Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 22 maja 2025 08:57
  • Data zakończenia: 22 maja 2025 09:09

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas analizy ruchu sieciowego z użyciem sniffera zaobserwowano, że urządzenia komunikują się za pośrednictwem portów
20 oraz 21. Można stwierdzić, przy założeniu standardowej konfiguracji, że monitorowanym protokołem jest protokół

A. DHCP
B. SSH
C. FTP
D. SMTP
Odpowiedź FTP (File Transfer Protocol) jest prawidłowa, ponieważ porty 20 i 21 są standardowo przypisane do tego protokołu. Port 21 jest używany do inicjowania połączeń, podczas gdy port 20 jest wykorzystywany do przesyłania danych w trybie aktywnym. FTP jest szeroko stosowany do transferu plików między komputerami w sieci, co czyni go kluczowym narzędziem w administracji systemami oraz na serwerach. Z perspektywy praktycznej, FTP znajduje zastosowanie w zarządzaniu plikami na serwerach, takich jak przesyłanie aktualizacji stron internetowych, pobieranie plików z serwerów FTP oraz synchronizacja plików między różnymi urządzeniami. Warto również zwrócić uwagę, że istnieją różne warianty FTP, takie jak FTPS (FTP Secure) oraz SFTP (SSH File Transfer Protocol), które oferują dodatkowe funkcje zabezpieczeń, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa informacji.

Pytanie 2

Jaką klasę adresów IP reprezentuje publiczny adres 130.140.0.0?

A. Należy do klasy B
B. Należy do klasy A
C. Należy do klasy C
D. Należy do klasy D
Niepoprawne odpowiedzi zazwyczaj wynikają z pomyłek przy klasyfikacji adresów IP, co może wprowadzać zamieszanie. Klasa D to przykład - ona nie służy do normalnego adresowania, a do multicastingu. Czyli używa się jej do wysyłania danych do wielu odbiorców na raz. Klasa A, która obejmuje zakres od 1.0.0.0 do 126.255.255.255, to coś dla olbrzymich sieci. Używanie jej dla adresu 130.140.0.0 byłoby trochę bez sensu, bo ten adres jest za mały na klasę A. Klasa C, z kolei, to adresy od 192.0.0.0 do 223.255.255.255, które są dla mniejszych sieci i mają ograniczoną liczbę adresów (maksymalnie 256 hostów), więc 130.140.0.0 nie pasuje. Jak się ocenia klasę adresu IP, to trzeba zrozumieć, jakie są potrzeby sieci. Klasa B to taki złoty środek, bo łączy dobre zarządzanie z odpowiednią ilością adresów dla średnich organizacji. Jak się tego nie ogarnie, to łatwo o błędne ustawienia w sieci i problemy z połączeniem.

Pytanie 3

Który z poniższych zapisów określa folder noszący nazwę dane, który jest udostępniony na dysku sieciowym urządzenia o nazwie serwer1?

A. \dane
B. C:\serwer1\dane
C. \serwer1\dane
D. C:\dane
Odpowiedzi \dane, C:\serwer1\dane oraz C:\dane są nietrafione z paru powodów. Po pierwsze, \dane nie ma informacji o serwerze, więc nie nadaje się do dostępu do folderu w sieci. W Windowsie zawsze trzeba powiedzieć, na jakim serwerze jest folder, żeby dobrze działało w sieciach lokalnych. Co do C:\serwer1\dane, to brzmi jak lokalna ścieżka, a to jest mylące. Żeby wejść na folder na serwerze, musimy użyć formatu sieciowego. I jeszcze C:\dane, która też wskazuje na lokalny dysk, co znów jest błędne, bo nie odwołuje się do zasobów sieciowych. Widać, że tu panuje zamieszanie między tym, co jest lokalne a co zdalne. Właściwe rozumienie, jakie są ścieżki dostępu, jest kluczowe, żeby efektywnie korzystać z zasobów w sieci. Trzymanie się tych zasad to ważny krok w stronę lepszej współpracy w zespole.

Pytanie 4

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m2?

A. 3
B. 1
C. 4
D. 2
Zgodnie z normą PN-EN 50174, która reguluje wymagania dotyczące planowania i instalacji systemów telekomunikacyjnych w budynkach, liczba punktów rozdzielczych w obiekcie zależy od kilku kluczowych czynników, takich jak powierzchnia kondygnacji oraz ilość kondygnacji. W przypadku 3-kondygnacyjnego budynku o powierzchni każdej kondygnacji wynoszącej około 800 m², norma wskazuje na konieczność zainstalowania trzech punktów rozdzielczych. Każdy punkt rozdzielczy powinien być strategicznie rozmieszczony, aby maksymalizować efektywność sieci telekomunikacyjnej oraz zapewnić łatwy dostęp do infrastruktury. Praktyczne zastosowanie tej zasady sprawdza się w obiektach o dużej powierzchni użytkowej, gdzie odpowiednia liczba punktów rozdzielczych ułatwia zarządzanie siecią, a także minimalizuje ryzyko awarii. Zastosowanie normy PN-EN 50174 w projektowaniu sieci telekomunikacyjnych jest istotne dla zapewnienia nieprzerwanego dostępu do usług, co jest kluczowe w obiektach komercyjnych oraz publicznych.

Pytanie 5

Administrator zamierza udostępnić folder C:\instrukcje w sieci trzem użytkownikom należącym do grupy Serwisanci. Jakie rozwiązanie powinien wybrać?

A. Udostępnić grupie Wszyscy dysk C: i ograniczyć liczbę równoczesnych połączeń do 3
B. Udostępnić folder C:\instrukcje grupie Serwisanci bez ograniczeń co do liczby równoczesnych połączeń
C. Udostępnić grupie Wszyscy folder C:\instrukcje i ustalić limit równoczesnych połączeń na 3
D. Udostępnić dysk C: grupie Serwisanci i nie ograniczać liczby równoczesnych połączeń
Udostępnienie folderu C:\instrukcje grupie Serwisanci jest najlepszym rozwiązaniem, ponieważ pozwala na skoncentrowanie kontroli dostępu na niewielkiej grupie użytkowników, co jest zgodne z zasadą minimalnych uprawnień. Taka praktyka zapewnia, że tylko upoważnieni użytkownicy mają dostęp do niezbędnych zasobów, co zmniejsza ryzyko nieautoryzowanego dostępu. Ograniczenie dostępu do konkretnego folderu zamiast całego dysku C: minimalizuje potencjalne zagrożenia związane z bezpieczeństwem danych, umożliwiając jednocześnie łatwe zarządzanie uprawnieniami. W kontekście zarządzania systemem, unikanie ograniczeń w liczbie równoczesnych połączeń może przyspieszyć dostęp do folderu, co jest korzystne w przypadku, gdy trzech użytkowników jednocześnie potrzebuje dostępu do tych samych instrukcji. Takie podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania zasobami w sieci, gdzie kluczowe znaczenie ma efektywne zarządzanie dostępem i bezpieczeństwem.

Pytanie 6

Jaki jest prefiks lokalnego adresu dla łącza (Link-Local Address) w IPv6?

A. fe80/10
B. fc00/7
C. fec0/10
D. ff00/8
Odpowiedź 'fe80/10' jest poprawna, ponieważ jest to prefiks przydzielony adresom lokalnym łącza (Link-Local Addresses) w protokole IPv6. Adresy te są używane do komunikacji w sieciach lokalnych i nie są routowalne w Internecie. Prefiks 'fe80' oznacza, że adresy te mają zakres od 'fe80::' do 'febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff'. Adresy lokalne łącza są automatycznie przypisywane do interfejsów sieciowych, co umożliwia urządzeniom w tej samej sieci lokalnej komunikację bez konieczności konfiguracji serwera DHCP. Przykład zastosowania to komunikacja między urządzeniami w domowej sieci lokalnej, gdzie urządzenia mogą wykrywać się nawzajem i przesyłać dane bez dodatkowej konfiguracji. W kontekście standardów, adresy te są zgodne z dokumentem RFC 4862, który definiuje zasady dotyczące autokonfiguracji adresów IPv6.

Pytanie 7

Podaj zakres adresów IP przyporządkowany do klasy A, który jest przeznaczony do użytku prywatnego w sieciach komputerowych?

A. 192.168.0.0-192.168.255.255
B. 127.0.0.0-127.255.255.255
C. 10.0.0.0-10.255.255.255
D. 172.16.0.0-172.31.255.255
Zakres 127.0.0.0-127.255.255.255 to adresy IP klasy A przeznaczone do pętli zwrotnej (localhost), co oznacza, że są one używane do komunikacji lokalnej w obrębie urządzenia. Ich zastosowanie nie ma nic wspólnego z adresacją prywatną w sieciach komputerowych. Użycie tych adresów w kontekście sieci LAN jest niewłaściwe i może prowadzić do nieporozumień w projektowaniu infrastruktury sieciowej. Adresy 172.16.0.0-172.31.255.255 należą do klasy B, a nie A, i również mogą być używane w sieciach prywatnych, ale w innym zakresie. Nieprawidłowe jest również sugerowanie, że adresy z zakresu 192.168.0.0-192.168.255.255, które są adresami prywatnymi klasy C, mogą być używane w tym kontekście jako alternatywa dla klasy A. Często mylenie tych zakresów prowadzi do błędnego projektowania sieci, co może skutkować problemami z routowaniem oraz bezpieczeństwem danych. Kluczowe jest zrozumienie, że każda klasa adresowa ma swoje specyficzne zastosowania, a nieprawidłowe ich użycie może prowadzić do konfliktów adresowych i obniżenia wydajności sieci. W praktyce, projektując sieci, należy się kierować dobrymi praktykami, aby zoptymalizować zarządzanie adresami IP i uniknąć nieefektywności.

Pytanie 8

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa sieci
B. Warstwa fizyczna
C. Warstwa danych łącza
D. Warstwa transportowa
Warstwa sieci w modelu ISO/OSI jest kluczowa dla działania Internetu, ponieważ to tutaj definiowane są protokoły odpowiedzialne za adresowanie oraz przesyłanie danych pomiędzy różnymi sieciami. Protokół IP (Internet Protocol) działa na tej warstwie i ma za zadanie dostarczać dane pomiędzy hostami w sieci, niezależnie od fizycznych połączeń. Przykładem praktycznym zastosowania IP jest routing, gdzie routery wykorzystują adresy IP do określenia najlepszej trasy dla przesyłanych pakietów. Standardy takie jak IPv4 i IPv6, będące wersjami protokołu IP, są fundamentalne w zapewnieniu komunikacji w sieci. Zrozumienie warstwy sieci i działania protokołu IP jest kluczowe dla specjalistów zajmujących się sieciami, ponieważ umożliwia projektowanie i zarządzanie złożonymi architekturami sieciowymi, zapewniającą efektywną wymianę danych.

Pytanie 9

W technologii Ethernet protokół CSMA/CD stosowany w dostępie do medium opiera się na

A. unikaniu kolizji
B. wykrywaniu kolizji
C. przekazywaniu żetonu
D. priorytetach żądań
Protokół CSMA/CD (Carrier Sense Multiple Access with Collision Detection) jest kluczowym elementem w technologii Ethernet, który umożliwia efektywne zarządzanie dostępem do wspólnego medium transmisyjnego. Jego działanie opiera się na zasadzie wykrywania kolizji, co oznacza, że urządzenia w sieci najpierw nasłuchują kanał, aby upewnić się, że nie jest on zajęty. Jeśli dwa urządzenia rozpoczną przesyłanie danych jednocześnie, dochodzi do kolizji. Protokół CSMA/CD wykrywa tę kolizję i natychmiast przerywa transmisję, a następnie oba urządzenia czekają losowy czas przed ponowną próbą wysyłania danych. Ta mechanika jest fundamentalna dla prawidłowego funkcjonowania sieci Ethernet, co zostało opisane w standardach IEEE 802.3. W praktyce, pozwala to na efektywne i sprawne zarządzanie danymi, minimalizując ryzyko utraty informacji i zwiększając wydajność całej sieci, co jest niezwykle istotne w środowiskach o dużym natężeniu ruchu, takich jak biura czy centra danych.

Pytanie 10

W Active Directory, zbiór składający się z jednej lub wielu domen, które dzielą wspólny schemat oraz globalny katalog, określa się mianem

A. lasem
B. gwiazdą
C. liściem
D. siatką
Odpowiedź 'lasem' jest poprawna, ponieważ w architekturze Active Directory (AD) termin 'las' odnosi się do zbioru jednej lub większej liczby domen, które mają wspólny schemat (Schema) oraz globalny wykaz (Global Catalog). Las jest kluczowym elementem organizacji wewnętrznej Active Directory, który pozwala na zarządzanie grupami domen i ich zasobami w skoordynowany sposób. W praktyce, las umożliwia administratorom IT zarządzanie wieloma domenami w ramach jednej struktury, co jest szczególnie istotne w dużych organizacjach z rozproszoną infrastrukturą IT. Dla przykładu, jeśli firma ma różne oddziały w różnych lokalizacjach, może stworzyć las, który obejmie wszystkie te oddziały jako osobne domeny, ale z możliwością współdzielenia zasobów i informacji. Dzięki temu organizacja może zachować elastyczność i łatwość w zarządzaniu, a także zapewnić spójność w politykach bezpieczeństwa i dostępu. Dodatkowo, w kontekście dobrych praktyk, zarządzanie lasami w AD wspiera zasady segregacji obowiązków oraz ułatwia nadzorowanie polityk grupowych.

Pytanie 11

W zasadach grup włączono i skonfigurowano opcję "Ustaw ścieżkę profilu mobilnego dla wszystkich użytkowników logujących się do tego komputera":

\\serwer\profile\%username%
W którym folderze serwera będzie się znajdował profil mobilny użytkownika jkowal?

A. \profile\serwer\username
B. \profile\jkowal
C. \profile\username\jkowal
D. \profile\username
Wybór innych odpowiedzi wynika z nieporozumień dotyczących struktury ścieżek profilowych w systemach operacyjnych. Odpowiedzi takie jak \profile\serwer\username sugerują, że w ścieżce mogłoby być więcej subfolderów, co jest sprzeczne z zasadą prostoty konstruowania ścieżek do profili mobilnych. W kontekście zarządzania profilami mobilnymi, każda nazwa użytkownika tworzona jest jako podfolder bez dodatkowych poziomów hierarchii, co oznacza, że \profile\username jest również niewłaściwe z powodu braku konkretnej nazwy użytkownika. Z kolei \profile\username\jkowal zawiera zbędny poziom folderów, który nie jest wymagany w przypadku profili mobilnych. Typowym błędem myślowym jest założenie, że dodatkowe foldery są potrzebne do organizacji, co nie jest zgodne z logiką, jaką stosuje się w zarządzaniu profilami. Dobrą praktyką jest znajomość konwencji dotyczących tworzenia ścieżek w systemach operacyjnych, co pozwala uniknąć błędów w konfiguracji oraz poprawić organizację danych w systemie. Zrozumienie tych zasad jest istotne dla efektywnego administrowania oraz dla użytkowników, którzy chcą mieć łatwy dostęp do swoich profili na różnych urządzeniach.

Pytanie 12

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. pierścienia
B. magistrali
C. gwiazdy
D. siatki
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.

Pytanie 13

Jaką rolę należy zainstalować na serwerze, aby umożliwić centralne zarządzanie stacjami roboczymi w sieci obsługiwanej przez Windows Serwer?

A. Usługi polityki sieciowej oraz dostępu do sieci
B. Serwer Aplikacji
C. Dostęp zdalny
D. Usługi domenowe Active Directory
Usługi domenowe Active Directory (AD DS) odgrywają kluczową rolę w centralnym zarządzaniu stacjami roboczymi w sieci opartej na systemach Windows. Active Directory umożliwia administratorom zarządzanie użytkownikami, komputerami oraz zasobami w sieci w sposób scentralizowany. Dzięki AD DS można tworzyć i zarządzać kontami użytkowników, grupami, a także implementować zasady bezpieczeństwa. Przykładowo, przy użyciu GPO (Group Policy Objects) można definiować zasady dotyczące bezpieczeństwa, które będą automatycznie stosowane do wszystkich stacji roboczych w domenie, co znacznie upraszcza zarządzanie i zwiększa bezpieczeństwo. Dodatkowo, zastosowanie Active Directory wspiera proces autoryzacji i uwierzytelniania użytkowników, co jest niezbędne w środowiskach korporacyjnych. W kontekście standardów branżowych, wykorzystanie AD DS jest zalecane przez Microsoft jako najlepsza praktyka w zakresie zarządzania infrastrukturą IT, co potwierdza jego powszechne przyjęcie w organizacjach na całym świecie.

Pytanie 14

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. CNAME
B. MX
C. A
D. AAAA
Rekord AAAA to prawdziwy must-have w DNS, bo pozwala na zamienianie nazw domen na adresy IPv6. To coś innego niż rekord A, który działa tylko z IPv4. Rekord AAAA jest zaprojektowany na długie adresy IPv6, które mają osiem grup po cztery znaki szesnastkowe. Dlaczego to takie ważne? Liczba dostępnych adresów IPv4 się kończy, więc musimy przejść na IPv6. Na przykład, kiedy jakaś firma zakłada nową stronę www obsługującą ruch z IPv6, musi dodać odpowiedni rekord AAAA. Dzięki temu przeglądarki mogą znaleźć ich stronę. Po dodaniu tego rekordu, dobrze jest przetestować, czy wszystko działa, używając narzędzi jak dig czy nslookup. I jeszcze jedno – hadoby dobrze mieć i rekord A, i AAAA, żeby użytkownicy mogą korzystać z obu rodzajów adresów, czyli zarówno IPv4, jak i IPv6.

Pytanie 15

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. SF/UTP
B. U/UTP
C. S/FTP
D. F/UTP
Odpowiedź S/FTP jest prawidłowa, ponieważ oznaczenie to wskazuje na kabel, w którym każda para przewodów jest ekranowana folią, a dodatkowo wszystkie pary są ekranowane wspólnie siatką. Takie rozwiązanie znacząco zwiększa odporność na zakłócenia elektromagnetyczne, co jest kluczowe w zastosowaniach, gdzie wymagane są wysokie prędkości przesyłu danych oraz stabilność sygnału. Kable S/FTP są często wykorzystywane w nowoczesnych sieciach komputerowych, w tym w centrach danych oraz w aplikacjach wymagających przesyłu dużych ilości danych, takich jak streaming wideo czy aplikacje VoIP. Stosowanie kabli ekranowanych zgodnych z międzynarodowymi standardami, takimi jak ISO/IEC 11801, zapewnia nie tylko bezpieczeństwo, ale również wysoką jakość transmisji danych. Dzięki zastosowaniu ekranów, kable S/FTP minimalizują ryzyko zakłóceń, co jest istotne w środowiskach o dużym natężeniu źródeł zakłóceń elektromagnetycznych.

Pytanie 16

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. hub.
B. router.
C. driver.
D. switch.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 17

Jakie zakresy adresów IPv4 można zastosować jako adresy prywatne w lokalnej sieci?

A. 172.16.0.0 ÷ 172.31.255.255
B. 127.0.0.0 ÷ 127.255.255.255
C. 200.186.0.0 ÷ 200.186.255.255
D. 168.172.0.0 ÷ 168.172.255.255
Zakres adresów IPv4 od 172.16.0.0 do 172.31.255.255 to jeden z trzech zakresów adresów prywatnych, które zostały opisane w normie RFC 1918. Te adresy są używane w sieciach lokalnych, czyli takich jak LAN, i nie mogą być routowane w Internecie. Przykład? W firmach często tworzy się wewnętrzną sieć, gdzie wiele komputerów może korzystać z jednego adresu publicznego. Dzięki tym adresom prywatnym oszczędzamy adresy IP i zwiększamy bezpieczeństwo, bo urządzenia w sieci lokalnej nie są widoczne z Internetu. Kiedy sieć lokalna łączy się z Internetem, stosuje się NAT, czyli Network Address Translation, który zamienia te prywatne adresy na publiczne. Często w organizacjach wykorzystuje się serwery DHCP, które automatycznie przydzielają adresy IP z tego zakresu, co znacznie ułatwia zarządzanie siecią.

Pytanie 18

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. typ U/FTP
B. typ U/UTP
C. światłowodowy
D. współosiowy
Kabel światłowodowy to najlepszy wybór do projektowania sieci LAN w środowiskach z dużymi zakłóceniami elektromagnetycznymi, ponieważ korzysta z włókien szklanych do przesyłania danych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi. W porównaniu do kabli miedzianych, światłowody są odporne na interferencje i mogą transmitować sygnały na znacznie większe odległości z wyższą przepustowością. Na przykład, w zastosowaniach takich jak centra danych, gdzie wiele urządzeń komunikuje się jednocześnie, stosowanie światłowodów zapewnia niezawodność i stabilność połączeń. Standardy, takie jak IEEE 802.3, promują wykorzystanie technologii światłowodowej dla osiągnięcia maksymalnej wydajności i minimalizacji strat sygnału. Dodatkowo, w miejscach o dużym natężeniu elektromagnetycznym, takich jak blisko dużych silników elektrycznych czy urządzeń radiowych, światłowody zapewniają pełną ochronę przed zakłóceniami, co czyni je idealnym rozwiązaniem dla nowoczesnych aplikacji sieciowych.

Pytanie 19

Jakie są właściwe przewody w wtyku RJ-45 według standardu TIA/EIA-568 dla konfiguracji typu T568B?

A. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
B. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
C. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
D. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
Odpowiedź wskazująca na prawidłową kolejność przewodów we wtyku RJ-45 zgodnie z normą TIA/EIA-568 dla zakończenia typu T568B jest kluczowa w kontekście budowy i konfiguracji sieci lokalnych. Zgodnie z tym standardem, przewody powinny być ułożone w następującej kolejności: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy oraz brązowy. Ta specyfikacja zapewnia prawidłowe połączenia i minimalizuje interferencje elektromagnetyczne, co jest istotne dla stabilności i wydajności transmisji danych. Przykład zastosowania tej normy można zobaczyć w instalacjach sieciowych w biurach, gdzie formowanie kabli zgodnie z T568B jest standardem, umożliwiającym łatwe podłączanie urządzeń. Dodatkowo, w przypadku stosowania technologii PoE (Power over Ethernet), prawidłowa kolejność przewodów jest kluczowa dla efektywnego zasilania urządzeń sieciowych, takich jak kamery IP czy punkty dostępu. Znajomość tych standardów jest niezbędna dla każdego technika zajmującego się sieciami, aby zapewnić maksymalną wydajność oraz bezpieczeństwo w infrastrukturze sieciowej.

Pytanie 20

Jaką komendę wykorzystuje się do ustawiania interfejsu sieciowego w systemie Linux?

A. ipconfig
B. netsh
C. ifconfig
D. netstate
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to narzędzie używane w systemach operacyjnych Linux do konfigurowania interfejsów sieciowych. Umożliwia ono wyświetlanie informacji o interfejsach, takich jak adresy IP, maski podsieci oraz status interfejsów. Przykładowe użycie to komenda 'ifconfig eth0 up', która aktywuje interfejs sieciowy o nazwie 'eth0'. Warto zaznaczyć, że 'ifconfig' jest częścią pakietu net-tools, który w wielu nowoczesnych dystrybucjach Linuxa jest zastępowany przez bardziej zaawansowane narzędzie 'ip'. Do konfigurowania interfejsów sieciowych zgodnie z aktualnymi standardami zaleca się korzystanie z polecenia 'ip', które oferuje szersze możliwości i jest bardziej zgodne z standardami sieciowymi. Prawidłowe zarządzanie konfiguracją interfejsów ma kluczowe znaczenie dla zapewnienia stabilności i bezpieczeństwa systemu operacyjnego oraz efektywności sieci.

Pytanie 21

Umowa użytkownika w systemie Windows Serwer, która po wylogowaniu nie zachowuje zmian na serwerze oraz komputerze stacjonarnym i jest usuwana na zakończenie każdej sesji, to umowa

A. lokalny
B. obowiązkowy
C. tymczasowy
D. mobilny
Profil tymczasowy to taki typ konta w Windows Server, który powstaje automatycznie, jak się logujesz, a potem znika po wylogowaniu. To ważne, bo wszystko, co zrobisz podczas sesji, nie zostaje zapisane ani na serwerze, ani na komputerze. Takie rozwiązanie jest mega przydatne w miejscach, gdzie użytkownicy korzystają z systemu tylko przez chwilę, jak w szkołach czy firmach z wspólnymi komputerami. Dzięki tym profilom można zmniejszyć ryzyko, że ktoś nieuprawniony dostanie się do danych, a poza tym, pozostawia się czyste środowisko dla następnych użytkowników. Z doświadczenia mogę powiedzieć, że korzystanie z profilów tymczasowych jakby przyspiesza logowanie, bo nie obciążają one systemu zbędnymi danymi, co jest naprawdę fajne.

Pytanie 22

Jaką prędkość transmisji określa standard Ethernet IEEE 802.3z?

A. 1 Gb
B. 100 Mb
C. 10 Mb
D. 100 GB
Wybór błędnych odpowiedzi, takich jak 10 Mb, 100 Mb lub 100 GB, wynika z mylnych przekonań na temat standardów Ethernet. Przepływność 10 Mb/s odnosi się do starszej wersji Ethernet, znanej jako 10BASE-T, która była popularna w latach 80. XX wieku. W dzisiejszych czasach jest to zbyt wolne i nieodpowiednie dla nowoczesnych aplikacji, które wymagają znacznie wyższych prędkości transmisji. Przepływność 100 Mb/s, związana z technologią Fast Ethernet, jest również niewystarczająca w kontekście rosnących potrzeb sieciowych, zwłaszcza w środowiskach, gdzie wiele urządzeń jest podłączonych jednocześnie. Wreszcie, 100 GB/s to parametr, który odnosi się do znacznie bardziej zaawansowanej technologii, takiej jak 100 Gigabit Ethernet (100GbE), która została wprowadzona dużo później i jest używana głównie w centrach danych oraz w infrastrukturze szkieletowej. Niezrozumienie różnic między tymi standardami oraz ich zastosowaniem w praktyce prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że rozwój technologii Ethernet następuje w miarę rosnącego zapotrzebowania na szybsze i bardziej efektywne sieci, a każdy standard ma swoje specyficzne zastosowania i ograniczenia.

Pytanie 23

Atak mający na celu zablokowanie dostępu do usług dla uprawnionych użytkowników, co skutkuje zakłóceniem normalnego działania komputerów oraz komunikacji w sieci, to

A. Denial of Service
B. Man-in-the-Middle
C. Ping sweeps
D. Brute force
Ataki Man-in-the-Middle polegają na podsłuchiwaniu i przechwytywaniu komunikacji pomiędzy dwiema stronami, co może prowadzić do kradzieży danych lub manipulacji przesyłanymi informacjami. Choć ten rodzaj ataku może wpływać na bezpieczeństwo komunikacji, nie ma on na celu zablokowania usług, lecz raczej ich przejęcia. Ping sweeps, natomiast, to technika używana do skanowania sieci w celu identyfikacji dostępnych hostów, co nie jest atakiem w klasycznym tego słowa znaczeniu. Z kolei ataki brute force polegają na systematycznym próbowaniu różnych kombinacji haseł w celu uzyskania dostępu do zabezpieczonych zasobów. W przeciwieństwie do ataków DoS, które mają na celu unieruchomienie danej usługi, techniki te koncentrują się na zdobywaniu dostępu. Warto zauważyć, że mylenie tych pojęć może prowadzić do niewłaściwego podejścia do zabezpieczeń i strategii obrony przed zagrożeniami. Rozpoznawanie i klasyfikowanie różnych typów ataków sieciowych jest kluczowe dla skutecznego zarządzania bezpieczeństwem informacji, co podkreślają standardy takie jak NIST SP 800-53, które zalecają identyfikację zagrożeń jako podstawowy krok w procesie zabezpieczeń.

Pytanie 24

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Kabla współosiowego
B. Skrętki ekranowanej STP
C. Fal radiowych
D. Światłowodu jednodomowego
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 25

Ile podsieci obejmują komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25 oraz 192.158.5.250/25?

A. 2
B. 4
C. 1
D. 3
Wielu uczniów ma problem z liczeniem podsieci, bo mylą adresy IP i ich klasyfikację. Adresy IP 192.168.5.12/25 i 192.168.5.50/25 są w tej samej podsieci, bo maska /25 pokazuje, że pierwsze 25 bitów jest takie same. Więc te adresy nie mogą być traktowane jako osobne podsieci. Z kolei 192.168.5.200/25 jest w innej podsieci, bo ma adres sieciowy 192.168.5.128. Dodatkowo, adres 192.158.5.250/25 to zupełnie inny adres, z innej klasy, czyli nie należy do żadnej z podsieci w klasie 192.168.5.x. Często ludzie myślą, że wystarczy spojrzeć na ostatnią część IP, żeby określić, czy są one w tej samej podsieci. Ale zrozumienie maski podsieci jest kluczowe dla ogarnięcia struktury sieciowej. Kiedy tworzy się sieć lokalną, dobrze jest pamiętać o adresach i maskach, żeby móc odpowiednio zarządzać ruchem i urządzeniami.

Pytanie 26

Który z poniższych adresów IP należy do sieci o adresie 10.16.0.0/13?

A. 10.24.88.67 /13
B. 10.22.0.45 /13
C. 10.31.234.32 /13
D. 10.15.0.112 /13
Wybór innych adresów IP w kontekście podsieci 10.16.0.0/13 wskazuje na nieporozumienie dotyczące zasad klasyfikacji i adresacji IP. Każdy adres IP składa się z dwóch komponentów: identyfikatora sieci oraz identyfikatora hosta. Maska /13 oznacza, że 13 pierwszych bitów adresu IP jest przeznaczone na identyfikację sieci, a pozostałe bity mogą być użyte do identyfikacji urządzeń w tej sieci. Adres 10.15.0.112 leży poniżej zakresu zdefiniowanego przez podsieć 10.16.0.0/13, co czyni go niewłaściwym. Jego identyfikator sieci (10.15.0.0) nie zawiera się w zakresie 10.16.0.0 - 10.23.255.255. W przypadku adresu 10.24.88.67, sytuacja jest podobna – przypisanie go do tej samej sieci jest błędne, ponieważ 10.24.0.0 wyznacza nową, odrębną sieć, przekraczającą zakres podsieci 10.16.0.0/13. Adres 10.31.234.32 również nie pasuje, jako że leży znacznie dalej od zdefiniowanego zakresu. Typowe błędy myślowe, które prowadzą do takich pomyłek, obejmują niedostateczne zrozumienie sposobu działania masek podsieci oraz mylenie adresów w różnych sieciach. Aby skutecznie zarządzać adresacją IP, ważne jest, aby znać zasady klasyfikacji adresów oraz potrafić obliczać zakres podsieci. Użycie narzędzi do analizy adresów IP, takich jak kalkulatory podsieci, może być przydatne w unikaniu takich błędów.

Pytanie 27

Aby uzyskać sześć podsieci z sieci o adresie 192.168.0.0/24, co należy zrobić?

A. zmniejszyć długość maski o 2 bity
B. zmniejszyć długość maski o 3 bity
C. zwiększyć długość maski o 2 bity
D. zwiększyć długość maski o 3 bity
Zwiększenie długości maski o 2 bity nie jest wystarczające do wydzielenia sześciu podsieci. W takim przypadku, przy dodaniu dwóch bitów do maski /24, otrzymujemy maskę /26. Zastosowanie maski /26 pozwala na uzyskanie jedynie 4 podsieci, co nie spełnia wymagań. Ponadto, zmniejszenie długości maski o 2 lub 3 bity prowadzi do zwiększenia liczby dostępnych hostów w każdej podsieci, co w przypadku potrzeby stworzenia większej ilości podsieci jest niewłaściwe. Zmniejszenie maski z /24 powoduje, że część adresów sieciowych zostaje użyta na identyfikację hostów, co ogranicza liczbę generowanych podsieci. Prawidłowe planowanie adresacji IP wymaga zrozumienia, że każda zmiana maski wpływa na liczbę dostępnych podsieci oraz hostów. Przy tworzeniu sieci, należy stosować standardowe praktyki, takie jak rozważenie liczby przyszłych podsieci oraz potencjalnych potrzeb w zakresie adresacji. Niepoprawne podejścia mogą prowadzić do nagromadzenia adresów IP i problemów z zarządzaniem siecią, co jest sprzeczne z zasadami efektywnej administracji sieci.

Pytanie 28

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Suma przeników zdalnych
B. Przenik zbliżny
C. Suma przeników zbliżnych i zdalnych
D. Przenik zdalny
Zrozumienie pojęć związanych z przenikami w okablowaniu strukturalnym jest kluczowe dla efektywnej analizy jakości sygnału. Odpowiedzi takie jak przenik zdalny i suma przeników zdalnych nie odpowiadają na postawione pytanie dotyczące wpływu sygnału w sąsiednich parach na tym samym końcu kabla. Przenik zdalny odnosi się do zakłóceń, które mogą być generowane przez sygnały w innej parze przewodów, ale nie bierze pod uwagę bezpośredniego wpływu sąsiednich par. Z kolei suma przeników zdalnych i zbliżnych może sugerować, że oba te parametry są równoważne, co jest mylne, ponieważ każdy z nich mierzy inny aspekt zakłóceń. Typowym błędem myślowym jest mylenie przeników, co prowadzi do nieprawidłowych wniosków dotyczących jakości i wydajności okablowania. Podczas projektowania i instalacji systemów telekomunikacyjnych, kluczowe jest przestrzeganie standardów, które jasno definiują pomiar i wpływ przeników na funkcjonowanie sieci. Dlatego zrozumienie różnicy między przenikiem zdalnym a zbliżnym jest niezbędne dla inżynierów zajmujących się okablowaniem strukturalnym oraz dla uzyskania optymalnych parametrów sieci.

Pytanie 29

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem protokołu UDP?

A. Sieciowej
B. Fizycznej
C. Transportowej
D. Łącza danych
Odpowiedź wskazująca na warstwę transportową modelu ISO/OSI jest prawidłowa, ponieważ to właśnie na tym poziomie odbywa się segmentowanie danych oraz zarządzanie komunikacją pomiędzy aplikacjami na różnych urządzeniach. Warstwa transportowa, według standardu ISO/OSI, odpowiada za zapewnienie właściwej komunikacji niezależnie od rodzaju transportu – zarówno w trybie połączeniowym, jak w przypadku protokołu TCP, jak i w trybie bezpołączeniowym przy użyciu protokołu UDP. TCP zapewnia niezawodność przesyłania danych, co jest kluczowe w aplikacjach wymagających pełnej integralności, takich jak przesyłanie plików czy HTTP. Z kolei UDP, działający bez nawiązywania połączenia, jest wykorzystywany w scenariuszach, gdzie szybkość jest istotniejsza niż niezawodność, jak w przypadku strumieniowania wideo lub gier online. W praktyce, zrozumienie różnicy pomiędzy tymi protokołami jest kluczowe dla projektowania systemów sieciowych, co stanowi fundament skutecznej architektury komunikacyjnej.

Pytanie 30

Do jakiej sieci jest przypisany host o adresie 172.16.10.10/22?

A. 172.16.16.0
B. 172.16.12.0
C. 172.16.8.0
D. 172.16.4.0
Patrząc na twoje odpowiedzi, można zauważyć, że niektóre z nich wynikają z braku pełnego zrozumienia działania subnettingu i struktury adresów IP. Każdy adres IP dzieli się na część, która identyfikuje sieć, i część, która identyfikuje samego hosta. To jest kluczowe, żeby dobrze skonfigurować sieć. W przypadku adresu 172.16.10.10 z maską /22, żeby stwierdzić, do której sieci ten host przynależy, trzeba obliczyć adres sieci i rozumieć, jak działa maska podsieci. Ta maska wskazuje na 4 podsieci, a adres 172.16.8.0 to ta, z którą ma się łączyć nasz host. Odpowiedzi takie jak 172.16.4.0, 172.16.12.0 czy 172.16.16.0 są błędne, bo nie mieszczą się w odpowiednich przedziałach dla tej maski. Szczególnie 172.16.4.0 byłoby z innej podsieci, a 172.16.12.0 to tylko koniec zakresu tej samej podsieci, więc nie może być adresem sieciowym dla hosta 172.16.10.10. Często ludzie myślą, że adresy podsieci to po prostu liczby, a w rzeczywistości są one jasno określone przez maskę podsieci, co trzeba mieć na uwadze przy projektowaniu sieci. Dobrze jest też pamiętać, że stosowanie odpowiednich zasad i praktyk w subnettingu, jak CIDR, jest mega ważne dla efektywnego zarządzania adresami IP w nowoczesnych sieciach.

Pytanie 31

Punkty abonenckie są rozmieszczone w równych odstępach, do nawiązania połączenia z najbliższym punktem wymagane jest 4 m kabla, a z najdalszym - 22 m. Koszt zakupu 1 m kabla wynosi 1 zł. Jaką kwotę trzeba przeznaczyć na zakup kabla UTP do połączenia 10 podwójnych gniazd abonenckich z punktem dystrybucyjnym?

A. 440 zł
B. 260 zł
C. 130 zł
D. 80 zł
Odpowiedzi takie jak 130 zł czy 440 zł wynikają raczej z niezrozumienia, jak to wszystko policzyć. Gdy mówisz, że 130 zł to pomijasz, że odległości do gniazd są różne. Myślenie, że wszystkie gniazda są w tej samej odległości, to błąd. Na przykład, średnia długość kabla to nie wszystko, bo każda odległość może być zupełnie inna i to może całkowicie zmienić koszty. Z kolei odpowiedź 440 zł, to chyba wynika z myślenia, że każde gniazdo musi mieć maksymalną długość kabla, co też jest mało prawdopodobne. W rzeczywistości, część gniazd jest bliżej i potrzebuje mniej kabla, więc koszty są niższe. W projektach instalacyjnych często jest tak, że ludzie przesadzają z zabezpieczeniem, przez co kupują więcej materiałów niż potrzebują. Zamiast tego, warto dokładnie pomierzyć i przeanalizować, co jest gdzie, żeby zmniejszyć wydatki. Opracowanie schematu instalacji to naprawdę dobra praktyka, bo ułatwia później wszystko zaplanować.

Pytanie 32

Administrator zauważa, że jeden z komputerów w sieci LAN nie może uzyskać dostępu do Internetu, mimo poprawnie skonfigurowanego adresu IP. Który parametr konfiguracji sieciowej powinien sprawdzić w pierwszej kolejności?

A. Adres MAC karty sieciowej
B. Adres serwera DNS
C. Maskę podsieci
D. Adres bramy domyślnej
W przypadku problemów z dostępem do Internetu, gdy adres IP jest poprawny, często pojawia się pokusa, by od razu sprawdzać inne parametry, takie jak adres serwera DNS czy maskę podsieci. Jednak to nie są pierwsze elementy, które należy weryfikować w tej konkretnej sytuacji. Adres serwera DNS odpowiada wyłącznie za tłumaczenie nazw domenowych na adresy IP – jeśli byłby niepoprawny, użytkownik nie mógłby pingować serwisów po nazwie (np. google.pl), ale po adresie IP Internet powinien działać. W praktyce oznacza to, że błąd DNS nie blokuje całkowicie dostępu do Internetu, tylko utrudnia korzystanie z nazw domenowych. Maska podsieci natomiast definiuje granice sieci lokalnej – jeśli byłaby błędna, mogłyby wystąpić trudności z komunikacją nawet w obrębie LAN, a nie tylko z Internetem. Jednak w pytaniu jest mowa o poprawnym adresie IP, co sugeruje, że maska już została skonfigurowana prawidłowo, bo w innym przypadku komputer często nie miałby nawet adresu IP z właściwego zakresu. Adres MAC karty sieciowej praktycznie nie ma wpływu na dostęp do Internetu, jeśli nie ma na routerze filtrów MAC lub innych zabezpieczeń warstwy łącza danych. To bardziej unikalny identyfikator sprzętowy, którego zmiana lub błąd w większości typowych sieci LAN nie powoduje braku Internetu. W praktyce administratorzy skupiają się na adresie bramy domyślnej, ponieważ to ona decyduje o możliwości przesyłania ruchu poza lokalną sieć. Z mojego doświadczenia wynika, że błędy w pozostałych parametrach prowadzą do innych, specyficznych problemów sieciowych, ale nie są podstawową przyczyną braku dostępu do Internetu przy poprawnym adresie IP.

Pytanie 33

Firma Dyn, której serwery DNS zostały poddane atakowi, potwierdziła, że część incydentu …. miała miejsce z wykorzystaniem różnych urządzeń podłączonych do sieci. Ekosystem kamer, czujników oraz kontrolerów, nazywany ogólnie „Internetem rzeczy”, został wykorzystany przez przestępców jako botnet – sieć maszyn-zombie. Dotychczas rolę tę w większości pełniły głównie komputery. Cytat ten opisuje atak typu

A. DOS
B. flooding
C. mail bombing
D. DDOS
Odpowiedź DDOS (Distributed Denial of Service) jest prawidłowa, ponieważ opisany atak polegał na wykorzystaniu rozproszonych urządzeń do przeprowadzania ataku na serwery DNS firmy Dyn. W ataku DDOS, sprawcy używają wielu zainfekowanych urządzeń, tworząc botnet, który jest w stanie generować ogromne ilości fałszywego ruchu. W tym przypadku, Internet rzeczy (IoT) odegrał kluczową rolę, ponieważ przestępcy użyli kamer, czujników i innych podłączonych urządzeń jako maszyny-zombie. Standardy bezpieczeństwa, takie jak NIST SP 800-61, zalecają monitorowanie i zabezpieczanie urządzeń IoT, aby zapobiegać ich wykorzystaniu w atakach DDOS. Przykładami ataków DDOS mogą być sytuacje, w których witryny internetowe przestają działać lub są znacznie spowolnione w wyniku nadmiernego obciążenia. Praktyki zarządzania incydentami bezpieczeństwa, jak współpraca z dostawcami usług internetowych oraz implementacja rozwiązań filtrujących ruch, są kluczowe w przeciwdziałaniu takim atakom.

Pytanie 34

Zrzut ekranowy przedstawia wynik wykonania w systemie z rodziny Windows Server polecenia

Server:  livebox.home
Address:  192.168.1.1

Non-authoritative answer:
dns2.tpsa.pl    AAAA IPv6 address = 2a01:1700:3:ffff::9822
dns2.tpsa.pl    internet address = 194.204.152.34

A. ping
B. whois
C. nslookup
D. tracert
Odpowiedź 'nslookup' jest poprawna, ponieważ polecenie to służy do wykonywania zapytań do systemu DNS, co jest kluczowe w zarządzaniu sieciami komputerowymi. Zrzut ekranu pokazuje wyniki, które zawierają zarówno adres IPv4, jak i IPv6 dla domeny dns2.tpsa.pl. W praktyce, nslookup jest używane do diagnozowania problemów z DNS, umożliwiając administratorom sieci weryfikację, czy dany rekord DNS jest prawidłowo skonfigurowany i dostępny. Przykładem zastosowania nslookup może być sytuacja, gdy użytkownik napotyka problemy z dostępem do określonej strony internetowej – wówczas administrator może użyć tego polecenia, aby sprawdzić, czy DNS poprawnie tłumaczy nazwę domeny na adres IP. Co więcej, nslookup pozwala na testowanie różnych serwerów DNS, co jest zgodne z dobrymi praktykami w zakresie zarządzania ruchem sieciowym i zapewnienia wysokiej dostępności usług. Warto również zaznaczyć, że narzędzie to jest częścią standardowego zestawu narzędzi administratora systemu i znacznie ułatwia pracę w środowisku sieciowym.

Pytanie 35

Jak nazywa się protokół, który pozwala na ściąganie wiadomości e-mail z serwera?

A. POP3
B. FTP
C. DNS
D. SMTP
POP3, czyli Post Office Protocol w wersji 3, to protokół, który umożliwia pobieranie wiadomości e-mail z serwera do lokalnej skrzynki pocztowej użytkownika. Działa w modelu klient-serwer, gdzie klient (np. program pocztowy) nawiązuje połączenie z serwerem pocztowym, aby pobrać wiadomości. POP3 jest szczególnie przydatny w sytuacjach, gdy użytkownik chce mieć dostęp do swoich e-maili offline, ponieważ po pobraniu wiadomości, są one usuwane z serwera (chyba że skonfigurujemy protokół tak, aby je zachować). Zastosowanie tego protokołu jest powszechne w środowiskach, gdzie użytkownicy preferują lokalną archiwizację wiadomości e-mail, co jest zgodne z najlepszymi praktykami zarządzania informacjami. Protokół POP3 operuje na porcie 110 (lub 995 w przypadku bezpiecznego połączenia SSL), co jest zgodne z ustalonymi standardami w branży. Użytkownicy często korzystają z POP3, gdy korzystają z programów takich jak Microsoft Outlook, Mozilla Thunderbird czy Apple Mail, aby zarządzać swoimi skrzynkami pocztowymi w efektywny sposób.

Pytanie 36

Protokół SNMP (Simple Network Management Protocol) służy do

A. odbierania wiadomości e-mail
B. szyfrowania połączeń terminalowych z zdalnymi komputerami
C. przydzielania adresów IP oraz adresu bramy i serwera DNS
D. konfiguracji urządzeń sieciowych oraz zbierania danych na ich temat
Protokół SNMP, czyli Simple Network Management Protocol, to naprawdę ważne narzędzie, jeśli chodzi o zarządzanie i monitorowanie urządzeń w sieci. Dzięki niemu, administratorzy mogą zbierać wszystkie ważne info o stanie czy wydajności różnych urządzeń, jak routery czy serwery. Ma to ogromne znaczenie, żeby sieć działała sprawnie. Na przykład, SNMP może pomóc w monitorowaniu obciążenia procesora lub pamięci. A to z kolei pozwala szybko zlokalizować problemy i podjąć odpowiednie działania. SNMP działa na zasadzie klient-serwer, gdzie agent na urządzeniu zbiera dane i przesyła je do systemu. To wszystko sprawia, że wiele procesów, jak aktualizacja konfiguracji, można zautomatyzować. Protokół ten jest zgodny z normami IETF, co również wspiera dobre praktyki w zarządzaniu sieciami oraz sprawia, że różne urządzenia od różnych producentów mogą ze sobą współpracować. To czyni SNMP naprawdę kluczowym elementem w nowoczesnych infrastrukturach IT w firmach.

Pytanie 37

Administrator Active Directory w domenie firma.local zamierza ustanowić mobilny profil dla wszystkich użytkowników. Powinien on być przechowywany na serwerze serwer1, w katalogu pliki, który jest udostępniony w sieci jako dane$. Który z parametrów w ustawieniach profilu użytkownika spełnia te wymagania?

A. \firma.local\pliki\%username%
B. \serwer1\pliki\%username%
C. \serwer1\dane$\%username%
D. \firma.local\dane\%username%
Wybrane odpowiedzi nie spełniają wymogów dotyczących lokalizacji profilu mobilnego użytkownika. Dla przykładu, \firma.local\dane\%username% wskazuje na lokalizację, która nie jest zgodna z wymaganiami, ponieważ domena nie wskazuje na zdalny serwer, lecz na zasoby lokalne w sieci. Taki schemat nie jest praktykowany w firmach, które potrzebują centralnego zarządzania danymi użytkowników. W przypadku \serwer1\pliki\%username%, również nie jest to poprawne, ponieważ odnosi się do folderu 'pliki', który nie jest zdefiniowany jako ukryty (z pomocą dolara w nazwie), co może wpłynąć na bezpieczeństwo przechowywanych danych. Foldery ukryte są często wykorzystywane do przechowywania wrażliwych informacji, więc brak tego aspektu w tej odpowiedzi jest znaczącym niedopatrzeniem. Z kolei \firma.local\pliki\%username% również nie jest odpowiednią ścieżką, ponieważ nie odnosi się do żadnego z wymaganych serwerów czy folderów i wprowadza użytkowników w błąd, sugerując, że foldery są lokalizowane w domenie, co jest sprzeczne z ideą mobilnych profili użytkowników. Kluczowym błędem w myśleniu przy wyborze tych odpowiedzi jest brak zrozumienia, że mobilne profile muszą być przechowywane na serwerach zdalnych oraz że foldery ukryte są zalecane dla zwiększenia bezpieczeństwa. W każdej organizacji powinny być przestrzegane zasady dotyczące centralnego zarządzania danymi, co czyni odpowiednią odpowiedź kluczowym elementem w codziennym zarządzaniu systemem.

Pytanie 38

Jakie polecenie w systemie Windows należy wykorzystać do obserwacji listy aktywnych połączeń karty sieciowej w komputerze?

A. Telnet
B. Ping
C. Netstat
D. Ipconfig
Polecenie Netstat (od network statistics) jest nieocenionym narzędziem w systemie Windows, które umożliwia użytkownikom monitorowanie aktywnych połączeń sieciowych oraz portów. Dzięki niemu można uzyskać informacje o tym, jakie aplikacje są aktualnie połączone z siecią, co jest kluczowe dla diagnostyki i zabezpieczeń. Na przykład, uruchamiając polecenie 'netstat -an', można zobaczyć listę wszystkich połączeń oraz portów, zarówno w stanie nasłuchu, jak i aktywnych. W praktyce, administratorzy często używają tego narzędzia do identyfikacji potencjalnych zagrożeń, takich jak nieautoryzowane połączenia wychodzące, co jest istotne w kontekście ochrony danych. Dobrą praktyką jest regularne monitorowanie połączeń w celu szybkiego wykrywania anomalii i podejrzanych działań w sieci, co pozwala na efektywne zarządzanie bezpieczeństwem infrastruktury IT.

Pytanie 39

Za pomocą polecenia netstat w systemie Windows można zweryfikować

A. parametry interfejsów sieciowych komputera
B. zapisy w tablicy routingu komputera
C. ścieżkę połączenia z wybranym adresem IP
D. aktywną komunikację sieciową komputera
Wybór odpowiedzi dotyczących ustawień interfejsów sieciowych, zapisków w tablicy routingu lub trasy połączenia z wybranym adresem IP wskazuje na pewne nieporozumienia dotyczące funkcjonalności narzędzia 'netstat'. Ustawienia interfejsów sieciowych komputera są zarządzane poprzez inne narzędzia, takie jak 'ipconfig' w systemach Windows, które pokazują szczegóły konfiguracji interfejsów. Z kolei tablica routingu, która określa, jak pakiety danych są kierowane w sieci, może być sprawdzana za pomocą polecenia 'route', a nie 'netstat'. Co więcej, możliwość śledzenia trasy połączeń realizuje narzędzie 'tracert', które umożliwia zobaczenie drogi, jaką pokonują pakiety danych do danego adresu IP. Te błędne odpowiedzi sugerują mylne zrozumienie specyfiki działania narzędzi sieciowych oraz ich zastosowań. Aby skutecznie zarządzać siecią, istotne jest zrozumienie, które narzędzia są odpowiednie do określonych zadań, co jest kluczowe w administracji systemów i sieci komputerowych.

Pytanie 40

Aplikacja systemowa Linux, której celem jest kontrolowanie ruchu sieciowego zarówno przychodzącego, jak i wychodzącego z określonego urządzenia, to

A. mtr
B. iptables
C. ifconfig
D. chkconfig
Ifconfig to narzędzie służące do konfigurowania interfejsów sieciowych w systemach Unix i Linux. Umożliwia ono monitorowanie oraz modyfikowanie konfiguracji interfejsów, takich jak adresy IP, maski podsieci oraz inne parametry. Choć jest niezbędne do zarządzania interfejsami, nie ma możliwości filtrowania ruchu, co czyni je niewłaściwym wyborem w kontekście zarządzania bezpieczeństwem sieci. Mtr to narzędzie, które łączy funkcjonalności ping oraz traceroute, służąc do diagnostyki sieci i analizy opóźnień w połączeniach. Nie jest jednak przeznaczone do filtrowania ruchu, a jedynie do monitorowania i diagnozowania problemów z łącznością. Chkconfig z kolei jest narzędziem do zarządzania usługami systemowymi w systemach opartych na Linux, pozwalającym na włączanie lub wyłączanie ich podczas startu systemu. Nie ma on żadnego związku z filtrowaniem ruchu, co czyni go kolejnym nieadekwatnym wyborem. Pojawiające się błędne przekonania często wynikają z nieznajomości funkcji poszczególnych narzędzi i ich zastosowań w administracji systemami operacyjnymi. Zrozumienie roli i funkcji tych narzędzi jest kluczowe dla efektywnego zarządzania systemami Linux oraz ich bezpieczeństwem.