Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 21 maja 2025 17:05
  • Data zakończenia: 21 maja 2025 17:27

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - wymiana pojedyncza, II — analiza, III - synteza.
B. I - synteza, II - analiza, DI - wymiana podwójna.
C. I - analiza, II - synteza, HI - wymiana podwójna.
D. I - synteza, II - analiza, HI - wymiana pojedyncza.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 2

Zamieszczony fragment procedury opisuje sposób otrzymywania

„W zlewce o pojemności 250 cm3 rozpuść w 50 cm3 wody destylowanej 5 g uwodnionego siarczanu(VI) miedzi(II). Do roztworu dodaj 16,7 cm3 roztworu NaOH o stężeniu 6 mol/dm3. Następnie dodaj 10 g glukozy w celu przeprowadzenia reakcji redukcji jonów miedzi(II) do miedzi(I). Ostrożnie ogrzewaj zlewkę z mieszaniną reakcyjną do otrzymania czerwonego osadu (...)Osad odsącz, przemyj alkoholem i susz na bibule na powietrzu."

A. CuO.
B. Na2SO4.
C. Cu(OH)2.
D. Cu20.
Wybór Cu(OH)2, CuO oraz Na2SO4 jako odpowiedzi prowadzi do nieporozumień dotyczących podstawowych zasad chemii, szczególnie w kontekście reakcji redoks i zjawisk związanych z redukcją. Cu(OH)2, znany jako wodorotlenek miedzi(II), nie jest produktem procesu opisanego w pytaniu. Jego powstanie wymagałoby reakcji miedzi(II) z zasadami, a nie redukcji. CuO, to tlenek miedzi(II), który powstaje w inny sposób, zazwyczaj w wyniku utleniania miedzi w obecności tlenu, a więc również nie jest związany z opisanym procesem. Na2SO4, czyli siarczan sodu, jest całkowicie innym związkiem, który nie ma związku z miedzią ani z redukcją, a jego obecność w tym kontekście może wskazywać na mylną interpretację reakcji chemicznych. Typowe błędy myślowe obejmują pomylenie różnych stopni utlenienia miedzi, co skutkuje wybraniem niewłaściwych produktów. Kluczowe jest zrozumienie, że reakcje chemiczne są ściśle powiązane z warunkami, w jakich się odbywają, a także rodzajami reagentów używanych w danym procesie. Zrozumienie tych podstaw jest kluczowe dla skutecznej analizy chemicznej i uzyskania właściwych wyników w laboratoriach chemicznych.

Pytanie 3

Zbiór próbek pierwotnych tworzy próbkę

A. analityczną
B. jednostkową
C. ogólną
D. laboratoryjną
Próbka ogólna to zbiór próbek pierwotnych, które reprezentują szerszą populację danego materiału lub substancji. W kontekście badań laboratoryjnych, próba ogólna jest kluczowa, ponieważ ma na celu uzyskanie wiarygodnych wyników analitycznych, które można ekstrapolować na całość populacji. Na przykład, w przemyśle spożywczym, podczas kontroli jakości, pobiera się próbki ogólne z różnych partii produktów, aby ocenić ich jakość i bezpieczeństwo. Według standardów ISO 2859, próby ogólne powinny być pobierane w sposób losowy, aby zminimalizować ryzyko błędów systematycznych w ocenie. Spojrzenie na próbkę jako całość pozwala na lepszą interpretację danych oraz podejmowanie świadomych decyzji dotyczących procesów produkcyjnych i kontroli jakości. Dlatego zrozumienie różnicy między próbką ogólną a innymi typami próbek, takimi jak próbki jednostkowe, jest fundamentalne w zarządzaniu jakością oraz w badaniach naukowych.

Pytanie 4

Czułość bezwzględna wagi definiuje się jako

A. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
B. największe dozwolone obciążenie wagi
C. najmniejsze dozwolone obciążenie wagi
D. największą masę, która powoduje wyraźne wychylenie wskazówki
Zrozumienie czułości bezwzględnej wagi wymaga analizy kilku aspektów jej funkcjonowania. Największe dopuszczalne obciążenie wagi to maksymalna masa, jaką waga może zmierzyć bez ryzyka uszkodzenia, co różni się całkowicie od pojęcia czułości. Ustalanie tego parametru opiera się na wytrzymałości mechanicznej urządzenia, a nie na jego zdolności do wykrywania małych zmian. Z kolei najmniejsze dopuszczalne obciążenie wagi odnosi się do najniższej masy, jaką waga może zmierzyć, zanim pomiar stanie się nieprecyzyjny. To również jest inny aspekt, który nie dotyczy bezpośrednio czułości, lecz granic operacyjnych wagi. W kontekście największej masy, która powoduje zauważalne wychylenie wskazówki, pojawia się mylne przekonanie, że czułość odnosi się do maksymalnych wartości, co jest błędnym założeniem. Czułość bezwzględna jest definiowana przez najniższą masę, która wywołuje reaktywne zachowanie wagi. Pojmowanie czułości poprzez pryzmat maksymalnych wartości prowadzi do nieporozumień i może skutkować błędnymi wynikami w laboratoriach czy procesach przemysłowych, gdzie precyzyjne pomiary mają kluczowe znaczenie dla jakości produktów i badań. Kluczowym błędem jest także mylenie parametru czułości z innymi aspektami funkcjonowania urządzeń pomiarowych, co może prowadzić do niewłaściwego doboru wag do konkretnych zadań pomiarowych.

Pytanie 5

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zmniejszyć, a temperaturę obniżyć
B. zwiększyć, a temperaturę podnieść
C. zmniejszyć, a temperaturę podnieść
D. zwiększyć, a temperaturę zmniejszyć
W odpowiedziach, gdzie sugerujesz zmniejszenie stężenia substratów lub obniżenie temperatury, nie bierzesz pod uwagę podstawowych zasad chemii. Zmniejszając stężenie, zmniejszasz liczbę cząsteczek do reakcji, co mocno obniża szanse na zderzenie. W zasadzie, im wyższe stężenie reagentów, tym lepsza szybkość reakcji, według prawa zachowania masy. Obniżenie temperatury też działa na niekorzyść, bo zmniejsza energię kinetyczną cząsteczek, co spowalnia reakcje. To szczególnie widać w reakcjach enzymatycznych, gdzie enzymy najlepiej działają w określonych temperaturach. Nieodpowiednie zarządzanie temperaturą i stężeniem może wyjść nam bokiem w przemyśle, bo zwiększa koszty produkcji i wpływa na jakość końcowego produktu. W sumie, rozumienie optymalizacji warunków reakcji to kluczowa sprawa w projektowaniu tych reakcji chemicznych.

Pytanie 6

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. żółtym
B. niebieskim
C. zielonym
D. czerwonym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 7

Wagi laboratoryjne można klasyfikować według nośności oraz precyzji na

A. analityczne i szalkowe
B. dźwigniowe i elektroniczne
C. periodyczne i aperiodyczne
D. techniczne i analityczne
Wagi laboratoryjne można podzielić na dwie główne grupy: techniczne i analityczne. Wagi techniczne używamy w różnych sytuacjach, gdzie nie potrzebujemy aż tak precyzyjnych pomiarów. Przykłady to przemysł czy laboratoria ogólne. Z kolei wagi analityczne są znacznie dokładniejsze, co czyni je niezbędnymi w badaniach chemicznych. Tam każdy gram, a nawet mikrogram, ma znaczenie. W laboratoriach farmaceutycznych, na przykład, dokładne ważenie składników aktywnych jest kluczowe dla skuteczności leków. Spełniają one określone normy ISO, więc mamy pewność, że wyniki są wiarygodne. To naprawdę ważne, bo chodzi o bezpieczeństwo pacjentów i jakość terapii.

Pytanie 8

Laboratoryjny aparat szklany, który wykorzystuje kwasy do wytwarzania gazów w reakcji z metalem lub odpowiednią solą, to

A. aparat Hofmanna
B. aparat Kippa
C. aparat Soxhleta
D. aparat Orsata
Aparat Kippa jest specjalistycznym narzędziem laboratoryjnym, które służy do wytwarzania gazów poprzez reakcje chemiczne, najczęściej polegające na działaniu kwasów na metale lub odpowiednie sole. Jego konstrukcja pozwala na kontrolowane wydobywanie gazu, co jest niezbędne w wielu procesach chemicznych. Kluczowym elementem tego aparatu jest jego zdolność do gromadzenia gazów w komorze, a następnie ich wydawania w sposób zorganizowany. Przykładowo, w laboratoriach chemicznych aparat Kippa jest wykorzystywany do produkcji gazu wodoru poprzez reakcję kwasu solnego z cynkiem. Stosując ten aparat, laboranci mogą utrzymać bezpieczeństwo i kontrolować ilość wytwarzanego gazu, co jest szczególnie istotne przy pracy z substancjami łatwopalnymi lub toksycznymi. Warto również podkreślić, że aparat Kippa jest zgodny z normami bezpieczeństwa i praktykami laboratoryjnymi, co czyni go niezastąpionym narzędziem w chemii analitycznej i preparatywnej.

Pytanie 9

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 400 g
B. 100 g
C. 200 g
D. 50 g
Aby uzyskać roztwór nasycony w temperaturze 20°C, należy rozpuścić w 200 gramach wody około 400 gramów cukru. Zjawisko nasycenia roztworu oznacza, że w danej temperaturze nie można już rozpuścić większej ilości substancji. W przypadku cukru rozpuszczalność w wodzie jest znaczna, a przy 20°C wynosi około 2000 g na 1 litr wody. Woda w tej temperaturze ma zatem zdolność rozpuszczenia znacznej ilości cukru, co sprawia, że 400 g w 200 g wody to zaledwie 20% maksymalnej ilości, jaką dałoby się rozpuścić. Praktyczne zastosowanie tej wiedzy można zauważyć w przemyśle spożywczym, gdzie dokładne parametry roztworu są kluczowe dla produkcji napojów słodzonych, syropów czy innych produktów zawierających cukier. Zrozumienie rozpuszczalności substancji jest niezbędne w wielu procesach chemicznych i technologicznych, co podkreśla znaczenie tej umiejętności w praktyce laboratoryjnej i przemysłowej.

Pytanie 10

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 25%
B. 75%
C. 60%
D. 50%
Aby obliczyć wydajność reakcji, należy najpierw ustalić, ile moli wodoru zostało uzyskanych oraz ile moli powinno być teoretycznie wyprodukowanych na podstawie reakcji. Z równania reakcji: Zn + 2 HCl → ZnCl2 + H2 wynika, że 1 mol cynku produkuje 1 mol wodoru. Masy molowe podane w zadaniu umożliwiają obliczenie, że 13 g cynku to około 0,2 mola (13 g / 65 g/mol). Teoretycznie, z 0,2 mola cynku powinniśmy uzyskać 0,2 mola wodoru, co odpowiada 4,48 dm³ (0,2 mola * 22,4 dm³/mol) przy warunkach normalnych. Zgodnie z danymi, zebrano 1,12 dm³ wodoru, co wskazuje, że uzyskano 25% teoretycznej ilości. W praktyce, wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, szczególnie w przemyśle, gdzie każda strata surowców wpływa na koszty produkcji. Zrozumienie i obliczanie wydajności jest niezbędne w procesach produkcyjnych, aby optymalizować reakcje i minimalizować straty, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 11

Zabieg, który wykonuje się podczas pobierania próbki wody do analizy, mający na celu zachowanie jej składu chemicznego w trakcie transportu, określa się mianem

A. zagęszczania
B. utrwalania
C. rozcieńczania
D. oczyszczania
Odpowiedź 'utrwalania' jest prawidłowa, ponieważ proces ten ma kluczowe znaczenie w zachowaniu integralności chemicznej próbki wody podczas transportu do laboratorium. Utrwalanie polega na stosowaniu odpowiednich metod, takich jak dodanie substancji chemicznych, które stabilizują skład chemiczny próbki, zapobiegając rozkładowi lub zmianom w jej składzie. Przykładem może być dodanie kwasu solnego do próbki wody morskiej w celu zachowania stężenia metali ciężkich. Ważne jest także, aby wybrać odpowiednie pojemniki do transportu, które nie reagują z próbą, co jest zgodne z normami ISO 5667. W praktyce, przestrzeganie procedur pobierania i transportu próbek zgodnie z wytycznymi pozwala na uzyskanie wiarygodnych wyników analitycznych oraz minimalizację ryzyka zanieczyszczenia próbki. Właściwe utrwalanie próbek jest nie tylko istotne dla dokładności badań, ale także dla zapewnienia bezpieczeństwa przy dalszym ich przetwarzaniu.

Pytanie 12

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
Odpowiedź jest prawidłowa, ponieważ pH skali logarytmicznej oznacza, że zmiana o 1 jednostkę pH odpowiada zmianie stężenia jonów wodoru [H+] o dziesięciokrotność. W przypadku roztworu o pH=2, stężenie [H+] wynosi 0,01 mol/dm3, natomiast w roztworze o pH=5 stężenie [H+] wynosi 0,00001 mol/dm3. Różnica ta jest ogromna, ponieważ oznacza, że stężenie jonów [H+] w roztworze o pH=5 jest 1000 razy mniejsze niż w roztworze o pH=2. Taka wiedza jest niezwykle ważna w chemii analitycznej oraz przy przygotowywaniu roztworów, gdzie precyzyjne pomiary pH i stężeń jonów są kluczowe. W przemyśle chemicznym, farmaceutycznym oraz w laboratoriach badawczych, zrozumienie tej zależności pozwala na efektywne zarządzanie procesami chemicznymi i kontrolę jakości produktów. Zasada ta jest również istotna w biologii, ponieważ wiele procesów metabolicznych zachodzi w wąskim zakresie pH, a niewłaściwe stężenie jonów może prowadzić do denaturacji enzymów czy innych białek.

Pytanie 13

Na podstawie danych zawartych w tabeli wskaż, który dodatek należy zastosować, w celu konserwacji próbek wody przeznaczonych do oznaczania jej twardości.

Tabela. Techniki konserwacji próbek wody
Stosowany dodatek
lub technika
Rodzaje próbek, do których dodatek lub technika jest stosowana
Kwas siarkowy(VI)zawierające węgiel organiczny, oleje lub tłuszcze, przeznaczone do oznaczania ChZT, zawierające aminy lub amoniak
Kwas azotowy(V)zawierające związki metali
Wodorotlenek soduzawierające lotne kwasy organiczne lub cyjanki
Chlorek rtęci(II)zawierające biodegradowalne związki organiczne oraz różne formy azotu i fosforu
Chłodzenie w
temperaturze 4°C
zawierające mikroorganizmy, barwę, zapach, organiczne formy węgla, azotu i fosforu, przeznaczone do określenia kwasowości, zasadowości oraz BZT

A. Wodorotlenek sodu.
B. Kwas siarkowy(VI).
C. Kwas azotowy(V).
D. Chlorek rtęci(II).
Kwas azotowy(V) jest powszechnie stosowany w laboratoriach do konserwacji próbek wody, zwłaszcza gdy istnieje potrzeba oznaczania twardości wody. Twardość wody jest głównie spowodowana obecnością kationów wapnia i magnezu, które mogą reagować z zanieczyszczeniami. Kwas azotowy(V) działa jako środek konserwujący, stabilizując próbki i zapobiegając ich degradacji przy jednoczesnym zachowaniu właściwości chemicznych. W praktyce, dodatek tego kwasu pozwala na dłuższe przechowywanie próbek przed analizą, co jest kluczowe dla dokładnych wyników. W standardach laboratoriach analitycznych, takich jak ISO 5667 dotyczący pobierania próbek wody, zaleca się stosowanie odpowiednich środków konserwujących, w tym kwasu azotowego(V), w celu uzyskania rzetelnych wyników analitycznych. Stosowanie tego kwasu w praktyce zapewnia, że próbki zachowują swoją integralność chemiczną, co jest niezbędne do precyzyjnego określenia twardości wody.

Pytanie 14

Aby zebrać próbki gazów, wykorzystuje się

A. miarki cylindryczne
B. detektory gazów
C. aspiratory
D. butelki z plastikowym wieczkiem
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 15

Aby przygotować 150 g roztworu jodku potasu o stężeniu 10% (m/m), konieczne jest użycie
(zakładając, że gęstość wody wynosi 1 g/cm3)

A. 15 g KI oraz 145 g wody destylowanej
B. 10 g KI oraz 140 g wody destylowanej
C. 10 g KI oraz 150 cm3 wody destylowanej
D. 15 g KI oraz 135 cm3 wody destylowanej
Stężenie 10% (m/m) oznacza, że na każde 100 g roztworu przypada 10 g substancji czynnej, czyli jodku potasu (KI). Aby przygotować 150 g roztworu, musimy obliczyć masę KI: 150 g x 10% = 15 g. Pozostała masa roztworu to woda, która będzie stanowić 135 g (150 g - 15 g). Woda ma gęstość 1 g/cm³, co oznacza, że 135 g wody to 135 cm³. Ta odpowiedź jest zgodna z zasadami przygotowywania roztworów, które wymagają zachowania proporcji masowych dla określonego stężenia. Przykładem zastosowania tego procesu może być przygotowanie roztworu do badań chemicznych, gdzie precyzyjne stężenie reagentów jest kluczowe dla uzyskania wiarygodnych wyników. Ponadto, zgodnie z dobrą praktyką laboratoryjną, zawsze warto sprawdzić obliczenia i użyć wagi analitycznej oraz menzurki, aby zapewnić dokładność pomiarów.

Pytanie 16

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 25%
B. 2,5%
C. 20%
D. 75%
Stężenie procentowe roztworu obliczamy jako stosunek masy rozpuszczonej substancji (w tym przypadku jodku potasu) do całkowitej masy roztworu, wyrażony w procentach. W naszym przypadku mamy 25 g jodku potasu rozpuszczonego w 100 cm³ wody. Gęstość wody wynosi 1 g/cm³, co oznacza, że 100 cm³ wody ma masę 100 g. Całkowita masa roztworu wynosi więc 25 g (masy jodku potasu) + 100 g (masy wody) = 125 g. Stężenie procentowe obliczamy jako: (masa rozpuszczonej substancji / masa roztworu) × 100%, co daje (25 g / 125 g) × 100% = 20%. Takie obliczenia są niezwykle istotne w chemii analitycznej, gdzie dokładne stężenia roztworów są kluczowe w różnych zastosowaniach, takich jak przygotowywanie odczynników czy analiza jakościowa i ilościowa substancji chemicznych.

Pytanie 17

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. istnieje ryzyko zalania palnika
B. może to zwiększyć jej toksyczność
C. może wystąpić niebezpieczeństwo zgaszenia płomienia
D. wzrost ciśnienia może spowodować wybuch
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 18

Etykieta roztworu kwasu azotowego(V) o koncentracji 6 mol/dm3 powinna zawierać nazwę substancji oraz

A. koncentrację, producenta i wykaz zanieczyszczeń
B. masę, datę przygotowania i numer katalogowy
C. masę, koncentrację i numer katalogowy
D. koncentrację, ostrzeżenia H oraz datę przygotowania
Poprawna odpowiedź wskazuje, że etykieta roztworu kwasu azotowego(V) o stężeniu 6 mol/dm3 powinna zawierać stężenie, zwroty zagrożeń H oraz datę sporządzenia. Umożliwia to nie tylko identyfikację substancji, ale także informuje użytkownika o potencjalnych zagrożeniach związanych z jej stosowaniem. Zwroty zagrożeń H (Hazard statements) są kluczowym elementem, który świadczy o ryzyku związanym z kontaktami, na przykład: H290 - może być żrący dla metali, H314 - powoduje poważne oparzenia skóry oraz uszkodzenia oczu. Podawanie stężenia kwasu jest istotne dla oceny jego reaktywności oraz właściwego postępowania ze substancją. Data sporządzenia pozwala na śledzenie ważności roztworu oraz jego stabilności. Przykładem zastosowania jest laboratorium chemiczne, gdzie precyzyjne etykiety pomagają utrzymać bezpieczeństwo i zgodność z przepisami BHP. W branży laboratoryjnej standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) dostarczają wytycznych dotyczących etykietowania substancji chemicznych, co znacząco zwiększa bezpieczeństwo pracy.

Pytanie 19

Proces wydobywania składnika z cieczy lub ciała stałego w mieszance wieloskładnikowej poprzez jego rozpuszczenie w odpowiednim rozpuszczalniku to

A. destylacja
B. dekantacja
C. saturacja
D. ekstrakcja
Ekstrakcja to proces inżynierii chemicznej, który polega na wydobywaniu jednego lub więcej składników z mieszaniny za pomocą odpowiedniego rozpuszczalnika. Kluczowym aspektem ekstrakcji jest wybór właściwego rozpuszczalnika, który powinien selektywnie rozpuszczać substancje pożądane, pozostawiając inne składniki nietknięte. Przykładowo, w przemyśle farmaceutycznym wykorzystuje się ekstrakcję do oddzielania aktywnych składników z roślin, co pozwala na produkcję leków. W branży spożywczej ekstrakcja jest stosowana do uzyskiwania olejków eterycznych z roślin, co znajduje zastosowanie w aromaterapii i produkcji żywności. Dobór rozpuszczalnika może być determinowany przez takie czynniki jak rozpuszczalność składników, pH oraz temperatura. Dobre praktyki w ekstrakcji obejmują także optymalizację warunków procesu, co może znacząco zwiększyć wydajność i jakość uzyskiwanych produktów. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie kontrolowania procesów, aby zapewnić ich efektywność i zgodność z wymaganiami jakościowymi.

Pytanie 20

Aby uzyskać całkowicie bezwodny Na2CO3, przeprowadzono prażenie 143 g Na2CO3·10H2O (M = 286 g/mol). Po upływie zalecanego czasu prażenia odnotowano utratę masy 90 g. W związku z tym prażenie należy

A. powtórzyć, ponieważ sól uległa rozkładowi
B. uznać za zakończone
C. kontynuować, aż do potwierdzenia, że masa soli nie ulega zmianie
D. kontynuować, ponieważ sól nie została całkowicie odwodniona
Rozważając inne odpowiedzi, warto zauważyć, że powtarzanie procesu prażenia, ponieważ sól uległa rzekomemu rozkładowi, jest błędnym podejściem. W rzeczywistości rozkład Na2CO3·10H2O podczas prażenia nie powinien prowadzić do jego degradacji, o ile temperatura jest odpowiednio kontrolowana. Zastosowanie nieodpowiednich warunków temperaturowych może prowadzić do rozkładu, jednak w kontekście przedstawionego problemu, nie zaobserwowano żadnych dowodów na rozkład substancji. Twierdzenie, że proces można uznać za zakończony, jest również mylne, gdyż wcześniej stwierdzony ubytek masy wskazuje na dalsze odparowywanie wody. Należy pamiętać, że proces odwodnienia soli wymaga czasu, co czyni kontynuację prażenia konieczną, aż do osiągnięcia stałej masy. Ostatecznie, stwierdzenie, że sól nie jest całkowicie odwodniona, jest zasadne, jednak poleganie na tym jako na uzasadnieniu do zakończenia procesu jest niewłaściwe. W praktyce laboratoryjnej, zawsze należy skupiać się na precyzyjnych pomiarach i obserwacjach, aby uzyskać oczekiwane rezultaty bez ryzyka powstawania nieoczyszczonych produktów reakcji.

Pytanie 21

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. odprowadzać bezpośrednio do kanalizacji.
B. poddać recyklingowi w celu odzyskania rozpuszczalnika.
C. połączyć z ziemią okrzemkową i przekazać do utylizacji.
D. zniszczyć poprzez zastosowanie odpowiednich procesów.
Unieszkodliwienie odpadów z rozpuszczalników organicznych poprzez jakieś reakcje chemiczne może brzmieć fajnie, ale w przypadku tych z dużą zawartością rozpuszczalnika, jak benzen czy aceton, to jest mało efektywne i wręcz niebezpieczne. Recykling jest lepszą opcją. Chemiczne reakcje często są skomplikowane i kosztowne, a do tego mogą generować dodatkowe odpady i szkodliwe emisje. Mieszanie tych odpadów z ziemią okrzemkową też nie jest dobrym rozwiązaniem, bo to może prowadzić do zanieczyszczenia gleby i wód gruntowych, co z kolei narusza przepisy ochrony środowiska. Odprowadzanie ich do kanalizacji to totalna głupota, bo niesie ze sobą poważne problemy ekologiczne i prawne. Te odpady są niebezpieczne, więc trzeba z nimi ostrożnie postępować, żeby nie zaszkodzić zdrowiu ludzi i środowisku. Dlatego ważne jest, żeby trzymać się wytycznych dotyczących recyklingu i przepisów prawnych.

Pytanie 22

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. toksycznym dla skóry
B. korodującym na metale
C. narkotycznym
D. żrącym dla skóry
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.

Pytanie 23

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 5,60 g
B. 0,56 g
C. 0,28 g
D. 56,00 g
Wiele osób może pomylić się w obliczeniach związanych z przygotowaniem roztworów, co często wynika z błędnego zrozumienia zależności między stężeniem, objętością a masą substancji. Przykładowo, niektórzy mogą nieprawidłowo zastosować jednostki miary, co prowadzi do błędnych wyników. Przy obliczeniach niezbędne jest zawsze przeliczenie objętości roztworu z centymetrów sześciennych na litry, ponieważ stężenie molowe (C) zwykle wyrażane jest w molach na litr. Inny typowy błąd polega na pomylonej masie molowej związku; w tym przypadku, błędne wyliczenie masy molowej KOH przez nieuwzględnienie wszystkich składników chemicznych, takich jak wodór, może prowadzić do zbyt niskiej lub zbyt wysokiej wartości masy, co w efekcie skutkuje niewłaściwym stężeniem roztworu. Ponadto, nieprawidłowe zaokrąglenia lub zbytnia ufność w wyniki kalkulatorów może prowadzić do dalszych nieścisłości. Kluczowym elementem praktyki laboratoryjnej jest dokładność i precyzja, dlatego zaleca się stosowanie wag analitycznych, które mogą zapewnić większą dokładność przy odważaniu substancji. Prawidłowe przygotowanie roztworu jest niezbędne w zastosowaniach takich jak titracje, w których dokładność stężenia roztworu ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Zrozumienie tych zasad jest ważne dla każdego chemika, aby uniknąć błędów, które mogą prowadzić do fałszywych wniosków w badaniach naukowych.

Pytanie 24

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 200 g
B. 1000 g
C. 100 g
D. 2500 g
Wybór innych mas próbki, takich jak 200 g, 2500 g czy 1000 g, może wynikać z nieporozumienia dotyczącego związku między wielkością próbki a jej reprezentatywnością. Większość użytkowników może sądzić, że większa masa próbki przyczyni się do lepszej dokładności analizy. Jednak w kontekście wielkości ziarna poniżej 1 mm, stosowanie większej masy może prowadzić do problemów z homogenizacją próbki oraz zwiększać ryzyko zanieczyszczenia. Zgodnie z dobrymi praktykami, przy małych ziarnach kluczowe jest, aby masa próbki była odpowiednia do ich właściwości fizycznych. W rzeczywistości, większa masa niekoniecznie poprawia jakość analizy, a może nawet wprowadzić dodatkowe błędy. W wielu przypadkach, aby uniknąć tzw. efektu selektywnego, zaleca się stosowanie minimalnych mas próbki określonych w standardach, które zapewniają odpowiednią reprezentatywność. Na przykład, w badaniach materiałów sypkich, zwłaszcza w kontekście przemysłu chemicznego, zbyt duża masa próbki może generować dodatkowe wydatki i komplikacje w przygotowaniu, co może prowadzić do nieefektywności w procesie analitycznym. Z tego powodu, kluczowe jest, aby przestrzegać wskazanych norm dotyczących masy próbki, aby uzyskać wiarygodne i powtarzalne wyniki analizy.

Pytanie 25

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. adsorpcji
B. lotności
C. absorpcji
D. rozpuszczalności
Odpowiedzi dotyczące lotności, absorpcji oraz rozpuszczalności nie oddają sedna procesu rozdziału chromatograficznego, który w rzeczywistości opiera się na adsorpcji. Lotność odnosi się do zdolności substancji do przechodzenia w stan gazowy, co nie jest kluczowym czynnikiem w chromatografii, ponieważ proces ten zazwyczaj zachodzi w fazie ciekłej lub stałej. Odpowiedzi takie jak absorpcja mogą być mylone z adsorpcją, jednak obejmują one inny mechanizm, w którym cząsteczki są wchłaniane w objętość substancji, a nie tylko przyczepiają się do jej powierzchni. Rozpuszczalność, choć ważna w kontekście interakcji między fazami, nie jest bezpośrednim czynnikiem determinującym rozdział składników w chromatografii. W praktyce, zrozumienie tych różnic jest kluczowe w procesach analitycznych, ponieważ wybrana metoda rozdziału i fazy mogą znacząco wpłynąć na efektywność i wydajność analizy. Niewłaściwe zrozumienie tych terminów może prowadzić do błędnych wniosków i nieefektywnego rozdziału składników, co jest krytyczne w zastosowaniach przemysłowych oraz laboratoryjnych, takich jak analizy chemiczne czy kontrola jakości produktów.

Pytanie 26

Który zestaw zawiera niezbędne urządzenia laboratoryjne do przygotowania 10% (m/m) roztworu NaCl?

A. Waga laboratoryjna, zlewka, cylinder miarowy, naczynko wagowe
B. Waga laboratoryjna, kolba miarowa, naczynko wagowe, palnik
C. Waga laboratoryjna, cylinder miarowy, kolba miarowa, szkiełko zegarkowe
D. Waga laboratoryjna, zlewka, cylinder miarowy, palnik
Wybór sprzętu laboratoryjnego do sporządzania roztworów wymaga staranności i precyzji. W przypadku pierwszej odpowiedzi brak jest naczynka wagowego, co jest istotnym niedociągnięciem, ponieważ ważenie substancji jest kluczowe dla osiągnięcia właściwego stężenia roztworu. Z kolei w drugiej odpowiedzi zamiast zlewki pojawia się kolba miarowa, która jest używana głównie do przygotowywania roztworów o określonej objętości, ale nie jest optymalna do mieszania składników. Kolby są bardziej odpowiednie do tworzenia roztworów o stałej objętości, co może prowadzić do nieporozumień dotyczących pomiarów. W czwartej odpowiedzi cylinder miarowy jest wymieniony, ale ponownie brakuje naczynka wagowego, co skutkuje niedokładnością w procesie odważania substancji. Typowym błędem myślowym w takich zadaniach jest mylenie funkcji poszczególnych sprzętów, co może prowadzić do zrozumienia, że kolby miarowe mogą zastąpić zlewki, co jest nieprawdziwe. Zastosowanie nieodpowiednich narzędzi może zmniejszyć dokładność i wiarygodność uzyskanych wyników, dlatego kluczowe jest stosowanie odpowiedniego sprzętu zgodnie z jego przeznaczeniem w laboratorium.

Pytanie 27

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości żelaza.
B. spełnia wymagania i można wydać świadectwo jakości.
C. nie spełnia wymagań pod względem pH i zawartości jodanów.
D. nie spełnia wymagań pod względem zawartości metali ciężkich.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 28

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,0500 mol/dm3
B. 0,0125 mol/dm3
C. 0,0005 mol/dm3
D. 0,1250 mol/dm3
Aby obliczyć stężenie roztworu po rozcieńczeniu, należy zastosować zasadę zachowania moli. Początkowo mamy 2,5 cm³ roztworu HCl o stężeniu 0,1 mol/dm³. Możemy to przeliczyć na litry: 2,5 cm³ = 0,0025 dm³. Liczba moli HCl w tej objętości wynosi: n = C * V = 0,1 mol/dm³ * 0,0025 dm³ = 0,00025 mol. Po przelaniu roztworu do kolby o pojemności 20 cm³ (0,02 dm³) i rozcieńczeniu wodą do kreski, całkowita objętość wynosi 0,02 dm³. Stężenie końcowe oblicza się jako C = n / V = 0,00025 mol / 0,02 dm³ = 0,0125 mol/dm³. Przykładem praktycznym zastosowania tych obliczeń jest przygotowanie roztworów roboczych w laboratoriach chemicznych, gdzie precyzyjne określenie stężenia jest kluczowe dla uzyskania powtarzalnych wyników w eksperymentach. Ponadto, zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy dokumentować przygotowywane roztwory oraz ich stężenia, co może być istotne w analizach chemicznych.

Pytanie 29

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. ekstrakcja w systemie ciecz - ciecz
B. destylacja
C. chromatografia cieczowa
D. adsorpcja
Ekstrakcja w układzie ciecz-ciecz to technika polegająca na wydobywaniu substancji rozpuszczonej w jednej cieczy do innej cieczy, co jest zupełnie innym procesem niż destylacja. W ekstrakcji kluczowym elementem jest różnica w rozpuszczalności substancji w dwóch różnych rozpuszczalnikach, co powoduje transfer substancji z jednej fazy do drugiej. Przykładem może być wydobycie olejków eterycznych z roślin za pomocą rozpuszczalników organicznych. Chromatografia cieczowa natomiast opiera się na różnicach w powinowactwie substancji do fazy stacjonarnej i ruchomej. W tej technice składniki mieszaniny są rozdzielane w kolumnie wypełnionej materiałem adsorbującym, co również różni się od destylacji. W chromatografii cieczowej, proces jest bardziej złożony i wymaga precyzyjnego doboru warunków, takich jak temperatura, ciśnienie oraz rodzaj używanej fazy stacjonarnej. Adsorpcja odnosi się do zjawiska przylegania cząsteczek do powierzchni ciała stałego, co jest wykorzystywane w wielu procesach separacyjnych, ale nie obejmuje one rozdzielania cieczy poprzez odparowanie i skraplanie. Typowym błędem myślowym prowadzącym do pomyłek jest mylenie metod separacji, które mają różne mechanizmy działania. Zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania odpowiedniej techniki w laboratoriach oraz przemyśle.

Pytanie 30

Który z poniższych zestawów obejmuje jedynie sprzęt do pomiarów?

A. Kolba miarowa, cylinder miarowy oraz eza
B. Kolba miarowa, kolba stożkowa oraz pipeta
C. Kolba miarowa, biureta i pipeta
D. Kolba miarowa, zlewka oraz bagietka
Odpowiedź "Kolba miarowa, biureta i pipeta" jest poprawna, ponieważ wszystkie wymienione narzędzia są klasycznymi przykładami sprzętu miarowego używanego w laboratoriach chemicznych. Kolba miarowa służy do precyzyjnego pomiaru objętości cieczy, co jest kluczowe w wielu reakcjach chemicznych, gdzie dokładność jest niezbędna dla uzyskania powtarzalnych wyników. Biureta, z kolei, jest używana do dozowania cieczy w sposób kontrolowany, najczęściej w titracji, co pozwala na określenie stężenia substancji chemicznej. Pipeta natomiast jest narzędziem, które umożliwia przenoszenie małych objętości cieczy z dużą precyzją. W praktyce laboratoryjnej, wybór odpowiedniego sprzętu pomiarowego jest kluczowy dla uzyskania wiarygodnych danych. Używanie sprzętu zgodnego z normami, takimi jak ISO lub ASTM, zapewnia wysoką jakość pomiarów i minimalizuje ryzyko błędów. Właściwa znajomość i umiejętność posługiwania się tymi narzędziami jest niezbędna dla każdego chemika, co podkreśla znaczenie tej odpowiedzi.

Pytanie 31

Do 200 g roztworu NaOH (M = 40 g/mol) o stężeniu 10 % dodano wodę destylowaną w kolbie miarowej o pojemności 500 cm3 do znaku. Jakie jest stężenie molowe powstałego roztworu?

A. 0,5 mol/dm3
B. 4,0 mol/dm3
C. 1,0 mol/dm3
D. 0,1 mol/dm3
Aby obliczyć stężenie molowe roztworu wodorotlenku sodu (NaOH), najpierw należy ustalić, ile moli NaOH znajduje się w 200 g roztworu o stężeniu 10%. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g NaOH. W związku z tym, w 200 g roztworu znajduje się 20 g NaOH. Obliczamy liczbę moli: 20 g / 40 g/mol = 0,5 mol NaOH. Następnie, roztwór został rozcieńczony do 500 cm³, co odpowiada 0,5 dm³. Zatem stężenie molowe można obliczyć jako: liczba moli / objętość w dm³, co daje 0,5 mol / 0,5 dm³ = 1,0 mol/dm³. Takie obliczenia są istotne w chemii analitycznej, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników. Rozpoznawanie i obliczanie stężeń molowych jest fundamentalną umiejętnością dla chemików, a także dla inżynierów chemicznych, którzy pracują z reakcjami chemicznymi, w laboratoriach oraz w przemyśle chemicznym.

Pytanie 32

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Tlenek rtęci(II)
B. Glukozę
C. Azbest
D. Azotan(V) srebra
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 33

Podczas reakcji chlorku żelaza(III) z wodorotlenkiem potasu dochodzi do wytrącenia wodorotlenku żelaza(III) w formie

A. drobnokrystalicznego osadu
B. galaretowatego osadu
C. serowatego osadu
D. grubokrystalicznego osadu
Wybór odpowiedzi dotyczący serowatego, grubokrystalicznego lub drobnokrystalicznego osadu opiera się na nieprawidłowym zrozumieniu mechanizmów wytrącania i struktury fizycznej osadów. Serowaty osad sugeruje odmienną teksturę, która jest charakterystyczna dla innych reakcji, na przykład związanych z osadzaniem koloidalnym, gdzie cząsteczki tworzą bardziej stałe, twarde struktury. Grubokrystaliczny osad natomiast wskazuje na obecność dużych, wyraźnych kryształów, co jest typowe dla reakcji krystalizacji o niskiej rozpuszczalności, a nie dla wodorotlenku żelaza(III), który ma tendencję do formowania się w postaci bardziej jednorodnej, galaretowatej. Drobnokrystaliczny osad może być mylący, ponieważ sugeruje, że produkt reakcji ma bardzo małe, jednorodne kryształy, co znów nie odnosi się do rzeczywistej natury wodorotlenku żelaza(III), który w warunkach reakcji z wodorotlenkiem potasu przyjmuje bardziej złożoną, galaretowatą formę. Takie nieporozumienia mogą wynikać z błędnego postrzegania roli pH i stężenia reagentów w procesie wytrącania, co jest kluczowe dla zrozumienia właściwości chemicznych osadów. Zachęcam do przestudiowania literatury dotyczącej chemii koordynacyjnej oraz procesów osadzania, aby lepiej zrozumieć te zjawiska.

Pytanie 34

Woda, która została poddana dwukrotnej destylacji, to woda

A. redestylowana
B. odmineralizowana
C. ultra czysta
D. odejonizowana
Woda demineralizowana to woda, z której usunięto większość minerałów, takich jak wapń, magnez czy inne jony, przy użyciu procesów takich jak filtracja przez wymienniki jonowe. Choć demineralizacja jest skuteczna w redukcji twardości wody, to nie gwarantuje usunięcia wszystkich zanieczyszczeń organicznych czy substancji chemicznych, które mogą być obecne w wodzie. Woda dejonizowana, podobnie jak demineralizowana, jest poddawana procesom mającym na celu usunięcie jonów, jednak również nie jest tożsama z wodą redestylowaną, gdyż proces destylacji prowadzi do usunięcia praktycznie wszystkich substancji, w tym lotnych związków organicznych oraz bakterii. Z kolei ultraczysta woda jest pojęciem, które odnosi się do wody o wyjątkowo niskim poziomie zanieczyszczeń, ale uzyskuje się ją poprzez bardziej zaawansowane techniki, takie jak ultrafiltracja czy osmoza odwrócona, które są bardziej skomplikowane i kosztowne. Wiele osób błędnie utożsamia te terminy, co prowadzi do nieporozumień. Kluczowym błędem jest myślenie, że wszystkie procesy oczyszczania wody są równoważne, podczas gdy każdy z nich ma swoje specyficzne zastosowania i ograniczenia. Dlatego tak ważne jest zrozumienie różnic między tymi procesami oraz ich wpływu na jakość otrzymanej wody.

Pytanie 35

Odważka analityczna wodorotlenku sodu, przygotowana fabrycznie, zawiera 0,1 mola NaOH. Jaką objętość wody destylowanej należy dodać w kolbie miarowej, aby uzyskać roztwór wodorotlenku sodu o stężeniu 0,0500 mol/dm3?

A. 500 cm3
B. 50 cm3
C. 2 dm3
D. 1 dm3
Rozważając błędne odpowiedzi, warto zauważyć, że przygotowanie roztworu o stężeniu 0,0500 mol/dm3 z 0,1 mola NaOH wymaga precyzyjnego obliczenia objętości, a niektóre z zaproponowanych odpowiedzi nie uwzględniają zasad rozcieńczania. Na przykład, wybór 50 cm3 sugeruje, że osoba odpowiadająca nie dostrzega, że rozcieńczenie do takiej objętości prowadziłoby do stężenia znacznie wyższego niż docelowe 0,0500 mol/dm3. Podobnie, odpowiedź 500 cm3 również jest nieprawidłowa, ponieważ nie osiągnie wymaganej koncentracji. W laboratoriach chemicznych kluczowe jest zrozumienie, że stężenie roztworu można dokładnie obliczyć tylko wtedy, gdy wszystkie parametry są poprawnie uwzględnione. Typowym błędem myślowym jest pomijanie wpływu całkowitej objętości roztworu na końcowe stężenie, co prowadzi do niewłaściwego oszacowania potrzebnej objętości rozcieńczenia. Przygotowując roztwory, należy zawsze stosować wzory i metody obliczeniowe, aby zapewnić dokładność i zgodność z standardami laboratoryjnymi.

Pytanie 36

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
B. stężonym kwasem azotowym(V)
C. rozcieńczonym kwasem azotowym(V)
D. mieszaniną kwasów azotowego(V) oraz solnego
Reakcja nitrowania to proces chemiczny, w którym do organicznych substratów wprowadza się grupy nitrowe (-NO2). Najczęściej stosowaną metodą tego procesu jest użycie mieszaniny kwasów azotowego(V) i siarkowego(VI). Kwas azotowy(V) jest źródłem grupy nitrowej, natomiast kwas siarkowy(VI) działa jako czynnik osuszający, wspomagając reaktywność kwasu azotowego. W praktyce nitrowanie jest kluczowym etapem w syntezie wielu związków organicznych, takich jak barwniki, leki oraz środki wybuchowe. Na przykład, proces ten jest stosowany w produkcji nitrobenzenu, który jest istotnym prekursorem w syntezie chemikaliów przemysłowych. Dzięki dobrze kontrolowanym warunkom reakcji, można uzyskać wysokie wydajności oraz selektywność w nitrowaniu, co jest zgodne z dobrymi praktykami w chemii organicznej. Odpowiednia kontrola temperatury i stężenia reagentów jest niezbędna, aby uniknąć niepożądanych reakcji ubocznych, co jest kluczowe w przemyśle chemicznym.

Pytanie 37

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. średnią
B. wtórną
C. analityczną
D. ogólną
Wybór odpowiedzi średnia może prowadzić do nieporozumienia dotyczącego natury próbek w analizie materiałów. Średnia w kontekście próbki odnosi się do statystycznego pojęcia, które opisuje wartość centralną zbioru danych, a nie do charakterystyki samej próbki. Użycie tego terminu sugeruje, że próbki pierwotne mogłyby być traktowane jak dane w analizach statystycznych, co jest błędnym podejściem w kontekście prób materiałowych, ponieważ nie każda próbka, z której wyciąga się średnią, jest reprezentatywna dla całej partii. Odpowiedź analityczna odnosi się do metod analizy i może wprowadzać w błąd, ponieważ nie definiuje samego zbioru próbek, lecz metodykę analizy. Próbka analityczna to zazwyczaj ta, która jest używana w konkretnych testach analitycznych, ale nie oddaje całej partii materiału. Przykład zastosowania próbek wtórnych również nie odpowiada na stawiane pytanie, gdyż próbki wtórne są przygotowywane z próbek pierwotnych i nie są bezpośrednio związane z reprezentatywnością całej partii. Często błędne rozumienie terminów związanych z próbkowaniem prowadzi do niewłaściwych wniosków w kontekście badań, co w konsekwencji może skutkować błędnymi decyzjami w zakresie jakości materiałów. Kluczowym aspektem w tej dziedzinie jest zrozumienie, że próbka ogólna jest niezbędną podstawą do uzyskiwania wiarygodnych wyników w kontekście całej partii materiału, a nie tylko jej fragmentów.

Pytanie 38

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. krystalizacja
B. roztwarzanie
C. ekstrakcja
D. rozpuszczanie
Rozpuszczanie, krystalizacja i ekstrakcja to zjawiska, które mogą być mylone z roztwarzaniem, jednak każde z nich ma swoje unikalne cechy oraz przeznaczenie. Rozpuszczanie odnosi się ogólnie do procesu, w którym substancja stała przechodzi w stan roztworu, ale nie zawsze wiąże się z aktywną reakcją chemiczną z rozpuszczalnikiem. Krystalizacja to proces odwrotny do roztwarzania, w wyniku którego substancja przechodzi ze stanu rozpuszczonego do stałego, co jest kluczowe w otrzymywaniu czystych kryształów substancji chemicznych. Ekstrakcja natomiast odnosi się do procesu, w którym substancje są wyodrębniane z mieszanki, na przykład poprzez użycie rozpuszczalnika, ale nie oznacza to, że te substancje muszą ulegać reakcjom chemicznym. Typowym błędem myślowym jest mylenie tych pojęć, gdyż można sądzić, że wszelkie procesy związane z przemieszczaniem się substancji w roztworze są tożsame. Zrozumienie różnic pomiędzy tymi terminami jest kluczowe dla właściwego zarządzania procesami chemicznymi, szczególnie w kontekście przemysłu chemicznego, gdzie precyzyjne operacje są niezbędne do uzyskania pożądanych produktów o wysokiej jakości.

Pytanie 39

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
C. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
D. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
Odpowiedź jest poprawna, ponieważ przygotowanie roztworu o stężeniu 0,1 mol/dm³ wymaga precyzyjnego odmierzania substancji chemicznych. Aby uzyskać roztwór o pojemności 100 cm³ i stężeniu 0,1 mol/dm³, należy obliczyć ilość AgNO₃ potrzebną do przygotowania takiego roztworu. Masa molowa AgNO₃ wynosi 169,8 g/mol, więc dla 0,1 mol/dm³ w 100 cm³ (0,1 dm³) potrzeba 0,01 mola tej substancji. Zatem 0,01 mola x 169,8 g/mol daje 1,698 g AgNO₃. Przeniesienie odważonej ilości do kolby miarowej o pojemności 100 cm³ i rozpuszczenie w wodzie destylowanej oraz uzupełnienie do kreski zapewnia, że otrzymujemy dokładnie przygotowany roztwór o wymaganym stężeniu. Tego rodzaju praktyka jest zgodna z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 40

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste chemicznie
B. czyste do badań
C. spektralnie czyste
D. czyste
Czynniki takie jak czyste do analiz, czyste, czy czyste chemicznie, choć zrozumiane w kontekście ogólnej czystości substancji, nie odnoszą się bezpośrednio do specyficznych wymagań dotyczących czystości spektralnej. Czystość chemiczna oznacza, że substancja nie powinna zawierać substancji zakłócających analizy chemiczne, ale nie gwarantuje to, że nie będą obecne zanieczyszczenia wpływające na wyniki spektroskopowe. Czystość do analiz zazwyczaj odnosi się do standardowych odczynników używanych w laboratoriach, które mogą nie spełniać rygorystycznych norm czystości spektralnej. Użytkownicy mogą mylić te pojęcia, uważając, że każdy czysty odczynnik będzie odpowiedni do każdej analizy, co nie zawsze jest prawdą. W naukach ścisłych, gdzie precyzja jest kluczowa, błędne założenie dotyczące czystości może prowadzić do niewłaściwych wniosków i fałszywych danych. Aby uniknąć takich pomyłek, laboratoria powinny stosować odczynniki o określonej czystości spektralnej dla metod analitycznych, które mają wysokie wymagania dotyczące dokładności, co odpowiada najlepszym praktykom w branży.