. Unikanie typowych błędów myślowych, takich jak mylenie soli z reagentami alkalicznymi, jest fundamentalne dla właściwego postępowania w analizach chemicznych oraz procesach technologicznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Technika kwartowania (ćwiartkowania) pozwala na redukcję masy próbki ogólnej

A. gazowej
B. ciekłej
C. stałej
D. półciekłej
Metoda kwartowania, czyli ćwiartkowanie, to sposób, który wykorzystuje się w laboratoriach, żeby zmniejszyć masę próbki stałej. Dzięki temu można ją analizować, nie tracąc przy tym jej reprezentatywności. Po prostu dzielimy próbkę na cztery równe części i wybieramy dwie przeciwległe, co daje nam mniejszą próbkę do pracy. To jest ważne zwłaszcza w chemii, gdzie zachowanie proporcji składników ma duże znaczenie. Na przykład, jeśli mamy dużą próbkę gleby i chcemy ją przeanalizować, kwartowanie pozwala nam na zmniejszenie jej do rozmiaru, który jest bardziej odpowiedni do badań, np. mikrobiologicznych czy chemicznych. Dla próbek stałych, takich jak minerały czy różne odpady, kwartowanie jest standardem, bo pozwala nam na uzyskanie reprezentatywnej próbki, a jednocześnie ogranicza straty materiału. Warto też pamiętać, że normy ISO w analizie próbek podkreślają znaczenie uzyskiwania prób reprezentatywnych, co jest kluczowe w wielu badaniach w laboratoriach i przemyśle.

Pytanie 19

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. piaskowych
B. wodnych
C. powietrznych
D. olejowych
Ogrzewanie cieczy żrących na łaźniach powietrznych to raczej zła decyzja. Powód jest prosty – takie rozwiązanie nie daje stabilności termicznej. Ciecze żrące mogą reagować w dziwny sposób, więc nagłe zmiany temperatury mogą być niebezpieczne. Łaźnie powietrzne mogą ogrzewać w sposób nierównomierny, co może prowadzić do punktowego przegrzewania i różnych reakcji chemicznych, co wcale nie jest fajne dla zdrowia ludzi. Łaźnie olejowe z drugiej strony, mimo że lepiej regulują temperaturę, potrafią stworzyć ryzyko pożaru, jeśli dojdzie do kontaktu z tymi substancjami. Olej też potrafi reagować z niektórymi chemikaliami, co zwiększa niebezpieczeństwo. Łaźnie wodne z kolei to też kłopot, bo woda działa raczej jako chłodziwo, a nie grzałka. Zdarzają się też reakcje egzotermiczne, co może naprawdę pokrzyżować plany. Właściwie w każdej sytuacji ważne jest, żeby rozumieć, jakie substancje się używa i jakie mogą być ich ryzyka. Dobrze jest stosować najlepsze praktyki w chemii, by zapewnić sobie bezpieczeństwo i zdrowie. Jak się zaniedba te zasady, to można wpaść w spore kłopoty, które dałoby się prosto wyeliminować, stosując łaźnię piaskową.

Pytanie 20

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Liofilizację.
B. Oznaczanie wilgoci.
C. Wstępne suszenie.
D. Utrwalanie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. uznać za zakończone
B. kontynuować, ponieważ sól nie została całkowicie odwodniona
C. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
D. powtórzyć, ponieważ sól uległa rozkładowi
Prażenie Na2CO3·10H2O pod kątem uzyskania bezwodnego Na2CO3 polega na usunięciu cząsteczek wody związanych z solą. Odpowiedź 'kontynuować, aż do upewnienia się, że masa soli pozostaje stała' jest prawidłowa, ponieważ proces dehydratacji powinien być monitorowany, aż do momentu, gdy nie będzie już zauważalnych zmian masy. W praktyce chemicznej, gdy masa przestaje się zmieniać, można uznać, że reakcja osiągnęła równowagę i całkowite odwodnienie zostało zakończone. Przykładem może być proces przygotowywania soli w laboratorium, gdzie często stosuje się metody termiczne do usuwania wody. Kontrola masy jest kluczowa, aby uniknąć niepożądanych produktów ubocznych, które mogą powstać w wyniku nadmiernego ogrzewania. Dobre praktyki laboratoryjne obejmują także stosowanie odpowiednich technik ważenia oraz monitorowania temperatury, aby zapewnić optymalne warunki prażenia.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Które z poniższych działań należy wykonać przed rozpoczęciem pracy z nowym szkłem laboratoryjnym?

A. Włożyć szkło do zamrażarki na 30 minut
B. Przetrzeć szkło suchą szmatką
C. Dokładnie umyć, wypłukać wodą destylowaną i wysuszyć
D. Ogrzać szkło w suszarce do 200°C bez mycia
Przed przystąpieniem do pracy w laboratorium, odpowiednie przygotowanie szkła laboratoryjnego jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Zaleca się, aby każdy nowy element szkła został dokładnie umyty, wypłukany wodą destylowaną i następnie wysuszony. To nie jest tylko formalność – na powierzchni nowego szkła mogą pozostawać resztki środków produkcyjnych, pyłów, opiłków lub nawet tłuszczów używanych w procesie produkcji i transportu. Takie zanieczyszczenia potrafią znacząco wpłynąć na przebieg reakcji chemicznych, fałszować wyniki pomiarów czy powodować wytrącanie się niepożądanych osadów. W praktyce laboratoryjnej normą jest wieloetapowe mycie szkła: najpierw wodą z detergentem, następnie dokładne płukanie wodą z kranu, a na końcu kilkukrotne płukanie wodą destylowaną. Suszenie zapewnia, że do wnętrza próbki nie dostanie się woda o nieznanym składzie. Moim zdaniem, sumienne podejście do czystości szkła jest jedną z najważniejszych zasad pracy laboranta. Każdy zawodowiec wie, że nawet drobny brud czy mgiełka tłuszczu mogą przekreślić godziny żmudnej pracy. W wielu laboratoriach, szczególnie tych akredytowanych, są nawet specjalne protokoły przygotowania sprzętu – warto je poznać i stosować, bo to naprawdę się opłaca.

Pytanie 25

Jaką substancję należy koniecznie oddać do utylizacji?

A. Sodu chlorek
B. Glukoza
C. Chromian(VI) potasu
D. Gliceryna
Wybór substancji, które nie wymagają szczególnego traktowania w kontekście utylizacji, może prowadzić do poważnych konsekwencji zdrowotnych i środowiskowych. Na przykład, chlorek sodu, będący związkiem chemicznym, jest powszechnie stosowany w przemyśle oraz w kuchni, a jego nadmiar w środowisku nie stanowi zagrożenia, ponieważ jest to substancja nietoksyczna, a dodatkowo dobrze rozpuszczalna w wodzie. Gliceryna, będąca produktami ubocznymi procesów przemysłowych, jest bezpieczna w utylizacji, ponieważ jest biodegradowalna i nie stwarza zagrożenia dla zdrowia ludzi ani dla środowiska. Glukoza, natomiast, jest naturalnym cukrem, który również nie wymaga specjalnego traktowania w kontekście utylizacji, gdyż jest substancją organiczną, która nie wywołuje negatywnych skutków w naturalnym środowisku. Wybierając niewłaściwe podejście do utylizacji, można nie tylko narazić się na konsekwencje prawne, ale również wyrządzić krzywdę otaczającemu nas środowisku. Zrozumienie różnicy między związkami niebezpiecznymi a tymi, które są bezpieczne dla utylizacji, jest kluczowe w praktyce zarządzania odpadami. Dlatego ważne jest, aby przed podjęciem decyzji dotyczącej utylizacji substancji chemicznych, dokładnie zapoznać się z ich właściwościami oraz obowiązującymi normami prawnymi dotyczącymi ochrony zdrowia i środowiska.

Pytanie 26

Ile wynosi objętość roztworu o stężeniu 0,5 mol/dm3, jeśli przygotowano go z 0,1 mola KOH?

A. 20 dm3
B. 200 cm3
C. 200 dm3
D. 20 ml
Poprawna odpowiedź to 200 cm3, co odpowiada 0,2 dm3. Aby obliczyć objętość roztworu, możemy skorzystać ze wzoru: C = n/V, gdzie C to stężenie (mol/dm3), n to liczba moli substancji (mol), a V to objętość roztworu (dm3). W tym przypadku mamy stężenie C = 0,5 mol/dm3 i liczba moli n = 0,1 mol. Przekształcając wzór do postaci V = n/C, otrzymujemy V = 0,1 mol / 0,5 mol/dm3 = 0,2 dm3, co w mililitrach daje 200 cm3. Takie obliczenia są podstawą w chemii, szczególnie w praktycznych laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania rzetelnych rezultatów eksperymentów. Warto wiedzieć, że umiejętność obliczania objętości roztworów i ich stężeń jest niezbędna w wielu dziedzinach, takich jak farmacja, biotechnologia czy chemia analityczna.

Pytanie 27

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Okresowej ciało stałe – ciecz
B. Ciągłej ciecz – ciecz
C. Okresowej ciecz – ciecz
D. Ciągłej ciało stałe – ciecz
Zrozumienie różnicy między ekstrakcją okresową a ciągłą jest kluczowe dla prawidłowego wykonania procedur analitycznych. Ekstrakcja ciągła ciecz – ciecz polega na nieprzerwanym przepływie fazy organicznej, co umożliwia bardziej efektywne wyodrębnienie substancji z roztworu. W przedstawionym fragmencie natomiast opisana została procedura, która polega na jednorazowym przeniesieniu fazy, co sugeruje charakter działania okresowego. Dla typowych błędów myślowych można wskazać dezinformację dotyczącą przepływu faz, gdzie użytkownicy mogą mylnie utożsamiać prostą interakcję substancji z roztworem z procesem ciągłym. Również mylenie ciał stałych z cieczami w kontekście ekstrakcji może prowadzić do nieprawidłowych wniosków, gdyż podstawowym założeniem ekstrakcji ciecz – ciecz jest to, że obie fazy muszą być ciekłe. Niepoprawne odpowiedzi często wynikały z niewłaściwego zrozumienia zasad ekstrakcji oraz ich zastosowania w praktyce laboratoryjnej. Uczenie się tych różnic jest kluczowe dla efektywnego projektowania procesów analitycznych oraz optymalizacji wydobycia substancji chemicznych.

Pytanie 28

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 36,8%
B. 19,6%
C. 78,3%
D. 39,2%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)

A. 100 cm3
B. 150 cm3
C. 250 cm3
D. 200 cm3
Odpowiedzi takie jak 250 cm3, 100 cm3 i 150 cm3 wynikają z niepoprawnych obliczeń lub niepełnego zrozumienia reakcji chemicznej zachodzącej podczas saponifikacji. Dodanie 250 cm3 zasady sodowej do 56,8 g kwasu stearynowego skutkowałoby nadmiarem zasady, co mogłoby prowadzić do powstawania niepożądanych produktów ubocznych oraz nadmiernej alkaliczności końcowego mydła. Taki nadmiar reagentu jest niezgodny z zasadami dobrych praktyk laboratoryjnych, które wymagają precyzyjnego dawkowania reagentów. Z kolei wybór 100 cm3 lub 150 cm3 zasady sodowej również nie zapewnia pełnej reakcji neutralizacji, co skutkuje niedostatecznym przekształceniem kwasu w mydło. W praktyce, niedobór zasady może prowadzić do niepełnej reakcji, co z kolei wpływa na jakość końcowego produktu. W kontekście branżowym, produkcja mydeł wymaga ścisłej kontroli procesów chemicznych oraz monitorowania stosunków molowych reagentów, aby zapewnić zgodność z normami i jakością produktów. Całość procesu saponifikacji powinna być przeprowadzana z zachowaniem odpowiednich standardów, aby uniknąć problemów z jakością oraz bezpieczeństwem końcowego mydła.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
B. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
C. BaCl2 + H2SO4 → BaSO4 + 2HCl
D. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
Wybór niepoprawnych odpowiedzi wynika często z niepełnego zrozumienia procesu reakcji chemicznych oraz zasad tworzenia zapisów jonowych. Wiele z tych odpowiedzi zawiera nieprawidłowe reprezentacje reagentów i produktów reakcji, co prowadzi do zamieszania w ich interpretacji. Przykładowo, wybór BaCl2 + H2SO4 → BaSO4 + 2HCl błędnie przedstawia fizyczną rzeczywistość zachodzącej reakcji. Nie uwzględnia on stanu jonowego reagentów, co jest kluczowe w analizie reakcji kwas-zasada. W tym przypadku, BaCl2, będący solą, nie jest odpowiednio przetworzony do formy jonowej. Takie błędy prowadzą do nieporozumień, zwłaszcza w kontekście rozróżniania reagentów od produktów, co jest istotnym aspektem w chemii teoretycznej i praktycznej. Dodatkowo, odpowiedzi sugerujące, że jony H+ i Cl- są traktowane jako produkty, wskazują na niewłaściwe zrozumienie równowagi reakcji oraz zachowania jonów w roztworze. Często studenci mylą jony, które reagują, z tymi, które pozostają w roztworze, co może prowadzić do błędnych wniosków w bardziej złożonych reakcjach chemicznych. Konieczne jest, aby zrozumieć różnicę pomiędzy zapisami reakcji cząsteczkowej a zapisem jonowym, który jednoznacznie pokazuje, jakie jony biorą udział w reakcji, eliminując te, które nie zmieniają się i nie wpływają na produkty końcowe.

Pytanie 33

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. suszenie roztworu w suszarce laboratoryjnej
B. sączenie przez sączek o drobnych porach lub filtr membranowy
C. dekantację bez sączenia
D. podgrzewanie roztworu do wrzenia
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Średnia masa wody wypływająca z pipety o deklarowanej pojemności 25 cm3, w temperaturze 25°C wynosi 24,80 g. Korzystając z danych zamieszczonych w tabeli wskaż wartość poprawki kalibracyjnej dla tej pipety.

Masa wody zajmującej objętość 1 dm3 w zależności od temperatury pomiaru
Temperatura
°C
Masa wody
g
20997,17
21997,00
22996,80
23996,59
24996,38
25996,16
26995,93
27995,69
28995,45
29995,18
30994,92

A. 0,16 ml
B. 0,18 ml
C. 0,10 ml
D. 0,25 ml
Zła odpowiedź, ale nie ma co się martwić, to częsty błąd. Często wynikają one z tego, że nie do końca rozumiesz, jak działa kalibracja urządzeń pomiarowych. Wiele osób myśli, że pipeta zawsze podaje dokładnie to, co jest na etykiecie, ale to nie do końca tak działa w praktyce. Odpowiedzi takie jak 0,16 ml czy 0,18 ml sugerują, że różnica była rozumiana błędnie, co pokazuje, że kalibracja i poprawka nie były do końca jasne. Kalibracja to w zasadzie porównywanie tego, co naprawdę mierzysz, z tym, co powinno być, a w tym przypadku widać, że pipeta raczej wypuszcza mniej, a nie więcej. Często zdarza się pomylić kierunek poprawki kalibracyjnej, co może prowadzić do większych problemów w eksperymentach, na przykład przy złym dozowaniu reagentów. Źle zrozumiane zagadnienia związane z pipetami to niezgodność z dobrymi praktykami w laboratoriach, które wymagają, żeby zawsze dbać o kalibrację i stan sprzętu. Zrozumienie, że pipeta nie zawsze działa idealnie, jest ważne dla każdego technika, a regularne stosowanie odpowiednich metod kalibracyjnych powinno być codziennością w laboratorium.

Pytanie 36

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 16±2°C
B. 5±3°C
C. 9±1°C
D. 12±1°C
Odpowiedź 5±3°C jest prawidłowa, ponieważ zgodnie z normami, takimi jak ISO 5667, próbki wody powinny być transportowane w temperaturze, która minimalizuje zmiany ich właściwości chemicznych oraz biologicznych. Obniżenie temperatury próbek do przedziału 2°C – 8°C (5±3°C) pozwala na spowolnienie procesów metabolismu mikroorganizmów oraz chemicznych reakcji, co jest kluczowe dla zachowania autentyczności analizowanych próbek. Przykładowo, w przypadku analizy składu chemicznego wody pitnej, zbyt wysoka temperatura transportu może prowadzić do degradacji związków organicznych lub wzrostu liczby mikroorganizmów, co skutkuje błędnymi wynikami. Dobre praktyki laboratoryjne zalecają także stosowanie odpowiednich kontenerów oraz lodu lub żeli chłodzących w celu utrzymania właściwej temperatury, co jest istotne w kontekście zgodności z wymaganiami prawnymi oraz normami badań środowiskowych.

Pytanie 37

Która część małej partii materiału jest najczęściej pobierana w celu przygotowania próbki ogólnej?

A. 0,001%
B. 0,1%
C. 1%
D. 0,01%
Wybór wartości 1% jako wielkości próby może wydawać się na pierwszy rzut oka rozsądny, jednak przekracza powszechnie akceptowane standardy w zakresie pobierania próbek. W praktyce, pobieranie próbki w takiej ilości może prowadzić do nieproporcjonalnych strat materiałowych oraz do potencjalnego wprowadzenia błędu systematycznego w analizach. W przypadku materiałów o dużej zmienności, pobranie 1% może skutkować nieodpowiednią reprezentatywnością próbki, co z kolei prowadzi do błędnych wniosków na temat jakości całej partii. Podobnie, wartości takie jak 0,001% i 0,01% są zbyt małe, aby zapewnić odpowiedni poziom dokładności i reprezentatywności próbki. Przykładowo, gdy próbka jest zbyt mała, istnieje ryzyko, że nie odda ona właściwości fizykochemicznych całego materiału, co jest niezgodne z zasadami statystyki prób. Warto zwrócić uwagę, że procesy pobierania próbek powinny być zgodne z wytycznymi norm ISO 2859-1, które sugerują, że optymalna wielkość próbki powinna być określona na podstawie wielkości całej partii oraz jej jednorodności. Stąd, dobór 0,1% jako wartości standardowej w wielu branżach, zwłaszcza tam, gdzie jakość i bezpieczeństwo są kluczowe, jest rozsądnym podejściem, które minimalizuje ryzyko błędów związanych z nieodpowiednią próbą.

Pytanie 38

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg

A. 0,184 g/dm3
B. 1,84 g/dm3
C. 1,84 g/cm3
D. 0,184 g/cm3
Poprawna odpowiedź to 1,84 g/cm3, co wynika z bezpośredniego przeliczenia danych z etykiety kwasu siarkowego(VI). Etykieta informuje, że 1 litr kwasu waży 1,84 kg, co przelicza się na 1840 g. Gęstość substancji definiuje się jako stosunek masy do objętości. W tym przypadku, masa 1840 g umieszczona w objętości 1000 cm3 daje wynik 1,84 g/cm3. W praktyce gęstość kwasu siarkowego(VI) jest istotna w wielu zastosowaniach przemysłowych, zwłaszcza w chemii i procesach produkcyjnych. Dobrą praktyką jest zawsze zapoznanie się z danymi na etykietach substancji chemicznych, zwłaszcza gdy są one używane w laboratoriach lub w przemyśle, aby uniknąć błędnych obliczeń i zapewnić bezpieczeństwo pracy. Gęstość kwasu siarkowego(VI) ma także znaczenie przy obliczeniach dotyczących stężenia roztworów oraz w przypadku ich transportu i przechowywania.

Pytanie 39

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.

A. podać do picia dużą ilość schłodzonej wody.
B. przemyć skórę dużą ilością wody.
C. polać skórę środkiem zobojętniającym.
D. zastosować na skórę mydło w płynie.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.