Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 19 maja 2025 18:31
  • Data zakończenia: 19 maja 2025 18:46

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie wykorzystuje się do pomiaru ciśnienia sprężania w silniku?

A. stetoskop
B. oscyloskop
C. stroboskop
D. manometr
Manometr jest narzędziem służącym do pomiaru ciśnienia, które jest kluczowe w diagnostyce silników spalinowych. W przypadku badania ciśnienia sprężania silnika, manometr umożliwia precyzyjny pomiar ciśnienia w cylindrach, co pozwala na ocenę stanu uszczelek zaworów oraz pierścieni tłokowych. Pomiar ten jest istotny, ponieważ niskie ciśnienie sprężania może wskazywać na zużycie silnika lub uszkodzenia, co może prowadzić do spadku mocy i zwiększonego zużycia paliwa. W praktyce, manometr umieszcza się w gnieździe świecy zapłonowej i uruchamia się silnik, aby uzyskać wynik pomiaru. W branży motoryzacyjnej, regularne sprawdzanie ciśnienia sprężania jest zalecane jako część rutynowych przeglądów, co jest zgodne z dobrymi praktykami diagnostyki silników. Przykładem zastosowania manometru może być diagnoza problemów z silnikiem w warsztatach samochodowych, gdzie mechanicy stosują ten przyrząd do identyfikacji usterki i planowania napraw. Wiedza o ciśnieniu sprężania jest również kluczowa dla entuzjastów motoryzacji, którzy dbają o osiągi swoich pojazdów.

Pytanie 2

Jaka będzie łączna kwota za wymianę czujników prędkości obrotowej kół na osi przedniej, jeśli nowy czujnik kosztuje 155,00 zł brutto, a czas wymagany na przeprowadzenie tej naprawy to 1,1 rbh dla jednego koła? Koszt jednej roboczogodziny to 125,00 zł brutto.

A. 430,00 zł
B. 585,00 zł
C. 447,50 zł
D. 292,50 zł
Jak coś poszło nie tak, to często wynika z błędów w obliczeniach lub w interpretacji, co jest całkiem normalne. Przykładem może być to, że czasami nie sumujemy kosztów dobrze i wychodzi, że mamy niższą kwotę niż w rzeczywistości. Gdy obliczamy całkowity koszt wymiany czujników, każdy kawałek, jak koszt części czy robocizny, musi być uwzględniony. Jak zignorujemy coś, to wyniki będą niepełne i pomylone. Na przykład, ktoś mógłby tylko dodać koszt czujników, czyli 310,00 zł, a nie doliczyć robocizny i pomyśleć, że cała naprawa to tylko 310,00 zł, co jest dość dużym błędem. Też nie można pomylić jednostek roboczogodzin, bo wtedy można się zdziwić, ile to wyjdzie. Ważne jest, żeby zrozumieć, jak te różne elementy kształtują końcowy koszt usługi. W motoryzacji precyzja jest kluczowa, więc umiejętność dobrego obliczania kosztów to podstawa. Przydaje się też wiedzieć, jak wygląda standard kosztów w branży, bo to ułatwia zarządzanie wydatkami.

Pytanie 3

Aby przeprowadzić weryfikację wałka rozrządu, należy użyć

A. czujnika zegarowego
B. płyty traserskiej
C. manometru
D. średnicówki
Czujnik zegarowy jest kluczowym narzędziem w weryfikacji wałka rozrządu, ponieważ pozwala na precyzyjne pomiary i sprawdzenie ustawień wałka w zakresie tolerancji producenta. Dzięki swojej konstrukcji umożliwia on dokładne wskazanie wszelkich odchyleń od normy, co jest szczególnie istotne w kontekście precyzyjnego działania silnika. Używając czujnika zegarowego, mechanik może z łatwością monitorować ruch wałka i oceniać, czy jego położenie jest zgodne z wymaganiami technicznymi. Przykładowo, w silnikach o wysokich obrotach, precyzyjne ustawienie rozrządu jest kluczowe dla osiągnięcia optymalnej mocy i efektywności paliwowej. Ponadto, stosowanie czujnika zegarowego jest zgodne z zasadami dobrej praktyki inżynieryjnej, co zapewnia nie tylko zgodność z normami, ale również bezpieczeństwo i niezawodność pracy silnika. Warto również zwrócić uwagę, że czujniki zegarowe są często używane w połączeniu z innymi narzędziami pomiarowymi, co zwiększa dokładność i możliwości diagnostyczne. W przypadku wątpliwości dotyczących precyzji pomiarów, czujnik zegarowy staje się niezastąpionym narzędziem w warsztacie.

Pytanie 4

Jaką substancję można uznać za potencjalne źródło wybuchu oraz pożaru?

A. Uciekający płyn hamulcowy
B. Spaliny wydobywające się z układu wydechowego
C. Uciekający płyn z systemu chłodzenia
D. LPG wyciekające z nieszczelnego systemu zasilania gazem
LPG, czyli gaz płynny, jest substancją wysoce łatwopalną, co czyni go potencjalnym zagrożeniem w kontekście wybuchu i pożaru. W przypadku nieszczelnego układu zasilania gazem, LPG może wydobywać się do otoczenia, gdzie w obecności źródła zapłonu, takiego jak iskra lub wysoka temperatura, może dojść do zapłonu. W przemyśle i pojazdach zasilanych gazem, ważne jest, aby regularnie przeprowadzać kontrole szczelności instalacji gazowych oraz stosować odpowiednie materiały i technologie, które minimalizują ryzyko wycieków. Przykładem może być zastosowanie złączek i uszczelek wykonanych z materiałów odpornych na wysokie ciśnienie i temperaturę. Ponadto, w budynkach, gdzie wykorzystywane jest LPG, powinny być zainstalowane czujniki gazu, które w przypadku wycieku natychmiast alarmują użytkowników, co umożliwia podjęcie szybkich działań zapobiegających pożarowi. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 13786, instalacje gazowe powinny być projektowane i montowane przez wykwalifikowanych specjalistów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 5

Jaką rolę odgrywa synchronizator?

A. Przekazuje moment obrotowy na koła napędowe
B. Płynnie łączy koło biegu z wałem
C. Utrzymuje stałą prędkość silnika
D. Włącza sprzęgło
Synchronizator pełni kluczową rolę w mechanice skrzyni biegów, umożliwiając płynne połączenie koła biegu z wałem napędowym. Jego zadaniem jest eliminowanie różnicy prędkości między tymi elementami, co jest niezbędne do uzyskania gładkiej zmiany biegów. Dzięki synchronizatorom, kierowca może zmieniać biegi bez ryzyka zgrzytów, co znacząco zwiększa komfort jazdy i wydajność pojazdu. W praktyce, synchronizatory wykorzystują tarcze cierne, które dostosowują prędkości obrotowe na poziomie mechanicznym, co również wpływa na redukcję zużycia sprzęgła. W pojazdach sportowych oraz zaawansowanych technicznie samochodach osobowych stosuje się wysoko wydajne synchronizatory, które są odporne na wysokie temperatury i duże obciążenia, co przyczynia się do długotrwałego działania całego układu napędowego. W przypadku modernizacji skrzyni biegów, warto zwrócić uwagę na stan synchronizatorów, ponieważ ich zużycie może prowadzić do problemów z płynnością zmiany biegów oraz zwiększonego ryzyka uszkodzeń innych elementów układu napędowego.

Pytanie 6

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. przekładni głównej
B. napędu wycieraczek
C. przekładni kierowniczej
D. napędu układu rozrządu
Twoje odpowiedzi na temat napędu wycieraczek, przekładni kierowniczej i napędu układu rozrządu pokazują, że jest pewne nieporozumienie z podstawami działania tych systemów w autach. Napęd wycieraczek nie ma nic wspólnego z przekładnią główną, bo jego zadanie to poruszanie ramionami wycieraczek, żeby mogły zmywać wodę z szyby. To zupełnie inny układ, który nie ma wpływu na to, jak moc silnika trafia do kół. Jeśli chodzi o przekładnię kierowniczą, to ona odpowiada za kierowanie autem, przekształcając ruch kierownicy w ruch kół przednich. I znów - nie ma to związku z wałkiem atakującym ani kołem talerzowym. A napęd układu rozrządu reguluje, kiedy zawory silnika się otwierają i zamykają, co jest istotne dla działania silnika, ale też nie ma bezpośredniej relacji z przekładnią główną. Jeśli źle rozumiesz te funkcje, to może się zdarzyć, że będziesz miał problem z diagnostyką i zarządzaniem procesami w pojeździe, co w dłuższej perspektywie może prowadzić do drogich napraw. Dobrze jest zrozumieć, jak te różne mechanizmy współdziałają, żeby auto działało sprawnie i bezpiecznie.

Pytanie 7

Podczas uzupełniania oleju w automatycznej skrzyni biegów, należy użyć oleju oznaczonego symbolem

A. API
B. ATF
C. ŁT4
D. SAE
Odpowiedź ATF (Automatic Transmission Fluid) jest poprawna, ponieważ jest to specyficzny typ oleju stosowanego w automatycznych skrzyniach biegów. Oleje ATF są zaprojektowane, aby spełniać rygorystyczne wymagania dotyczące pracy układów hydraulicznych, smarowania oraz chłodzenia, co jest kluczowe dla prawidłowego funkcjonowania automatycznej przekładni. Właściwości fizykochemiczne oleju ATF, takie jak lepkość, stabilność termiczna oraz odporność na utlenianie, są dostosowane do warunków pracy, jakie panują w skrzyniach automatycznych. Przykładem zastosowania oleju ATF może być jego użycie w samochodach osobowych, gdzie producenci zalecają stosowanie określonych specyfikacji, takich jak Dexron lub Mercon, w zależności od modelu pojazdu. Właściwy dobór oleju ATF wpływa na wydajność skrzyni biegów, a także na jej żywotność, co czyni go kluczowym elementem w serwisowaniu i konserwacji pojazdów.

Pytanie 8

Udarność określa, jaką odporność ma materiał na

A. uderzenie
B. zginanie
C. szlifowanie
D. ściskanie
Udarność to zdolność materiału do absorbujowania energii w momencie uderzenia, co jest kluczowym wskaźnikiem jego odporności na dynamiczne obciążenia. Materiały o wysokiej udarności są w stanie znieść znaczne naprężenia, nie ulegając trwałemu odkształceniu ani łamaniu. Przykładem materiałów o wysokiej udarności są stopy stali, które są powszechnie wykorzystywane w przemyśle budowlanym i motoryzacyjnym, gdzie odporność na uderzenia jest kluczowa dla bezpieczeństwa konstrukcji oraz użytkowników. Dobre praktyki projektowe obejmują analizę udarności materiałów w kontekście ich zastosowania, na przykład poprzez testy Charpy'ego, które pozwalają ocenić, jak materiał zachowa się w zmiennych warunkach temperaturowych. Znalezienie odpowiedniego materiału o odpowiedniej udarności jest kluczowe, zwłaszcza w aplikacjach, takich jak osłony ochronne, gdzie ryzyko upadków lub uderzeń jest wysokie. Zrozumienie udarności materiałów przyczynia się do poprawy trwałości i bezpieczeństwa produktów.

Pytanie 9

Z przedstawionego fragmentu tabeli taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Fiat Grande Punto wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyFiat Punto     Fiat Grande Punto
Czas naprawy
Wymiana uszczelek tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelek tłoczków hamulcowych tył-----2 h
Wymiana uszczelek cylinderków hamulcowych tył2,5 h-----
Odpowietrzenie układu hamulcowego1 h1 h

A. 5,0 godzin
B. 4,5 godziny
C. 4,0 godziny
D. 3,5 godziny
Wybór 3,5 godziny, 5,0 godzin lub 4,0 godziny może wynikać z różnych nieporozumień związanych z oszacowaniem czasu wymiany uszczelnień tłoczków hamulcowych. Jednym z typowych błędów myślowych jest zaniżenie lub zawyżenie czasu potrzebnego na wykonanie pełnej procedury serwisowej. Na przykład, odpowietrzenie układu hamulcowego, które jest kluczowym elementem tego procesu, wymaga staranności oraz odpowiednich narzędzi, co w przypadku nieodpowiedniego oszacowania może prowadzić do skrócenia czasu serwisu. Często mechanicy, szczególnie mniej doświadczeni, mogą nie brać pod uwagę dodatkowego czasu potrzebnego na wykonanie przygotowań i montażu, co skutkuje błędnym oszacowaniem. Ponadto, mogą wystąpić różnice w czasie napraw w zależności od stanu technicznego pojazdu, co również powinno być uwzględnione w szacunkach. Również, przy ocenie złożoności naprawy, mechanicy mogą nie dostrzegać specyfiki konstrukcyjnej danego modelu, co prowadzi do dalszych nieprawidłowości w oszacowaniu. Zrozumienie tych aspektów jest kluczowe, aby unikać błędnych decyzji i właściwie planować czas pracy w warsztacie.

Pytanie 10

Znaczenie wilgoci dla parametrów eksploatacyjnych jest szczególnie istotne w odniesieniu do

A. oleju silnikowego
B. układu klimatyzacji
C. płynu hamulcowego
D. jednostki napędowej
Płyn hamulcowy jest substancją, która charakteryzuje się bardzo wysoką higroskopijnością, co oznacza, że ma zdolność do absorpcji wilgoci z otoczenia. Obecność wody w układzie hamulcowym może prowadzić do obniżenia temperatury wrzenia płynu, co z kolei może skutkować zjawiskiem tzw. 'pompowania' hamulców, gdyż płyn hamulcowy, w wyniku podgrzania, może zacząć wrzeć. W rezultacie pojawia się para, która nie jest w stanie przenieść siły z pedału hamulca na układ hamulcowy, co może prowadzić do znacznego pogorszenia skuteczności hamowania. Dlatego niezwykle istotne jest regularne kontrolowanie stanu płynu hamulcowego oraz jego wymiana co dwa lata, zgodnie z zaleceniami producentów pojazdów. W kontekście bezpieczeństwa, minimalizacja wilgoci w płynie hamulcowym jest kluczowym elementem utrzymania optymalnych parametrów eksploatacyjnych, co potwierdzają standardy branżowe, takie jak SAE J1703.

Pytanie 11

Refraktometr stosowany w motoryzacji nie nadaje się do wykonania pomiaru

A. temperatury wrzenia płynu hamulcowego
B. temperatury krzepnięcia płynu chłodzącego
C. gęstości elektrolitu w akumulatorze
D. temperatury krzepnięcia płynu do spryskiwacza
Temperatura wrzenia płynu hamulcowego to parametr, który nie jest możliwy do zmierzenia za pomocą refraktometru, ponieważ to urządzenie służy do określenia wskaźników optycznych cieczy, takich jak gęstość czy indeks refrakcji. Płyn hamulcowy podlega różnym standardom, które wymagają stosowania specjalistycznych urządzeń do pomiaru jego właściwości fizykochemicznych, w tym temperatury wrzenia. Przykładowo, w przypadku płynów hamulcowych, istotnym parametrem jest ich stabilność termiczna, a odpowiednie standardy, jak DOT (Department of Transportation), wskazują na konieczność przeprowadzania testów w laboratoriach z użyciem sprzętu przystosowanego do takich pomiarów. Właściwy pomiar temperatury wrzenia jest kluczowy dla zapewnienia bezpieczeństwa jazdy, ponieważ obniżona temperatura wrzenia płynu może prowadzić do powstawania pęcherzy pary, co zmniejsza skuteczność hamulców. W praktyce, aby określić temperaturę wrzenia, należy stosować metody takie jak destylacja lub użycie specjalistycznych termometrów, dostosowanych do wysokich temperatur."

Pytanie 12

Podczas pokonywania zakrętu przez pojazd, stabilizator w układzie zawieszenia zapobiega

A. przemieszczaniu się bocznemu kół.
B. przesunięciu geometrycznemu osi drogi.
C. utracie przyczepności kół wewnętrznych.
D. blokowaniu kół.
Utrata przyczepności kół wewnętrznych podczas pokonywania zakrętu jest kluczowym aspektem, który stabilizator w układzie zawieszenia ma na celu minimalizować. Stabilizatory, znane również jako stabilizatory poprzeczne, działają poprzez połączenie dwóch przeciwnych kół wzdłuż osi pojazdu, co umożliwia równomierne rozłożenie obciążeń. Kiedy samochód wchodzi w zakręt, siły odśrodkowe powodują przechylanie się nadwozia, co może prowadzić do utraty przyczepności kół wewnętrznych. Stabilizator ogranicza to przechylenie, utrzymując koła w optymalnej pozycji na drodze, co zwiększa przyczepność i stabilność pojazdu, szczególnie w zakrętach. Przykłady zastosowania stabilizatorów można znaleźć w samochodach osobowych, sportowych, a także w pojazdach użytkowych, gdzie stabilność i bezpieczeństwo są kluczowe. Dobór odpowiedniego stabilizatora jest zgodny z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie jakości i bezpieczeństwa w projektowaniu układów zawieszenia.

Pytanie 13

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. SOHC
B. OHV
C. OHC
D. DOHC
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 14

Dynamiczne niewyważenie koła występuje, gdy

A. felga ma większą masę.
B. opona ma większą masę.
C. masa jest nierównomiernie rozłożona - skoncentrowana po jednej stronie.
D. masa jest nierównomiernie rozłożona - po różnych stronach.
Niewyważenie dynamiczne koła występuje w sytuacji, gdy masa nie jest równomiernie rozłożona po obwodzie felgi. Odpowiedź wskazująca na 'nierównomiernie rozłożoną masę - po różnych jej stronach' jest prawidłowa, ponieważ właśnie takie rozłożenie masy prowadzi do powstawania sił odśrodkowych, które generują wibracje podczas obrotu koła. Przykładem praktycznym może być sytuacja, gdy na kole znajdują się różne ciężarki lub uszkodzenia opony, które mogą zmieniać rozkład masy. W branży motoryzacyjnej standardowym zabiegiem w przypadku niewyważenia kół jest ich dynamiczne wyważanie, które polega na umieszczaniu ciężarków w odpowiednich miejscach, aby zredukować wibracje. Stosowanie tej praktyki jest kluczowe dla zapewnienia stabilnej jazdy oraz wydłużenia żywotności układu zawieszenia pojazdu. Należy również pamiętać, że niewyważone koła mogą prowadzić do nadmiernego zużycia opon oraz zwiększonego zużycia paliwa, co jest niekorzystne zarówno dla użytkownika, jak i dla środowiska.

Pytanie 15

Proces odpowietrzania hamulców w pojeździe, który nie jest wyposażony w system ABS, powinien być realizowany

A. w przeciwnym kierunku do ruchu wskazówek zegara
B. rozpoczynając od najdalszego koła od pompy hamulcowej
C. rozpoczynając od najbliższego koła do pompy hamulcowej
D. zgodnie z ruchem wskazówek zegara
Odpowietrzanie układu hamulcowego pojazdu nie wyposażonego w układ ABS powinno być przeprowadzane, zaczynając od najdalszego koła od pompy hamulcowej. Taki sposób działania jest zgodny z zasadami hydrauliki oraz praktykami stosowanymi w branży motoryzacyjnej. W układzie hamulcowym, powietrze gromadzi się w miejscach, gdzie ciśnienie jest najniższe, a więc najczęściej w najdalszym kole od pompy. Przy odkręcaniu odpowietrznika w tym kole, powietrze, które wpływa do układu, jest usuwane, co pozwala na poprawne działanie hydrauliki hamulcowej. Przykładowo, jeśli odpowietrzanie zaczniemy od najbliższego koła, powietrze nie zostanie całkowicie usunięte, co może prowadzić do słabszej efektywności hamulców oraz wydłużenia drogi hamowania. Przy odpowiednim odpowietrzaniu układu, podczas serwisowania pojazdu, można zapewnić jego bezpieczeństwo oraz prawidłowe działanie, co jest kluczowe dla każdego kierowcy.

Pytanie 16

W standardowym układzie napędowym do połączenia skrzyni biegów z tylnym mostem wykorzystywany jest

A. wał korbowy
B. łącznik z tworzywa sztucznego
C. wał napędowy
D. przegub kulowy
Wał napędowy jest kluczowym elementem w klasycznym układzie napędowym, który łączy skrzynię biegów z mostem napędowym. Jego główną rolą jest przenoszenie momentu obrotowego z silnika, który jest generowany przez skrzynię biegów, na koła pojazdu. Wał napędowy jest zazwyczaj wykonany z materiałów o wysokiej wytrzymałości, takich jak stal, aby wytrzymać duże obciążenia oraz drgania, które występują podczas pracy. W praktyce, wał napędowy jest także wyposażony w przeguby, które pozwalają na kompensację ruchów zawieszenia. Dzięki temu, nawet jeśli koła nie poruszają się na tej samej wysokości, wał napędowy może efektywnie przenosić moc. W nowoczesnych pojazdach stosuje się różne rozwiązania, takie jak wały o zmiennej długości czy systemy tłumienia drgań, które poprawiają komfort jazdy oraz wydajność układu napędowego. Standardy branżowe, takie jak ISO 9001, kładą nacisk na jakość materiałów oraz precyzję wykonania, co jest kluczowe dla bezpieczeństwa i efektywności działania wałów napędowych.

Pytanie 17

Energia mechaniczna w silnikach cieplnych funkcjonujących prawidłowo nie powstaje w wyniku procesu spalania

A. oleju napędowego
B. oleju silnikowego
C. benzyny
D. gazu ziemnego
Olej silnikowy jest substancją, która nie jest bezpośrednio używana do wytwarzania energii mechanicznej w silnikach cieplnych. Jego podstawowym zadaniem jest smarowanie ruchomych części silnika, co zapobiega ich zużyciu oraz przegrzewaniu. W silnikach cieplnych, takich jak silniki spalinowe, energia mechaniczna jest uzyskiwana zazwyczaj w wyniku spalania paliw, takich jak benzyna, olej napędowy czy gaz ziemny. Proces ten polega na przekształceniu energii chemicznej zawartej w paliwie na energię cieplną, która następnie wywołuje ruch tłoków. Olej silnikowy, choć niezwykle ważny dla prawidłowego funkcjonowania silnika, nie ma roli w tym procesie konwersji energii. Zrozumienie roli oleju silnikowego w systemie smarowania podkreśla znaczenie jego regularnej wymiany oraz stosowania olejów o odpowiednich parametrach, co jest zgodne z zaleceniami producentów pojazdów. Dbałość o układ smarowania przyczynia się do wydłużenia trwałości silnika oraz optymalizacji jego pracy.

Pytanie 18

Wylicz koszt demontażu wszystkich kół zamocowanych w pojeździe na 5 śrub, przy czasie pracy wynoszącym 30 sekund na jedną śrubę i stawce roboczogodziny wynoszącej 60 zł?

A. 20,00 zł
B. 12,00 zł
C. 10,00 zł
D. 5,00 zł
Często błędne odpowiedzi wynikają z tego, że ktoś źle oszacował czas pracy lub liczbę śrub. Może na przykład ktoś pomylił się i pomyślał, że jedna śruba demontuje się szybciej, niż w rzeczywistości, co wpływa na całkowity koszt. Inny typowy błąd to pominięcie liczby śrub w obliczeniach; jeśli weźmiesz za mało lub za dużo śrub, to wyjdą Ci błędne wyniki. Ważne jest też, żeby dobrze wiedzieć, ile kosztuje roboczogodzina. Osoby, które nie mają doświadczenia, czasem przyjmują złe stawki, co kończy się pomyłkami. Mądrym pomysłem jest zrozumienie całego procesu od A do Z, żeby lepiej analizować koszty. Wartość roboczogodziny powinna być dopasowana do tego, co jest w branży, a nie na oko. Każde z tych pojęć jest ze sobą powiązane, a brak wiedzy w jednym moze prowadzić do błędnych wniosków w innych.

Pytanie 19

Jaką częścią łączy się wał korbowy z tłokiem?

A. zaworu
B. popychacza
C. sworznia
D. korbowodu
Wiesz, odpowiedź, którą zaznaczyłeś, to korbowód. To naprawdę ważny element w silnikach spalinowych i innych mechanizmach. Jego zadaniem jest przekształcanie ruchu posuwistego tłoka na ruch obrotowy wału korbowego. Bez korbowodu wszystko by się rozjechało. Ciekawostka: korbowody są zwykle wykonane z materiałów takich jak stal czy aluminium wzmocnione kompozytami, bo muszą wytrzymać naprawdę duże obciążenia. Mówiąc o silnikach samochodowych, to jego działanie jest kluczowe dla wydajności całego silnika. W projektowaniu korbowodów zwraca się też uwagę na to, żeby były jak najlżejsze, ale nadal wystarczająco mocne. To ma ogromne znaczenie zwłaszcza w sportach motorowych.

Pytanie 20

Luz zmierzony w zamku pierścienia tłokowego, umieszczonego w cylindrze silnika po przeprowadzonej naprawie, wynosi 0,6 mm. Producent wskazuje, że ten luz powinien wynosić od 0,25 do 0,40 mm. Uzyskany wynik wskazuje, że

A. luz mieści się w podanych zaleceniach
B. luz jest zbyt mały
C. luz zamka pierścienia należy powiększyć
D. luz jest zbyt duży
Wynik pomiaru luzu w zamku pierścienia tłokowego, który wynosi 0,6 mm, jest powyżej maksymalnej wartości zalecanej przez producenta, która wynosi 0,40 mm. Należy pamiętać, że luz ten jest kluczowy dla prawidłowego funkcjonowania silnika, gdyż zbyt duży luz może prowadzić do zwiększenia zużycia paliwa, a także obniżenia efektywności pracy tłoka. W praktyce, nadmierny luz skutkuje też problemami z uszczelnieniem komory spalania, co może prowadzić do spadku mocy silnika oraz podwyższonej emisji spalin. Standardy branżowe, takie jak normy ISO czy SAE, podkreślają znaczenie precyzyjnego pomiaru i utrzymania luzów w zalecanych granicach, aby zapewnić optymalną wydajność silnika. W przypadku stwierdzenia zbyt dużego luzu, konieczne jest przeprowadzenie dodatkowych działań, takich jak wymiana pierścieni tłokowych lub ich dostosowanie, aby przywrócić odpowiednie parametry funkcjonalne.

Pytanie 21

W jakich jednostkach mierzy się pojemność akumulatora?

A. omach [Ohm]
B. woltach [V]
C. amperach [A]
D. amperogodzinach [Ah]
Pojemność akumulatora odnosi się do ilości energii, jaką akumulator jest w stanie przechować, i nie jest właściwie mierzona w woltach, amperach ani omach. Wolt [V] to jednostka napięcia elektrycznego, która wskazuje różnicę potencjałów między dwoma punktami w obwodzie elektrycznym. W kontekście akumulatorów, napięcie jest istotne, ale nie definiuje ich pojemności. Amper [A] to jednostka natężenia prądu elektrycznego, a jego pomiar nie odnosi się do zdolności akumulatora do przechowywania energii, lecz do ilości energii przepływającej przez obwód w danym czasie. Wreszcie, om [Ohm] to jednostka oporu elektrycznego, która określa, jak bardzo dany element obwodu opiera się przepływowi prądu. Zrozumienie, że pojemność akumulatora jest czymś innym niż napięcie, natężenie czy opór, jest kluczowe dla prawidłowego posługiwania się tymi jednostkami. Błędne interpretacje mogą prowadzić do niewłaściwego doboru akumulatorów do zastosowań, co w konsekwencji może skutkować ich niewłaściwą pracą lub awarią systemów zasilania. Przy doborze akumulatorów ważne jest uwzględnienie rzeczywistych potrzeb energetycznych oraz specyfikacji technicznych producenta, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 22

Masa własna pojazdu obejmuje

A. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
B. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
C. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
D. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego definicji masy własnej pojazdu. Odpowiedzi, które pomijają płyny eksploatacyjne lub sugerują brak kierowcy i pasażerów, nie oddają rzeczywistości i mogą prowadzić do poważnych błędów w obliczeniach wydajności pojazdu. Masa pojazdu jest elementem kluczowym dla uzyskania precyzyjnych danych dotyczących wydajności i bezpieczeństwa. Pojazdy są projektowane z uwzględnieniem ich masy, co ma wpływ na konstrukcję układu hamulcowego, zawieszenia oraz silnika. Pominięcie masy płynów eksploatacyjnych może prowadzić do wprowadzenia w błąd odnośnie do zdolności pojazdu do przewozu ładunków. Na przykład, niektóre normy dotyczące przewozu towarów określają maksymalne masy całkowite, które obejmują zarówno masę własną, jak i ładunek oraz pasażerów. Zrozumienie tej koncepcji jest fundamentalne dla prawidłowego korzystania z pojazdów i zgodności z przepisami drogowymi oraz normami bezpieczeństwa. Wszelkie obliczenia związane z masą pojazdu powinny być dokładne i uwzględniać wszystkie istotne komponenty, aby zapewnić odpowiednie osiągi i bezpieczeństwo eksploatacji.

Pytanie 23

W trakcie okresowych przeglądów technicznych pojazdów analizowany jest stan techniczny

A. komponentów wpływających wyłącznie na bezpieczeństwo
B. komponentów wpływających zarówno na bezpieczeństwo, jak i ekologię
C. wszystkich komponentów pojazdu
D. komponentów mających znaczenie jedynie dla ekologii
Niewłaściwe podejście do oceny stanu technicznego pojazdów ogranicza się jedynie do wybranych aspektów, co w dłuższej perspektywie może prowadzić do poważnych konsekwencji. Odpowiedzi sugerujące, że badania techniczne obejmują tylko zespoły mające wpływ na bezpieczeństwo, lub tylko na ekologię, ignorują złożoność i wzajemne powiązania tych dwóch obszarów. Przykładowo, zaniedbanie aspektów ekologicznych może prowadzić do większych emisji spalin, co ma negatywny wpływ na zdrowie publiczne, a tym samym pośrednio zagraża bezpieczeństwu. Z kolei skupienie się wyłącznie na bezpieczeństwie technicznym bez uwzględnienia norm ekologicznych nie jest zgodne z aktualnymi przepisami i nie spełnia standardów branżowych, takich jak dyrektywy Unii Europejskiej dotyczące ochrony środowiska. W praktyce, bezpieczeństwo i ekologia są ze sobą nierozerwalnie związane, a ich równoczesna ocena jest kluczowa dla prawidłowego funkcjonowania systemu transportowego. Ignorowanie ekologicznych aspektów technicznych pojazdu prowadzi nie tylko do ryzyka dla ludzi, ale również do degradacji środowiska, co jest sprzeczne z zasadami zrównoważonego rozwoju. Dlatego istotne jest, aby podczas badań technicznych uwzględniać zarówno bezpieczeństwo, jak i aspekty ekologiczne, co stanowi fundament odpowiedzialnego użytkowania pojazdów.

Pytanie 24

Ile czasu zajmie całkowite odpowietrzenie hamulców w samochodzie osobowym wyposażonym w hydrauliczny układ hamulcowy, jeżeli czas potrzebny na odpowietrzenie każdego koła wynosi 15 minut?

A. 0,5 godz
B. 1,0 godz
C. 1,5 godz
D. 2,0 godz
Odpowiedź 1,0 godz. jest prawidłowa, ponieważ całkowity czas odpowietrzenia hamulców w samochodzie osobowym z hydraulicznym układem hamulcowym obliczamy, mnożąc czas pracy na jedno koło przez liczbę kół. W standardowych samochodach osobowych mamy cztery koła, a czas odpowietrzenia dla każdego z nich wynosi 15 minut. Stąd całkowity czas odpowietrzenia wynosi 15 minut x 4 = 60 minut, co przekłada się na 1,0 godz. W praktyce, procedura odpowietrzania hamulców jest kluczowa dla zapewnienia ich prawidłowego działania, eliminacji powietrza z układu oraz utrzymania odpowiedniego ciśnienia hydraulicznego. Wiele warsztatów stosuje technikę odpowietrzania w oparciu o standardy, takie jak SAE J1401, które określają procedury i narzędzia potrzebne do prawidłowego przeprowadzenia tej operacji. Zrozumienie tego procesu jest niezbędne dla mechaników oraz właścicieli pojazdów, aby zapewnić bezpieczeństwo i efektywność układu hamulcowego.

Pytanie 25

Dokument, który jest wymagany do przyjęcia pojazdu na diagnostykę, to

A. protokół naprawy
B. zlecenie wstępne
C. kosztorys realizacji zlecenia
D. faktura VAT
Zlecenie wstępne jest kluczowym dokumentem, który pozwala na formalne przyjęcie pojazdu do diagnostyki i naprawy. Zawiera ono istotne informacje dotyczące rodzaju usługi, jaką ma przejść pojazd, oraz szczegóły dotyczące problemów zgłoszonych przez właściciela. Umożliwia to diagnostom i mechanikom skuteczne ustalenie priorytetów oraz planu działania. W praktyce, zlecenie wstępne pomaga w organizacji pracy warsztatu, umożliwiając przypisanie odpowiednich zasobów i czasu do konkretnego zlecenia. Jest także dokumentem, który stanowi dowód na zlecenie wykonania pracy, co jest istotne z perspektywy rozliczeń oraz ewentualnych reklamacji. Przyjęcie pojazdu bez zlecenia wstępnego narusza standardy zarządzania jakością w warsztatach samochodowych, co może prowadzić do nieefektywności i problemów w komunikacji z klientami.

Pytanie 26

Jaką wartość minimalną powinien mieć wskaźnik TWI w oponie całorocznej?

A. 1,6 mm
B. 4,0 mm
C. 3,0 mm
D. 1,0 mm
Minimalny wymagany wskaźnik głębokości bieżnika opony wynosi 1,6 mm. Ta wartość jest zgodna z normami prawnymi w wielu krajach, co ma na celu zapewnienie bezpieczeństwa jazdy, zwłaszcza w warunkach deszczowych. Opona z minimalną głębokością bieżnika poniżej 1,6 mm nie zapewnia odpowiedniego odprowadzania wody, co zwiększa ryzyko aquaplaningu. Z praktycznego punktu widzenia, opony powinny być regularnie kontrolowane pod kątem głębokości bieżnika, aby zapewnić optymalną przyczepność i stabilność pojazdu. Warto pamiętać, że im głębszy bieżnik, tym lepsza wydajność opony, szczególnie w trudnych warunkach atmosferycznych. Dlatego zaleca się wymianę opon, gdy ich głębokość bieżnika zbliża się do tej wartości, aby zapewnić sobie i innym uczestnikom ruchu drogowego maksymalne bezpieczeństwo na drodze.

Pytanie 27

Która z żarówek pełni funkcję zarówno świateł mijania, jak i drogowych?

A. H3
B. HI
C. H7
D. H4
Wybór innych typów żarówek, takich jak H7, H3 czy HI, do zastosowań jako źródło światła mijania i drogowego nie jest poprawny, ponieważ każdy z tych typów ma swoje specyficzne przeznaczenie i konstrukcję. Żarówka H7 jest zazwyczaj stosowana w nowoczesnych reflektorach jako oddzielne źródło światła drogowego lub mijania, ale nie może pełnić obu funkcji jednocześnie z powodu braku podwójnego włókna. Jest to typowa pomyłka, którą popełniają użytkownicy, zakładając, że każda żarówka może działać w podwójnej roli. H3 jest żarówką stosowaną głównie w światłach przeciwmgielnych i nie ma zdolności do emitowania obu rodzajów strumienia świetlnego. W tym kontekście, wybór HI również nie jest uzasadniony, ponieważ jest to typ żarówki przeznaczony wyłącznie do jednego z trybów (najczęściej jako światła drogowe). Błędy te mogą wynikać z niepełnej wiedzy na temat konstrukcji i zastosowania różnych typów żarówek. Współczesne systemy oświetleniowe stają się coraz bardziej złożone, a ich prawidłowy dobór jest kluczowy dla bezpieczeństwa na drodze. Wybierając odpowiednią żarówkę, należy kierować się nie tylko ich przeznaczeniem, ale również kompatybilnością z systemem elektrycznym pojazdu, co jest szczególnie istotne w kontekście obowiązujących norm i przepisów dotyczących oświetlenia w motoryzacji.

Pytanie 28

Jak dokonuje się odczytu ustawienia geometrii kół?

A. przy skręcie kół o 30 stopni
B. wyłącznie w przypadku pojazdu nieobciążonego
C. zgodnie z wytycznymi producenta
D. wyłącznie w przypadku pojazdu obciążonego
Odpowiedź "zgodnie z zaleceniami producenta" jest prawidłowa, ponieważ ustawienia geometrii kół powinny być dokonywane zgodnie z zaleceniami producenta pojazdu. Każdy producent definiuje specyficzne parametry dla ustawienia geometrii, takie jak kąt nachylenia, zbieżność czy kąt wyprzedzenia sworznia zwrotnicy, które są optymalne dla danego modelu pojazdu. Przykładowo, niewłaściwe ustawienie geometrii kół może prowadzić do nadmiernego zużycia opon, problemów z układem kierowniczym, a także wpływać na stabilność pojazdu podczas jazdy. Użycie odpowiednich narzędzi i technik, jak np. laserowych systemów do pomiaru geometrii, umożliwia precyzyjne ustawienie, co jest kluczowe dla bezpieczeństwa i komfortu jazdy. W praktyce, zaleca się przeprowadzanie tych regulacji podczas rutynowych przeglądów technicznych, szczególnie po zmianie zawieszenia, wymiany opon lub kolizji. Regularne sprawdzanie geometrii kół pozwala na utrzymanie właściwych parametrów, co przekłada się na lepszą wydajność paliwową oraz dłuższą żywotność komponentów zawieszenia.

Pytanie 29

Luz na pedale sprzęgła wymaga systematycznej weryfikacji oraz regulacji z uwagi na jego zużycie

A. koła zamachowego
B. tarczy sprzęgłowej
C. wałka sprzęgłowego
D. łożyska wałka sprzęgłowego
Poprawna odpowiedź to tarcza sprzęgłowa, ponieważ to właśnie ona jest elementem, który zużywa się w trakcie eksploatacji pojazdu. Tarcza sprzęgłowa jest kluczowym komponentem układu sprzęgłowego, który umożliwia przeniesienie momentu obrotowego z silnika na skrzynię biegów. Z czasem, na skutek tarcia i wysokich temperatur, materiał tarczy może ulegać degradacji, co prowadzi do zmniejszenia skuteczności sprzęgła oraz zwiększenia luzu na pedale. Regularna kontrola i regulacja luzu na pedale sprzęgła są ważne dla zapewnienia prawidłowego działania układu oraz komfortu podczas jazdy. W przypadku stwierdzenia nadmiernego luzu, konieczne jest sprawdzenie stanu tarczy sprzęgłowej oraz innych elementów, takich jak docisk. W dobrych praktykach zaleca się wymianę tarczy sprzęgłowej co około 100 000 kilometrów, jednak zależy to również od stylu jazdy oraz warunków eksploatacyjnych. Dobrze przeprowadzone regulacje mogą znacząco wydłużyć żywotność sprzęgła oraz poprawić bezpieczeństwo jazdy.

Pytanie 30

Podczas regulacji zaworów w silniku spalinowym należy

A. sprawdzić poziom oleju silnikowego
B. ustawić odpowiedni luz zaworowy
C. wymienić uszczelki zaworowe
D. wyczyścić świece zapłonowe
Ustawienie odpowiedniego luzu zaworowego jest kluczowym etapem w procesie regulacji zaworów w silniku spalinowym. Luz zaworowy to przestrzeń między końcem trzonka zaworu a jego elementem sterującym, takim jak popychacz czy dźwigienka. Prawidłowy luz zapewnia, że zawory otwierają się i zamykają w odpowiednich momentach, co jest niezbędne dla optymalnej pracy silnika. Zbyt mały luz może prowadzić do niedomykania się zaworów, co skutkuje spadkiem kompresji i uszkodzeniem zaworu lub głowicy. Z kolei zbyt duży luz zaworowy powoduje głośną pracę silnika, a także zmniejsza efektywność jego pracy, gdyż zawory nie otwierają się do końca. Regulacja luzu zaworowego powinna być wykonana zgodnie z zaleceniami producenta pojazdu, które można znaleźć w instrukcji serwisowej. Zastosowanie odpowiednich narzędzi, takich jak szczelinomierz, jest niezbędne do precyzyjnego ustawienia luzu. Regularna kontrola i regulacja luzu zaworowego jest standardową praktyką konserwacyjną, co pomaga w utrzymaniu sprawności i wydajności silnika przez długi czas.

Pytanie 31

Co należy sprawdzić i ewentualnie wymienić, gdy w pojeździe podczas startu występują zauważalne wibracje silnika oraz drgania?

A. amortyzatory
B. opony
C. tarcze hamulcowe
D. tarcze sprzęgła z dociskiem
Odpowiedź dotycząca tarczy sprzęgła z dociskiem jest prawidłowa, ponieważ drgania silnika oraz wibracje podczas ruszania z miejsca mogą być spowodowane niewłaściwym działaniem sprzęgła. Tarcza sprzęgła i docisk są kluczowymi komponentami w układzie przeniesienia napędu, a ich uszkodzenie może prowadzić do nieefektywnego połączenia pomiędzy silnikiem a skrzynią biegów. W przypadku, gdy tarcza jest zużyta lub uszkodzona, może dochodzić do poślizgu, co objawia się widocznymi wibracjami. Zastosowanie sprzęgła o wysokiej jakości oraz regularne kontrole stanu technicznego są zgodne z dobrymi praktykami w motoryzacji. Zaleca się, aby mechanicy regularnie sprawdzali stan sprzęgła, zwłaszcza w pojazdach intensywnie eksploatowanych, by uniknąć poważniejszych uszkodzeń. Wymiana tarczy sprzęgła jest złożonym procesem, który powinien być przeprowadzony przez wykwalifikowanego specjalistę, aby zapewnić niezawodność i bezpieczeństwo pojazdu.

Pytanie 32

Gdzie wykorzystywana jest przekładnia planetarna?

A. w prądnicy
B. w pompie wtryskowej
C. w rozruszniku
D. w alternatorze
Alternator, pompa wtryskowa oraz prądnica to urządzenia, które pełnią różne funkcje w systemach zasilania i napędu, jednak nie wykorzystują przekładni planetarnych w takim samym zakresie jak rozrusznik. Alternator, odpowiedzialny za generowanie energii elektrycznej, stosuje zasadę indukcji elektromagnetycznej, a jego budowa opiera się na wirniku i statorze, co nie wymaga zastosowania przekładni planetarnych. Z kolei pompy wtryskowe, które mają na celu dostarczenie paliwa do silników spalinowych, operują na zasadzie ciśnienia i nie potrzebują złożonych mechanizmów przekładniowych do działania. Prądnica, podobnie jak alternator, służy do produkcji energii elektrycznej w oparciu o ruch obrotowy. W tych urządzeniach, przy użyciu przekładni planetarnych, mogłoby to wprowadzać niepotrzebne komplikacje oraz zwiększać masę i koszty produkcji. Typowym błędem myślowym jest założenie, że każde urządzenie mechaniczne, które wymaga przekształcenia momentu obrotowego, powinno korzystać z przekładni planetarnej, podczas gdy w rzeczywistości dobór mechanizmów zależy od specyficznych wymagań konstrukcyjnych i funkcjonalnych danego systemu. Stąd w przypadku alternatora, pompy wtryskowej czy prądnicy, inne rozwiązania mechaniczne są bardziej odpowiednie, co wpływa na efektywność oraz ekonomikę ich działania.

Pytanie 33

Po wymianie końcówek drążka kierowniczego należy koniecznie zweryfikować oraz w razie potrzeby przeprowadzić regulację

A. wyważenia kół
B. ustawienia świateł
C. zbieżności kół tylnych
D. zbieżności kół przednich
Po wymianie końcówek drążka kierowniczego kluczowe jest sprawdzenie i regulacja zbieżności kół przednich, ponieważ niewłaściwa zbieżność może prowadzić do nierównomiernego zużycia opon, pogorszenia stabilności pojazdu oraz negatywnego wpływu na jego właściwości jezdne. Zbieżność odnosi się do ustawienia kół w stosunku do siebie oraz do linii środkowej pojazdu. Utrzymanie prawidłowej zbieżności jest niezbędne, aby zapewnić optymalne prowadzenie i komfort jazdy. Przykładowo, jeśli kółka są zbieżne zbyt mocno do wewnątrz lub na zewnątrz, może to prowadzić do trudności w manewrowaniu oraz zwiększonego oporu toczenia. W praktyce, po wymianie końcówek drążka, mechanicy często korzystają z profesjonalnych urządzeń do pomiaru zbieżności, aby precyzyjnie ustawić kąty pracy kół. Zgodnie z zaleceniami branżowymi, regulację zbieżności powinno się przeprowadzać co najmniej raz w roku lub po każdej większej interwencji w układ kierowniczy, aby zapewnić długoterminowe bezpieczeństwo i efektywność pojazdu.

Pytanie 34

Jakie informacje z dowodu rejestracyjnego pojazdu będzie potrzebował mechanik przy zamawianiu części zamiennych do naprawy pojazdu?

A. Numer rejestracyjny oraz dane właściciela pojazdu
B. Datę ważności przeglądu technicznego
C. Datę pierwszej rejestracji w kraju
D. Numer identyfikacyjny pojazdu
Numer identyfikacyjny pojazdu (VIN) jest kluczowym elementem przy zamawianiu części zamiennych, gdyż jest unikalnym identyfikatorem danego pojazdu. Mechanik korzysta z VIN, aby precyzyjnie zidentyfikować model, rok produkcji oraz szczegółowe dane techniczne, co jest niezbędne do zamówienia odpowiednich części. Przykładowo, w przypadku zamówienia elementów zawieszenia, różne modele pojazdów mogą mieć różne specyfikacje, a VIN pozwala na wyeliminowanie pomyłek. Wiele systemów zamówień części opiera się na bazach danych, które przetwarzają dane VIN i oferują odpowiednie komponenty, co minimalizuje ryzyko błędów. Standardy branżowe, takie jak ISO 3833, definiują system identyfikacji pojazdów, co dodatkowo podkreśla znaczenie VIN w obiegu informacji o częściach zamiennych. Zrozumienie tej procedury jest fundamentalne dla efektywnej pracy w warsztatach samochodowych oraz dla zapewnienia bezpieczeństwa i jakości napraw.

Pytanie 35

Niski wynik uzyskany w pomiarze przeprowadzonym metodą Eusama wskazuje na potrzebę wymiany

A. sprężyny śrubowe zawieszenia
B. hamulce tarczowe
C. amortyzatory
D. stabilizatory
Amortyzatory to naprawdę ważny element w zawieszeniu każdego auta. Dobrze działają, kiedy kontrolują ruchy sprężyn i redukują drgania. Jak masz niski wynik z metody Eusama, to znaczy, że twoje amortyzatory mogą nie działać jak powinny, a to może wpłynąć na całe zawieszenie. W branży zwraca się uwagę na to, żeby regularnie sprawdzać i serwisować amortyzatory, bo to podstawa dla bezpieczeństwa i komfortu jazdy. Jeżeli wynik jest niziutki, to warto pomyśleć o ich wymianie. Dzięki temu poprawisz stabilność auta i skrócisz drogę hamowania. Ignorowanie stanu amortyzatorów może prowadzić do jakichś poważniejszych problemów, a nawet wypadków. Dlatego dobrze, żeby mechanicy na bieżąco kontrolowali ich stan, zwłaszcza że to jedna z najlepszych praktyk w tej branży.

Pytanie 36

Jak wyraża się moc silnika spalinowego?

A. kWh
B. kW
C. Nm
D. MPa
Moc silnika spalinowego podawana w kilowatach (kW) jest standardowym sposobem określania wydajności silników, co ma znaczenie zarówno w przemyśle motoryzacyjnym, jak i w aplikacjach przemysłowych. Moc wyrażona w kW odnosi się do ilości energii, jaką silnik jest w stanie wygenerować w jednostce czasu. Przykładowo, silnik samochodu osobowego o mocy 100 kW będzie w stanie wytworzyć 100 kilowatogodzin energii w ciągu jednej godziny pracy. Ponadto, moc jest kluczowym parametrem w kontekście przepisów dotyczących emisji spalin oraz regulacji dotyczących efektywności energetycznej. W praktyce, moc silnika ma bezpośredni wpływ na osiągi pojazdu, jego zdolność do przyspieszania oraz na efektywność paliwową. Zgodnie z normami ISO 14396, moc silnika spalinowego powinna być mierzona w sposób, który uwzględnia warunki testowe, co zapewnia porównywalność wyników między różnymi producentami i modelami. Dlatego też, wiedza na temat jednostki kW jest istotna dla inżynierów, techników oraz użytkowników, którzy chcą dokonywać świadomych wyborów dotyczących technologii silnikowej.

Pytanie 37

Podczas obsługi okresowej pojazdu wymieniono materiały eksploatacyjne w ilościach podanych w tabeli. Koszt jednej roboczogodziny to 100 zł, a czas pracy mechanika wyniósł 1,5 godziny. Całkowity koszt usługi to

Części i materiałyCena jednostkowa brutto w złIlość
1. Filtr paliwa401 szt.
2. Filtr powietrza301 szt.
3. Filtr oleju201 szt.
4. Olej silnikowy254 l

A. 215 zł
B. 340 zł
C. 290 zł
D. 265 zł
Aby zrozumieć, dlaczego odpowiedź 340 zł jest prawidłowa, musimy przyjrzeć się szczegółom obliczeń związanych z całkowitym kosztem usługi. Koszt części eksploatacyjnych wynosi 190 zł. Następnie należy uwzględnić koszt robocizny, który obliczamy jako iloczyn stawki za roboczogodzinę oraz czasu pracy mechanika. Przy stawce 100 zł za godzinę oraz 1,5 godziny pracy, otrzymujemy 100 zł x 1,5 = 150 zł. Po zsumowaniu obu kosztów (190 zł za części i 150 zł za robociznę) uzyskujemy 340 zł. To podejście jest zgodne z praktykami rachunkowości stosowanymi w branży motoryzacyjnej, gdzie dokładne ustalanie kosztów usług jest kluczowe dla zapewnienia transparentności oraz efektywności operacyjnej. Przykładowo, takie obliczenia są niezbędne przy planowaniu budżetu na serwis pojazdów, co pozwala na lepsze zarządzanie kosztami i zapobieganie nieprzewidzianym wydatkom.

Pytanie 38

Aby zweryfikować poprawność przeprowadzonej naprawy układu kierowniczego, należy zrealizować

A. jazdę próbną
B. badanie na stanowisku rolkowym
C. pomiar siły hamowania
D. sprawdzenie luzu elementów układu zawieszenia
Jazda próbna jest kluczowym etapem weryfikacji poprawności wykonanej naprawy układu kierowniczego, ponieważ pozwala na bezpośrednią ocenę zachowania pojazdu w czasie rzeczywistym. Podczas jazdy próbnej można zauważyć wszelkie nieprawidłowości w pracy układu kierowniczego, takie jak luzy, nieprecyzyjne skręcanie, czy zjawiska takie jak drżenie kierownicy. Praktyka pokazuje, że dopiero rzeczywiste warunki drogowe ujawniają potencjalne problemy, które mogą nie być widoczne podczas statycznych testów. Ponadto jazda próbna umożliwia również sprawdzenie, czy naprawa nie wpłynęła negatywnie na inne układy pojazdu, takie jak zawieszenie czy hamulce. Standardy branżowe, takie jak normy ISO dotyczące bezpieczeństwa pojazdów, podkreślają znaczenie tego etapu w procesie naprawy i konserwacji pojazdów. Dlatego każdy warsztat samochodowy powinien wdrożyć procedury jazdy próbnej jako integralną część procesu weryfikacji napraw.

Pytanie 39

Gdzie instaluje się świece żarowe w silnikach diesla?

A. w układzie wydechowym
B. w bloku chłodnicy
C. w misce olejowej
D. w głowicy silnika
Świece żarowe w silnikach wysokoprężnych pełnią kluczową rolę w procesie rozruchu silnika, zwłaszcza w niskotemperaturowych warunkach. Montowane są w głowicy silnika, gdzie mają za zadanie podgrzewać mieszankę powietrzno-paliwową, co ułatwia jej zapłon. Dzięki temu silniki diesla mogą osiągnąć stabilną pracę nawet w trudnych warunkach atmosferycznych. Użycie świec żarowych znacząco poprawia wydajność silnika, redukuje emisję spalin i zmniejsza zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie jakości komponentów w silnikach, co czyni świece żarowe kluczowym elementem konstrukcji silnika wysokoprężnego. Dla przykładu, w wielu nowoczesnych pojazdach stosuje się świece żarowe z systemem automatycznego wyłączania po osiągnięciu optymalnej temperatury, co zwiększa ich żywotność i efektywność.

Pytanie 40

Instalacja "suchej" tulei cylindrowej powinna odbywać się z użyciem

A. prasy hydraulicznej
B. młotka gumowego
C. ściągacza do łożysk
D. młotka ślusarskiego
Montaż 'suchej' tulei cylindrowej przy użyciu prasy hydraulicznej jest zalecany ze względu na precyzję oraz kontrolę siły, którą można zastosować podczas tego procesu. Prasa hydrauliczna pozwala na równomierne rozłożenie sił na powierzchni tulei, co minimalizuje ryzyko jej odkształcenia lub uszkodzenia. W praktyce, użycie prasy hydraulicznej zapewnia, że tuleja zostanie wprowadzona do gniazda z odpowiednią siłą, co jest szczególnie ważne w przypadku komponentów silnikowych, gdzie tolerancje wymiarowe są krytyczne. Dobrą praktyką jest przeprowadzenie montażu w kontrolowanych warunkach, co można osiągnąć, stosując odpowiednie narzędzia. Istotne jest również, aby przed montażem sprawdzić stan tulei oraz gniazda, co pozwala na uniknięcie problemów związanych z niewłaściwym dopasowaniem. W przemyśle motoryzacyjnym i maszynowym, użycie prasy hydraulicznej jest standardem, aby zapewnić długoterminową niezawodność oraz poprawne działanie silników i innych mechanizmów.