Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 7 maja 2025 13:36
  • Data zakończenia: 7 maja 2025 13:56

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 18,33%
B. 81,77%
C. 65,80%
D. 34,20%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 2

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. roztworzenie
B. mineralizacja sucha
C. ekstrakcja do fazy stałej
D. mineralizacja mokra
Mineralizacja sucha to proces, w którym substancje organiczne w próbce ulegają całkowitemu spaleniu w wysokotemperaturowym piecu, co prowadzi do ich przekształcenia na minerały oraz gazy, takie jak dwutlenek węgla i woda. Metoda ta jest powszechnie stosowana w laboratoriach analitycznych do oznaczania zawartości węgla organicznego w glebie, osadach czy próbkach biologicznych. Proces mineralizacji suchej zapewnia pełne utlenienie materiału organicznego, co umożliwia dokładne pomiary pozostałych składników mineralnych. Przykładem zastosowania tej metody może być analiza gleby w kontekście oceny jej jakości oraz możliwości rolniczych, gdzie istotne jest określenie zawartości substancji organicznych. Mineralizacja sucha jest zgodna z normami ISO, co podkreśla jej znaczenie w standardowych procedurach analitycznych. Wiedza na temat tej techniki jest kluczowa dla specjalistów zajmujących się analizą chemiczną, geologiczną, czy ochroną środowiska, ponieważ pozwala na uzyskanie rzetelnych danych o składzie próbek.

Pytanie 3

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. gaśnicy śniegowej
B. gaśnicy pianowej
C. wody
D. piasku
Wybór niewłaściwych środków do gaszenia pożarów metali często wynika z błędnych przekonań na temat sposobów ich kontroli. Użycie gaśnicy śniegowej wydaje się być atrakcyjne, gdyż zmniejsza temperaturę, jednak nie jest skuteczne w przypadku reakcji chemicznych, jakie mogą wystąpić podczas pożaru metalu. Oprócz tego, niektóre metale, takie jak magnez, mogą reagować ze składnikami obecnymi w gaśnicy śniegowej, co prowadzi do niebezpiecznych efektów. Nawet woda, która w wielu sytuacjach jest podstawowym środkiem gaśniczym, w kontekście pożarów metali jest całkowicie niewłaściwa. Kontakt wody z metalami, takimi jak sód czy potas, nie tylko nasila ogień, ale może również prowadzić do eksplozji, ponieważ metal reaguje z wodą, tworząc łatwopalne gazy. Użycie gaśnicy pianowej jest również złym wyborem, ponieważ piany nie są w stanie stłumić ognia w przypadku materiałów reagujących z wodą. Te błędne decyzje często wynikają z braku świadomości o specyfikach pożarów metali i ich unikalnych właściwościach. Dlatego kluczowe jest, aby osoby zajmujące się bezpieczeństwem przeciwpożarowym były dobrze poinformowane o właściwych metodach gaszenia takich pożarów oraz posługiwały się odpowiednimi standardami, jak na przykład wytyczne NFPA 484, które dostarczają niezbędnych informacji na ten temat.

Pytanie 4

Aby przygotować 200 g roztworu chlorku potasu o stężeniu 5% (m/m), ile substancji należy zastosować?

A. 10 g KCl i 200 g wody
B. 10 g KCl i 190 g wody
C. 5 g KCl i 200 g wody
D. 20 g KCl i 180 g wody
Aby przygotować 200 g roztworu chlorku potasu (KCl) o stężeniu 5% (m/m), należy obliczyć masę substancji rozpuszczonej w odniesieniu do całkowitej masy roztworu. W przypadku stężenia 5% oznacza to, że 5% masy całkowitej roztworu stanowi KCl. Zatem, masa KCl w 200 g roztworu wynosi: 200 g * 0,05 = 10 g. Pozostała masa roztworu to masa wody, którą można obliczyć odejmując masę KCl od masy całkowitej roztworu: 200 g - 10 g = 190 g. Dlatego prawidłowym składnikiem do sporządzenia tego roztworu jest 10 g KCl i 190 g wody. Tego rodzaju obliczenia są niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskiwania powtarzalnych i wiarygodnych wyników eksperymentów. Stosowanie się do zasad i standardów, takich jak Good Laboratory Practice (GLP), zapewnia wysoką jakość wyników badań. Dodatkowo, umiejętność obliczania stężenia roztworów jest podstawą w pracach laboratoryjnych, biochemicznych oraz w wielu zastosowaniach przemysłowych.

Pytanie 5

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, trójnóg, tygiel
B. Zlewka, lejek, waga, bagietka
C. Zlewka, waga, tryskawka, bagietka
D. Zlewka, lejek, statyw, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 6

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
B. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
C. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
D. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 7

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
B. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
C. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
D. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
Odpowiedź, w której na początku dodajemy 10 cm3 wody destylowanej, a następnie 10 cm3 stężonego kwasu solnego, jest prawidłowa z kilku powodów. Po pierwsze, rozcieńczanie kwasu solnego powinno zawsze rozpocząć się od dodania wody do kwasu, a nie odwrotnie. Dodanie stężonego kwasu do wody zmniejsza ryzyko reakcji egzotermicznej, która może prowadzić do niebezpiecznego rozprysku kwasu. W praktyce, woda powinna być dodawana do kwasu w kontrolowany sposób, aby uniknąć gwałtownego wrzenia. Te zasady są zgodne z najlepszymi praktykami w laboratoriach chemicznych, które podkreślają znaczenie bezpieczeństwa podczas pracy z substancjami żrącymi. Dodatkowo, stężony kwas solny ma gęstość większą niż woda, co oznacza, że jego dodanie do wody powoduje szybkie i silne mieszanie, co ułatwia osiągnięcie pożądanej koncentracji roztworu. W kontekście praktycznym, taka procedura jest niezbędna w laboratoriach analitycznych czy edukacyjnych, gdzie przygotowywanie roztworów o określonych stężeniach jest codziennością.

Pytanie 8

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. selektywny
B. maskujący
C. grupowy
D. specyficzny
W analizach chemicznych używa się różnych rodzajów odczynników, a niektóre z nazewnictwa mogą być mylące. Odczynniki selektywne, choć mogą wydawać się podobne do specyficznych, mają inną charakterystykę. Selektywność odnosi się do zdolności odczynnika do wykrywania określonego jonu w obecności innych, ale nie oznacza to, że reaguje on wyłącznie z jednym konkretnym jonem. Z tego powodu, odczynniki selektywne mogą reagować z kilkoma rodzajami jonów, co utrudnia interpretację wyników analizy. Z kolei odczynniki grupowe są projektowane tak, aby reagować z grupą jonów, co również nie spełnia wymagań dotyczących specyficzności. Przykładem może być odczynnik reagujący z kationami metali alkalicznych, który nie jest w stanie zidentyfikować konkretnego metalu. Dodatkowo, odczynniki maskujące są używane do blokowania reakcji z pewnymi jonami, a ich zastosowanie nie ma związku z wykrywaniem specyficznych jonów. Dlatego kluczowe jest zrozumienie tych różnic, aby unikać typowych błędów myślowych, które mogą prowadzić do mylnego klasyfikowania odczynników. W praktyce, każdy z tych typów odczynników ma swoje miejsce w analizach chemicznych, ale ich właściwe zrozumienie jest niezbędne dla uzyskania precyzyjnych wyników.

Pytanie 9

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zmniejszyć, a temperaturę podnieść
B. zwiększyć, a temperaturę podnieść
C. zwiększyć, a temperaturę zmniejszyć
D. zmniejszyć, a temperaturę obniżyć
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 10

Gęstość próbki cieczy wyznacza się przy użyciu

A. spektrofotometru
B. refraktometru
C. biurety
D. piknometru
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 11

Piktogram nie jest konieczny dla

A. mieszanin samoreaktywnych typu G
B. substancji, które mają działanie drażniące na oczy
C. substancji, które powodują korozję metali
D. substancji, które działają drażniąco na skórę
Wybór substancji działających drażniąco na oczy oraz substancji działających drażniąco na skórę jako odpowiedzi na pytanie o piktogramy jest oparty na niewłaściwym zrozumieniu wymogów dotyczących klasyfikacji chemikaliów. Substancje te, zgodnie z regulacjami CLP, wymagają jednoznacznego oznakowania za pomocą piktogramów, ponieważ ich działanie na organizm człowieka jest dobrze udokumentowane i klasyfikowane jako niebezpieczne. Piktogramy mają na celu zapewnienie szybkiego i jasnego przekazu informacji o zagrożeniach dla osób pracujących z tymi substancjami. Osoby zajmujące się bezpieczeństwem chemicznym często popełniają błąd, nie rozróżniając pomiędzy różnymi kategoriami substancji oraz ich właściwościami niebezpiecznymi. Dodatkowo, wybór substancji powodujących korozję metali również nie jest trafny, ponieważ substancje te również wymagają odpowiednich piktogramów, aby ostrzegać o ich agresywnym działaniu na materiały. Powszechnym błędem jest myślenie, że jeśli substancja nie jest bezpośrednio niebezpieczna dla zdrowia, to nie wymaga oznakowania. W rzeczywistości, każda substancja, która ma potencjalne działanie szkodliwe, powinna być klasyfikowana i odpowiednio oznaczana, co jest kluczowe dla bezpieczeństwa w miejscu pracy oraz ochrony środowiska.

Pytanie 12

Naczynia z roztworem kwasu siarkowego(VI) o dużym stężeniu nie powinny być pozostawiane otwarte nie tylko za względów bezpieczeństwa, ale także dlatego, że kwas

A. zmniejszy swoją masę, ponieważ jest higroskopijny
B. zwiększy swoją masę, ponieważ jest higroskopijny
C. zwiększy swoje stężenie, ponieważ wyparuje woda
D. zmniejszy swoją masę, ponieważ jest lotny
Niepoprawne odpowiedzi opierają się na niezrozumieniu właściwości kwasu siarkowego(VI) oraz jego interakcji z otoczeniem. Stwierdzenie, że kwas zmniejszy swoją masę, ponieważ jest higroskopijny, jest błędne, ponieważ higroskopijność oznacza zdolność substancji do absorbowania wilgoci, a nie jej utraty. Kwas siarkowy nie jest substancją lotną w standardowych warunkach, co wyklucza możliwość jego utraty masy w wyniku parowania. Warto również zwrócić uwagę, że kwas siarkowy nie jest substancją, która wyparowuje woda w sposób, który prowadziłby do zmniejszenia masy roztworu. Zamiast tego, proces parowania wody prowadzi do koncentracji roztworu oraz potencjalnych niebezpieczeństw związanych z jego przechowywaniem. Odpowiedzi sugerujące, że kwas zmniejszy swoją masę, ilustrują typowy błąd myślowy, polegający na myleniu właściwości fizycznych substancji z ich chemicznymi. Bezpieczne i efektywne zarządzanie substancjami chemicznymi wymaga zrozumienia ich właściwości fizykochemicznych oraz przestrzegania standardów bezpieczeństwa, aby uniknąć niepożądanych reakcji chemicznych.

Pytanie 13

Osady kłaczkowe, które powstają w wyniku prostego koagulowania, określa się mianem osadów

A. liofilowymi
B. drobnokrystalicznymi
C. grubokrystalicznymi
D. liofobowymi
Osady kłaczkowate, które powstają w wyniku łatwego koagulowania, określane są mianem osadów liofobowych. Termin ten odnosi się do systemów, w których cząstki stałe są zawieszone w cieczy, a ich tendencja do agregacji jest zmniejszona przez siły odpychające, wynikające z ich liofobowości. W praktyce, osady liofobowe są istotne w wielu procesach technologicznych, takich jak oczyszczanie ścieków czy wytwarzanie emulsji i zawiesin. Na przykład, w przemyśle chemicznym, kontrola koagulacji i flokulacji jest kluczowa do uzyskania wysokiej jakości produktów. Wykorzystanie koagulantów, które sprzyjają tworzeniu osadów liofobowych, pozwala na efektywne separowanie ciał stałych od cieczy, co jest zgodne z najlepszymi praktykami w zakresie zarządzania odpadami. Dodatkowo, znajomość właściwości fizykochemicznych systemów liofobowych jest istotna dla inżynierów chemicznych, którzy projektują procesy produkcyjne wymagające precyzyjnych kontroli nad zachowaniem cząstek w zawiesinach.

Pytanie 14

Przedstawiony piktogram powinien być zamieszczony na butelce zawierającej

Ilustracja do pytania
A. azotan(V) rtęci.
B. perhydrol.
C. chlorek baru.
D. siarczan(VI) sodu.
Perhydrol, czyli nadtlenek wodoru w stężeniu przekraczającym 35%, jest substancją chemiczną, która w wyniku swoich właściwości żrących wymaga szczególnego oznakowania, w tym użycia piktogramu przedstawiającego substancje wywołujące korozję. Przykładem zastosowania perhydrolu jest jego użycie w dezynfekcji oraz jako środek utleniający w różnych procesach chemicznych. Zgodnie z przepisami dotyczącymi klasyfikacji i oznakowania substancji chemicznych (CLP), substancje te muszą być odpowiednio oznaczone, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników. Ponadto, perhydrol może reagować z wieloma innymi substancjami, co zwiększa jego potencjalnie niebezpieczne właściwości. Zatem, odpowiednie oznakowanie zgodne z normami bezpieczeństwa pracy jest kluczowym elementem obiegu dokumentacji oraz praktyk laboratoryjnych.

Pytanie 15

Jakie jest przeznaczenie pieca muflowego?

A. przygotowania próbek do postaci jonowej
B. rozkładu próbek na sucho
C. koncentracji próbek
D. separacji próbek
Piec muflowy jest urządzeniem stosowanym głównie w laboratoriach chemicznych i materiałowych do rozkładu próbek na sucho, co oznacza, że próbki są poddawane działaniu wysokiej temperatury w atmosferze wolnej od wilgoci. Proces ten jest kluczowy w przygotowaniu materiałów do dalszej analizy, a także w badaniach nad ich składem chemicznym. Wysoka temperatura umożliwia efektywne usunięcie wody i innych lotnych składników, co jest szczególnie istotne w przypadku analizy substancji organicznych. Piec muflowy działa na zasadzie konwekcji, co zapewnia równomierne rozkładanie ciepła wewnątrz komory pieca. Przykładem zastosowania pieca muflowego jest przygotowanie próbek do analizy składu chemicznego metodą spektroskopii czy chromatografii. W standardach labolatoryjnych, takich jak ISO 17025, podkreśla się znaczenie odpowiedniego przygotowania próbek, co czyni piec muflowy niezbędnym narzędziem w wielu badaniach naukowych. Ponadto, właściwe ustawienie temperatury oraz czas trwania procesu rozkładu są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 16

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. śladem
B. matrycą
C. ultraśladem
D. domieszką
Odpowiedzi takie jak 'domieszka', 'matryca' i 'ultraślad' nie oddają właściwego znaczenia terminu 'ślad'. Domieszka odnosi się do dowolnego składnika, który jest obecny w próbce, ale niekoniecznie w tak niskich stężeniach, jak te opisane w pytaniu. Z kolei matryca to termin używany do opisu podstawowej substancji, w której zawarte są inne składniki. W kontekście analitycznym matryca ma ogromne znaczenie, ponieważ jej skład i właściwości mogą wpływać na dokładność i precyzję analizy. Ultraślad to termin, który jest rzadziej używany i może sugerować jeszcze niższe stężenia niż te określone dla 'śladu', ale nie jest to standardowa definicja, co może prowadzić do nieporozumień. Typowe błędy myślowe związane z tymi odpowiedziami często wynikają z niepełnego zrozumienia terminologii chemicznej oraz kontekstu analitycznego. Kluczowe jest, aby rozróżniać te pojęcia i wiedzieć, jak wpływają one na interpretację wyników analitycznych. Niepoprawne zrozumienie tych terminów może prowadzić do poważnych błędów w ocenie jakości próbek oraz ich składników, co jest niezbędne w wielu dziedzinach, takich jak kontrola jakości, badania środowiskowe czy bezpieczeństwo żywności.

Pytanie 17

Sączenie na gorąco powinno być użyte, aby

A. miało miejsce wydzielanie kryształów z roztworu
B. nie miało miejsca wydzielanie kryształów z roztworu
C. nie doszło do rozpuszczenia substancji obecnych w roztworze
D. doszło do rozpuszczenia substancji obecnych w roztworze
Odpowiedzi, które sugerują, że sączenie na gorąco ma na celu rozpuszczenie substancji zawartych w roztworze lub zapobieganie ich wydzielaniu w postaci kryształów, nie uwzględniają rzeczywistych zasad fizykochemicznych, które rządzą tym procesem. Sącząc na gorąco, dąży się do tego, aby zminimalizować ryzyko krystalizacji, a nie do rozpuszczania substancji. W rzeczywistości, podczas podgrzewania roztworu, substancje, które są mniej rozpuszczalne w wyższych temperaturach, mogą zacząć wytrącać się w postaci kryształów, co jest niepożądane w kontekście oczyszczania. Sącząc na gorąco, kluczowe jest również zrozumienie, że proces ten pozwala na przeprowadzenie filtracji w warunkach, które zapobiegają osadzaniu się zanieczyszczeń na dnie naczynia, co może prowadzić do błędnych wniosków analitycznych. W praktyce laboratoryjnej ignorowanie tych aspektów może prowadzić do nieefektywnego oczyszczania i uzyskiwania produktów o niższej jakości, co jest niezgodne z dobrymi praktykami w chemii analitycznej. Zrozumienie zasad działania sączenia na gorąco jest kluczowe dla prawidłowego przeprowadzania analiz chemicznych oraz procesów syntezy.

Pytanie 18

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1500 mol/dm3
B. 0,1000 mol/dm3
C. 0,2000 mol/dm3
D. 0,1200 mol/dm3
Miano zasady NaOH oblicza się na podstawie reakcji zobojętnienia z kwasem HCl, w której stosunek molowy NaOH do HCl wynosi 1:1. Ustalając miano roztworu NaOH, wykorzystujemy wzór na miano: c(NaOH) = (c(HCl) * V(HCl)) / V(NaOH), gdzie c oznacza stężenie, a V objętość. W naszym przypadku mamy c(HCl) = 0,1000 mol/dm³ oraz V(HCl) = 30,0 cm³ (0,030 dm³) i V(NaOH) = 25,0 cm³ (0,025 dm³). Podstawiając wartości do wzoru, uzyskujemy: c(NaOH) = (0,1000 mol/dm³ * 0,030 dm³) / 0,025 dm³ = 0,1200 mol/dm³. Przykład ten ilustruje, jak ważne jest odpowiednie wyważenie ilości reagentów w reakcjach chemicznych, co jest kluczowe w laboratoriach chemicznych i przemyśle, gdzie precyzyjne stężenia roztworów mają istotne znaczenie dla efektywności procesów chemicznych oraz jakości końcowego produktu. Standardy analityczne podkreślają konieczność dokładności w pomiarach, co ma wpływ na wiarygodność uzyskanych wyników.

Pytanie 19

200 g soli zostało poddane procesowi oczyszczania poprzez krystalizację. Uzyskano 125 g czystego produktu. Jaką wydajność miała krystalizacja?

A. 75%
B. 125%
C. 60,5%
D. 62,5%
Wydajność krystalizacji oblicza się, dzieląc masę czystego produktu przez masę surowca, a następnie mnożąc przez 100%. W tym przypadku masa czystego produktu wynosi 125 g, a masa surowca to 200 g. Obliczenia przedstawiają się następująco: (125 g / 200 g) * 100% = 62,5%. Zrozumienie wydajności krystalizacji ma kluczowe znaczenie w przemyśle chemicznym, ponieważ pozwala ocenić skuteczność procesu, co jest niezbędne do optymalizacji produkcji. Wydajność krystalizacji jest często analizowana w kontekście różnych metod oczyszczania substancji, a jej wysoka wartość wskazuje na efektywność procesu. W praktyce, osiągnięcie wysokiej wydajności krystalizacji może mieć istotne znaczenie ekonomiczne, szczególnie w sektorach takich jak farmaceutyka czy przemysł chemiczny, gdzie czystość produktu końcowego jest kluczowa dla spełnienia standardów jakości. Dlatego regularne monitorowanie wydajności procesu krystalizacji stanowi część dobrych praktyk inżynieryjnych oraz zarządzania jakością.

Pytanie 20

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. celu oraz zakresu badań
B. usytuowania dopływów
C. rodzaju pojemników do ich przechowywania
D. usytuowania źródeł zanieczyszczeń
Wybór miejsca pobierania próbek wody z rzeki jest kluczowym elementem badań jakości wody, a rodzaj naczyń do ich przechowywania nie ma wpływu na lokalizację ich pobierania. Istotne jest, aby miejsce poboru było reprezentatywne dla badanego obszaru i odpowiadało celom oraz zakresowi badań. Na przykład, jeśli celem jest ocena wpływu zanieczyszczeń przemysłowych, należy wybierać miejsca w pobliżu źródeł tych zanieczyszczeń. Z kolei lokalizacja dopływów może wskazywać na różne warunki hydrologiczne i chemiczne wody. Zarówno standardy ISO, jak i normy krajowe dotyczące monitorowania jakości wody podkreślają znaczenie odpowiedniego doboru punktów poboru. Przechowywanie próbek w odpowiednich naczyniach, takich jak butelki szklane lub plastikowe, ma z kolei na celu zapewnienie, że próbki nie ulegną zanieczyszczeniu ani degradacji w czasie transportu do laboratorium. Dlatego rodzaj naczyń jest istotny, ale nie wpływa na wybór miejsca ich pobierania.

Pytanie 21

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. techn.
B. cz.d.a.
C. cz.
D. cz.ch.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 22

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 24,06 g
B. 20,00 g
C. 18,40 g
D. 26,04 g
Aby obliczyć masę chlorku baru potrzebną do przygotowania 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3, należy skorzystać z wzoru na stężenie masowe. Stężenie masowe (C) definiuje się jako masa substancji (m) dzielona przez objętość roztworu (V) pomnożoną przez 100%. W tym przypadku C = 10%, V = 200 cm3. Zatem: m = C * V / 100 = 10 * (200) / 100 = 20 g. Jednakże, aby obliczyć masę rzeczywistą roztworu, musimy uwzględnić jego gęstość. Gęstość (d) roztworu wynosi 1,203 g/cm3, co oznacza, że masa roztworu wyniesie: masa roztworu = objętość * gęstość = 200 cm3 * 1,203 g/cm3 = 240,6 g. Teraz, skoro mamy 20 g chlorku baru, to masa pozostałej części roztworu (czyli wody) wyniesie 240,6 g - 20 g = 220,6 g. W końcu należy złożyć obliczenia: 20 g chlorku baru stanowi 10% całości, co jest zgodne z założeniem stężenia. Ostatecznie, aby uzyskać roztwór o pożądanym stężeniu, konieczne jest rozpuszczenie 24,06 g chlorku baru, co odpowiada odpowiedzi nr 4.

Pytanie 23

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,6
B. 0,8
C. 0,4
D. 1,0
Odpowiedź 0,4 jest poprawna, ponieważ obliczenia wskazują, że stosunek molowy cynku do bromu w reakcji wynosi 1:1. W przypadku reakcji, gdzie mamy do czynienia z równowagą stechiometryczną, kluczowe jest zrozumienie, że dla 1 mola Zn potrzeba 1 mola Br2. Zastosowane masy atomowe (Zn – 65u, Br – 80u) pozwalają na określenie, ile moli każdej substancji mamy w danej reakcji. Wymieszenie równych mas cynku i bromu, na przykład 65 g cynku i 80 g bromu, prowadzi do sytuacji, w której cynk jest reagentem ograniczającym, ponieważ mamy mniej moli cynku (1 mol) niż bromu (1,0 mol). W wyniku tego, tylko część bromu będzie reagować z cynkiem. Obliczając stopień przereagowania cynku, stwierdzamy, że 0,4 wynika z faktu, iż 0,4 mola cynku zareaguje całkowicie, a pozostałe 0,6 mola bromu nie znajdzie reagentu do reakcji. Takie analizy są kluczowe w praktyce chemicznej i inżynieryjnej, gdzie precyzyjne obliczenia dają podstawy do skutecznego projektowania procesów chemicznych.

Pytanie 24

Metodą, która nie służy do utrwalania próbek wody, jest

A. naświetlanie lampą UV
B. dodanie biocydów
C. schłodzenie do temperatury 2-5°C
D. zakwaszenie do pH < 2
Naświetlanie próbek wody lampą UV nie jest skuteczną metodą ich utrwalania, ponieważ ta technika służy głównie do dezynfekcji wody, a nie do długoterminowego utrwalania próbek. Proces naświetlania UV eliminuje mikroorganizmy, jednak nie zatrzymuje procesów chemicznych, które mogą prowadzić do zmian w składzie chemicznym próbki. W praktyce, dla zachowania integralności próbki wody, stawia się na metody takie jak schłodzenie do temperatury 2-5°C, co ogranicza aktywność mikroorganizmów i spowalnia procesy biochemiczne. Dodanie biocydów również może być skuteczne w eliminacji niepożądanych mikroorganizmów, natomiast zakwaszenie próbki do pH < 2 ma na celu denaturację białek i stabilizację niektórych związków chemicznych, co jest szczególnie ważne w kontekście analizy chemicznej. W przypadku analizy wody, zwłaszcza w kontekście norm takich jak PN-EN ISO 5667, każda z tych metod ma swoje wytyczne i zasady stosowania, które należy przestrzegać, aby zapewnić wiarygodność wyników.

Pytanie 25

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. dokładności
B. losowym
C. paralaksy
D. instrumentalnym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 26

Ustalanie miana roztworu polega na

A. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
B. zważeniu substancji i rozpuszczeniu jej w wodzie
C. określaniu przybliżonego stężenia roztworu
D. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
Poprawna odpowiedź dotyczy miareczkowania próbki roztworu o znanym stężeniu za pomocą roztworu nastawianego. Jest to kluczowy proces analityczny w chemii, stosowany do precyzyjnego określania stężenia substancji chemicznych w roztworach. W praktyce, miareczkowanie polega na dodawaniu roztworu titranta o znanym stężeniu do roztworu próbki aż do osiągnięcia punktu końcowego, w którym zachodzi reakcja chemiczna. Użycie roztworu nastawianego, którego stężenie zostało ustalone i potwierdzone na podstawie ścisłych standardów, zapewnia wysoką dokładność i powtarzalność wyników analizy. Na przykład, w laboratoriach analitycznych często stosuje się roztwory wzorcowe, które są przygotowane w zgodzie z normami ISO, co pozwala na uzyskanie wiarygodnych wyników. Miareczkowanie jest nie tylko fundamentalną techniką w chemii analitycznej, ale także w biologii, farmacji, a także w przemyśle spożywczym do kontroli jakości produktów.

Pytanie 27

W wyniku reakcji 100 g azotanu(V) ołowiu(II) z jodkiem potasu otrzymano 120 g jodku ołowiu(II). Wydajność reakcji wyniosła

Pb(NO3)2 + 2KI → PbI2 + 2KNO3
(MPb(NO3)2 = 331 g/mol, MKI = 166 g/mol, MPbI2 = 461 g/mol, MKNO3 = 101 g/mol)

A. 86%
B. 25%
C. 98%
D. 42%
To pytanie dotyczące wydajności reakcji pokazuje, że wykonałeś dobre obliczenia. Wynik 86% to naprawdę fajny wynik, bo wiesz, że to oznacza, iż dobrze oszacowałeś masy reagentów i produktów. Jeśli weźmiemy pod uwagę azotan(V) ołowiu(II) i obliczymy maksymalną masę jodku ołowiu(II), to powinno wyjść jakieś 139,22 g. W Twoim eksperymencie uzyskałeś 120 g jodku ołowiu(II), więc to daje nam ładną wydajność. Te obliczenia są mega ważne w chemii, bo pomagają ocenić, jak dobrze działa reakcja. Wiedza o tym, jak to policzyć, jest przydatna nie tylko w chemii, ale też w farmacja czy w przemyśle materiałowym. Takie umiejętności mogą naprawdę pomóc w tworzeniu nowych rzeczy i rozwijaniu technologii w różnych dziedzinach.

Pytanie 28

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
B. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
C. rozpuszczanie jodku potasu w wodzie
D. rozpuszczanie azotanu(V) amonu w wodzie
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.

Pytanie 29

Średnia masa wody wypływająca z pipety o deklarowanej pojemności 25 cm3, w temperaturze 25°C wynosi 24,80 g. Korzystając z danych zamieszczonych w tabeli wskaż wartość poprawki kalibracyjnej dla tej pipety.

Masa wody zajmującej objętość 1 dm3 w zależności od temperatury pomiaru
Temperatura
°C
Masa wody
g
20997,17
21997,00
22996,80
23996,59
24996,38
25996,16
26995,93
27995,69
28995,45
29995,18
30994,92

A. 0,16 ml
B. 0,10 ml
C. 0,18 ml
D. 0,25 ml
Zła odpowiedź, ale nie ma co się martwić, to częsty błąd. Często wynikają one z tego, że nie do końca rozumiesz, jak działa kalibracja urządzeń pomiarowych. Wiele osób myśli, że pipeta zawsze podaje dokładnie to, co jest na etykiecie, ale to nie do końca tak działa w praktyce. Odpowiedzi takie jak 0,16 ml czy 0,18 ml sugerują, że różnica była rozumiana błędnie, co pokazuje, że kalibracja i poprawka nie były do końca jasne. Kalibracja to w zasadzie porównywanie tego, co naprawdę mierzysz, z tym, co powinno być, a w tym przypadku widać, że pipeta raczej wypuszcza mniej, a nie więcej. Często zdarza się pomylić kierunek poprawki kalibracyjnej, co może prowadzić do większych problemów w eksperymentach, na przykład przy złym dozowaniu reagentów. Źle zrozumiane zagadnienia związane z pipetami to niezgodność z dobrymi praktykami w laboratoriach, które wymagają, żeby zawsze dbać o kalibrację i stan sprzętu. Zrozumienie, że pipeta nie zawsze działa idealnie, jest ważne dla każdego technika, a regularne stosowanie odpowiednich metod kalibracyjnych powinno być codziennością w laboratorium.

Pytanie 30

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. analizę produktu zawsze realizuje się dwiema różnymi metodami
B. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
C. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
D. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
Kiedy dzielimy średnią próbkę na dwie części, to chcemy mieć pewność, że wyniki są rzetelne i analizy wiarygodne. Jak jedna z próbek idzie do analizy rozjemczej, to mamy możliwość sprawdzenia wyników, gdy coś jest nie tak. To ważne zwłaszcza, gdy są jakieś spory między dostawcą a odbiorcą. Na przykład, wyobraź sobie sytuację, gdzie obie strony mają inne zdanie na temat jakości produktu. Analiza próbki może wtedy pomóc w rozwiązaniu konfliktu. W zgodzie z normami ISO i dobrymi praktykami w laboratoriach, każda próbka powinna być traktowana z najwyższą starannością. A jak są niezgodności, analiza rozjemcza robi się kluczowa. Taki podział próbek też jest ważny, żeby zachować transparentność w badaniach, bo to buduje zaufanie w relacjach handlowych oraz przy certyfikacji produktów.

Pytanie 31

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Glukozę
B. Tlenek rtęci(II)
C. Azotan(V) srebra
D. Azbest
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 32

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. czerwony
B. malinowy
C. fioletowy
D. niebieski
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 33

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 5,00 g
B. 0,05 g
C. 7,50 g
D. 0,75 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 34

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
B. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
C. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
D. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 35

Podstawowa substancja w analizie miareczkowej charakteryzuje się następującymi właściwościami:

A. stała, czysta, której przebieg reakcji niekoniecznie musi być ściśle stechiometryczny
B. czysta, higroskopijna, przebieg reakcji ściśle zgodny ze stechiometrią
C. czysta, niehigroskopijna, ściśle odpowiadająca swojemu wzorowi
D. ciekła, czysta, niehigroskopijna
Wiele z niepoprawnych odpowiedzi bazuje na niepełnym zrozumieniu istoty substancji podstawowych w analizie miareczkowej. Odpowiedzi wskazujące na substancje higroskopijne wskazują na fundamentalny błąd w rozumieniu, ponieważ substancje te mogą absorbować wilgoć z otoczenia, co prowadzi do zmiany ich masy oraz stężenia. Taka zmiana wpływa na rezultaty miareczkowania, wprowadzając niepewność i potencjalne błędy pomiarowe. Dlatego w praktyce laboratoryjnej stosuje się substancje, które są niehigroskopijne, aby uniknąć tych problemów. Dodatkowo, stwierdzenie, że przebieg reakcji nie musi być ściśle stechiometryczny, jest mylące i niepoprawne. Dokładna znajomość stechiometrii reakcji chemicznych jest kluczowa dla uzyskania rzetelnych wyników. W miareczkowaniu każdy mol reagentu reaguje ze ściśle określoną ilością drugiego reagenta, co jest podstawą obliczeń miareczkowych. Stąd, stwierdzenie, że reakcje mogą nie przebiegać w sposób stechiometryczny, jest fałszywe i może prowadzić do nieprawidłowych wniosków. W każdej analizie chemicznej kluczowe znaczenie ma zapewnienie precyzyjności i powtarzalności, co wyklucza użycie substancji, które nie spełniają rygorystycznych norm czystości oraz stabilności.

Pytanie 36

Do wykrywania pierwiastków w niskich stężeniach w badaniach spektrograficznych należy używać reagentów

A. spektralnie czystych
B. czystych do badań
C. chemicznie czystych
D. czystych
Odpowiedź 'spektralnie czyste' jest prawidłowa, ponieważ oznaczanie pierwiastków śladowych w metodach spektrograficznych wymaga stosowania reagentów o wysokiej czystości, które nie zawierają zanieczyszczeń mogących wpływać na wyniki analizy. Spektralna czystość reagentów odnosi się do minimalizacji obecności innych pierwiastków, które mogłyby wprowadzać błędy w pomiarach, co jest kluczowe w przypadku analiz o niskich granicach detekcji. Standardowe praktyki w laboratoriach chemicznych wskazują na konieczność stosowania reagentów, które były poddawane odpowiednim procesom oczyszczania, takim jak destylacja czy chromatografia, aby uzyskać ich spektralne czystości. Przykładem mogą być reakcje analityczne w spektrometrii mas, gdzie nawet drobne zanieczyszczenia mogą prowadzić do fałszywych identyfikacji i ilościowych pomiarów. W ten sposób, zachowanie standardów spektralnej czystości reagentów w praktyce laboratoryjnej jest niezbędne dla uzyskania wiarygodnych wyników analizy.

Pytanie 37

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
B. Pobranie nadmiernej liczby próbek pierwotnych
C. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
D. Transport próbki mleka w temperaturze 30°C
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 38

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. ogólną
B. laboratoryjną
C. wtórną
D. do analizy
Odpowiedzi takie jak ogólna, wtórna czy do analizy mogą wydawać się poprawne w kontekście pobierania próbek, ale w rzeczywistości nie oddają istoty klasyfikacji próbek w kontekście laboratoryjnym. Próbka ogólna jest zbiorem różnych elementów, które mogą nie odzwierciedlać dokładnych warunków danego miejsca, co może prowadzić do błędnych wniosków. Próbki wtórne z kolei są pobierane z już przetworzonych lub istniejących próbek, co uniemożliwia ich bezpośrednią analizę w pierwotnych warunkach. Odpowiedź sugerująca próbkę do analizy odnosi się do ogólnego pojęcia, które nie precyzuje, w jaki sposób próbka ma być wykorzystana ani jakie są jej wymagania. Błędne przekonanie może prowadzić do mylnego założenia, że każda próbka nadaje się do analizy, podczas gdy rzeczywistość wymaga rygorystycznych standardów pobierania, transportu i przechowywania, aby zapewnić integralność wyników. Prawidłowe określenie rodzaju próbki jest kluczowe dla sukcesu analitycznego, ponieważ różne typy próbek wymagają różnych metod przygotowania i analizy. W związku z tym, zrozumienie różnicy między próbą laboratoryjną a innymi typami próbek jest niezbędne dla praktyków zajmujących się analityką środowiskową.

Pytanie 39

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. szarym
B. zielonym
C. niebieskim
D. żółtym
Odpowiedź 'żółty' jest prawidłowa, ponieważ zgodnie z europejskimi standardami dotyczącymi oznaczeń kolorystycznych instalacji gazowych, szczególnie w kontekście palników, kolor żółty jest używany do oznaczania instalacji związanych z gazem. Takie oznaczenie ma na celu zwiększenie bezpieczeństwa, umożliwiając łatwe zidentyfikowanie instalacji gazowych w obiektach przemysłowych oraz mieszkalnych. Praktycznie, jeśli instalacja gazowa jest pomalowana na kolor żółty, operatorzy i serwisanci mogą szybko zidentyfikować, że mają do czynienia z systemem wymagającym szczególnej uwagi, co jest kluczowe w kontekście zapobiegania awariom. Dodatkowo, w dokumentacji technicznej wielu krajów europejskich, w tym Polskim Normie PN-EN 60079, podkreśla się znaczenie użycia odpowiednich kolorów do oznaczania instalacji, co ułatwia prace konserwacyjne i serwisowe. Użycie właściwego koloru minimalizuje ryzyko pomyłek i poprawia ogólne bezpieczeństwo w miejscu pracy.

Pytanie 40

W przypadku zanieczyszczeń szklanych naczyń osadami o charakterze nieorganicznym, takimi jak wodorotlenki, tlenki oraz węglany, do ich oczyszczania używa się

A. kwasu solnego
B. roztworu KMnO4 z dodatkiem kwasu solnego
C. wody destylowanej
D. płynu do zmywania naczyń
Kwas solny, nazywany też kwasem chlorowodorowym, to naprawdę mocny kwas mineralny, który świetnie radzi sobie z rozpuszczaniem różnych osadów nieorganicznych. Szczególnie dobrze działa na wodorotlenki, tlenki i węglany. W laboratoriach chemicznych używa się go do czyszczenia naczyń szklanych, bo dzięki swoim właściwościom korozyjnym skutecznie likwiduje osady, które mogą się tam zebrać po różnych reakcjach chemicznych. Na przykład, jeśli na ściankach naczyń zgromadziły się węglany w wyniku reakcji gazu z węglanami, to kwas solny sprawia, że wszystko znika. To czyni go naprawdę fajnym środkiem czyszczącym. Oczywiście trzeba pamiętać o bezpieczeństwie przy jego używaniu, bo można nim łatwo zniszczyć naczynia, dlatego korzysta się z odpowiednich stężeń i zawsze zachowuje ostrożność. Przed użyciem kwasu warto też sprawdzić, czy naczynia są na niego odporne. Właściwe obchodzenie się z kwasami i stosowanie środków ochrony osobistej to podstawa, bo jakby nie było, chodzi o bezpieczeństwo w laboratorium.