Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 2 maja 2025 15:29
  • Data zakończenia: 2 maja 2025 15:43

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
B. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
C. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
D. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.

Pytanie 2

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HVLP
B. HLP
C. H
D. HL
Odpowiedź HLP jest jak najbardziej na miejscu, bo chodzi tu o oleje mineralne, które mają różne dodatki, żeby lepiej działały w kwestii antykorozyjnej i smarności. HLP to oznaczenie, które mówi, że olej jest stworzony do hydrauliki, a w jego składzie znajdują się dodatki przeciwdziałające utlenianiu i zużyciu. Dzięki temu świetnie sprawdza się w systemach hydraulicznych, gdzie potrzebujemy czegoś naprawdę wydajnego. Na przykład, oleje HLP są często używane w maszynach przemysłowych czy hydraulice w pojazdach, bo są niezawodne i dobrze chronią przed korozją. W praktyce, te oleje trzymają się norm takich jak DIN 51524, co potwierdza ich jakość oraz odpowiednie właściwości. Wybierając olej HLP, zyskujemy nie tylko dłuższą żywotność maszyn, ale też mniejsze koszty eksploatacji i bardziej efektywną pracę.

Pytanie 3

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. membrana
B. magnes stały
C. zawór dławiący
D. tłumik
Wybór innych opcji, takich jak zawór dławiący, membrana czy tłumik, nie jest adekwatny do kontekstu bezdotykowych sensorów położeń krańcowych w siłownikach. Zawór dławiący ma na celu regulację przepływu cieczy w układach hydraulicznych, co związane jest z kontrolą prędkości ruchu, ale nie ma zastosowania w pomiarze pozycji. Membrana, często używana w siłownikach pneumatycznych, odpowiada za separację mediów i nie jest elementem, który mógłby współpracować z sensorami położeń. Tłumik natomiast służy do zmniejszania drgań i hałasu, a nie do monitorowania lokalizacji siłownika. Takie myślenie może wynikać z nieporozumienia co do funkcji poszczególnych komponentów w systemach automatyzacji. Kluczowe jest zrozumienie, że bezdotykowe sensory opierają się na interakcji z polem magnetycznym, co czyni magnesy stałe niezbędnymi dla ich działania. Użycie niewłaściwych elementów prowadzi do błędów w projekcie systemów automatyki, co może skutkować obniżoną efektywnością i zwiększonym ryzykiem awarii. W kontekście projektowania systemów warto kierować się zasadami inżynieryjnymi oraz najlepszymi praktykami, które stawiają na efektywność, niezawodność i łatwość w utrzymaniu.

Pytanie 4

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18

A. 1,70 l
B. 0,40 l
C. 1,82 l
D. 0,90 l
Niektóre z pozostałych odpowiedzi, takie jak 1,70 l, 0,90 l oraz 0,40 l, mogą wydawać się sensowne na pierwszy rzut oka, jednak nie są one zgodne z wymaganiami producenta. Błąd w obliczeniach lub źle zrozumiane dane mogą prowadzić do nieprawidłowego oszacowania ilości oleju, co może być wynikiem pominięcia kluczowych informacji zawartych w dokumentacji technicznej. W przypadku odpowiedzi 1,70 l, różnica w 0,12 l w porównaniu do poprawnej odpowiedzi może wynikać z niewłaściwego zsumowania poszczególnych objętości oleju. Z kolei odpowiedzi takie jak 0,90 l czy 0,40 l są znacznie niedoszacowane, co wskazuje na niepełne zrozumienie wymagań dotyczących całkowitej objętości oleju w systemie. W praktyce, takie błędne obliczenia mogą prowadzić do poważnych problemów z eksploatacją urządzenia, takich jak awarie mechaniczne czy zmniejszenie efektywności pracy. Dobrym rozwiązaniem jest zawsze odniesienie się do tabeli lub instrukcji podanych przez producenta, aby uniknąć takich pomyłek. Kluczowe jest, aby pamiętać, że niewłaściwy dobór oleju lub jego ilości może nie tylko wpłynąć na działanie pompy, ale również na bezpieczeństwo całej instalacji. Dlatego warto zawsze dokładnie analizować wszystkie dostępne dane przed podjęciem decyzji.

Pytanie 5

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. prądnica tachometryczna
B. potencjometr obrotowy
C. czujnik termoelektryczny
D. mostek tensometryczny
Czujnik termoelektryczny, mostek tensometryczny oraz potencjometr obrotowy, mimo że są to urządzenia pomiarowe, nie są przeznaczone do pomiaru prędkości obrotowej wału silnika. Czujniki termoelektryczne, takie jak termopary, służą do pomiaru temperatury, a ich zasada działania opiera się na efekcie Seebecka, gdzie różnica temperatury generuje napięcie. W kontekście pomiaru prędkości obrotowej, zastosowanie czujników termoelektrycznych jest niewłaściwe, ponieważ nie są one w stanie dokładnie rejestrować zmian w szybkości obrotu. Mostki tensometryczne są używane do pomiaru naprężeń i deformacji materiałów, co również nie jest związane z pomiarem prędkości obrotowej. Ich działanie bazuje na zjawisku zmiany oporu elektrycznego pod wpływem deformacji, co jest zupełnie innym rodzajem pomiaru. Potencjometry obrotowe, chociaż mogą być używane do pomiaru kątów obrotu, nie dostarczają informacji o prędkości obrotowej, ponieważ mierzą jedynie położenie wału w danym momencie, a nie jego szybkość obrotu. Typowym błędem myślowym jest mylenie pomiaru położenia z pomiarem prędkości, co prowadzi do nieporozumień w doborze odpowiednich narzędzi pomiarowych. Dlatego, aby prawidłowo zmierzyć prędkość obrotową, kluczowe jest stosowanie właściwych urządzeń, takich jak prądnice tachometryczne.

Pytanie 6

Jak należy przeprowadzić połączenie wciskowe skurczowe piasty z wałkiem?

A. Obniżyć temperaturę wałka, a następnie wyrównać temperaturę obu elementów po połączeniu
B. Obniżyć temperaturę obu elementów i połączyć je, stosując siłę
C. Zastosować siłę, aby nasunąć jeden element na drugi w temperaturze otoczenia
D. Podnieść temperaturę obu elementów, a następnie połączyć je z użyciem siły
Podejście do łączenia elementów na podstawie podwyższenia ich temperatury przed połączeniem wiąże się z pewnymi ryzykami. Wysoka temperatura może prowadzić do odkształceń materiałów, co negatywnie wpływa na ich właściwości mechaniczne. Napotykany problem z zastosowaniem siły do połączenia w temperaturze otoczenia, bez wcześniejszego przygotowania elementów, może skutkować nieprawidłowym dopasowaniem, co z kolei prowadzi do luzów, a w konsekwencji do awarii w pracy maszyny. Rozszerzenie elementów pod wpływem podwyższonej temperatury ma swoje ograniczenia i nie zawsze zapewnia potrzebną precyzję. Ponadto, obniżenie temperatury zamiast podwyższania powoduje, że elementy pasują do siebie ściślej, co przekłada się na lepszą jakość połączenia. Wiele standardów branżowych, takich jak ISO 286 dotyczące tolerancji wymiarowych, wskazuje na kluczowe znaczenie precyzyjnego dopasowania elementów, co jest realizowane poprzez metodę skurczową. Dlatego błędne jest zakładanie, że siła i temperatura mogą być jedynymi czynnikami decydującymi o jakości połączeń skurczowych.

Pytanie 7

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Zaginania
B. Zgrzewania
C. Spawania
D. Klejenia
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 8

Jaki typ licencji pozwala na używanie oprogramowania przez określony czas, po którym konieczna jest rejestracja lub usunięcie go z komputera?

A. Trial
B. GNU GPL
C. Adware
D. Freeware
Odpowiedź 'Trial' jest poprawna, ponieważ odnosi się do rodzaju licencji oprogramowania, która pozwala użytkownikom na korzystanie z programu przez określony czas, zazwyczaj od kilku dni do kilku miesięcy. Po upływie tego czasu użytkownik jest zobowiązany do zakupu licencji lub usunięcia oprogramowania z urządzenia. Licencje trial są powszechnie stosowane w branży oprogramowania, aby umożliwić użytkownikom przetestowanie produktu przed podjęciem decyzji o zakupie. Przykłady takich programów to popularne aplikacje biurowe, programy graficzne czy oprogramowanie antywirusowe. Dzięki modelowi trial, dostawcy mogą zwiększyć zainteresowanie ich produktami oraz umożliwić użytkownikom dokonanie świadomego wyboru, co jest zgodne z zasadami transparentności i uczciwości w marketingu oprogramowania. Warto zauważyć, że niektóre wersje trial mogą mieć ograniczone funkcje lub mogą wymuszać dodatkowe rejestracje, co również jest stosowane jako element strategii sprzedażowej.

Pytanie 9

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. woltomierz
B. induktor
C. omomierz
D. amperomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru oporu elektrycznego. Jest niezastąpiony w diagnostyce instalacji elektrycznych, szczególnie do sprawdzania, czy przewód elektryczny nie jest przerwany. Gdy przewód jest przerwany, jego opór będzie nieskończonością, co omomierz zarejestruje. Dzięki temu można szybko zlokalizować uszkodzenia w instalacji. W praktyce, omomierze są często wykorzystywane do weryfikacji ciągłości obwodów w różnych zastosowaniach, od prostych napraw domowych po skomplikowane instalacje przemysłowe. Zgodnie ze standardami bezpieczeństwa elektrycznego, regularne testowanie oporu przewodów umożliwia zapobieganie potencjalnym awariom oraz zwiększa bezpieczeństwo użytkowników. Dodatkowo, omomierze są używane do pomiaru rezystancji izolacji, co jest kluczowe w utrzymaniu właściwego stanu technicznego instalacji. Zatem, korzystając z omomierza, można nie tylko wykryć przerwy w przewodach, ale również ocenić ich stan ogólny.

Pytanie 10

W wyniku działania strumienia wysoko ciśnieniowego dwutlenku węgla na rękę pracownika doszło do odmrożenia drugiego stopnia (zaczerwienienie skóry i pojawienie się pęcherzy). Jakie działania należy podjąć, udzielając pierwszej pomocy?

A. należy zdjąć biżuterię z palców poszkodowanego, rozgrzać dłoń i nałożyć jałowy opatrunek
B. należy podać leki przeciwbólowe i przetransportować poszkodowanego do szpitala
C. należy posmarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
D. należy polać dłoń wodą utlenioną oraz wykonać opatrunek
Odpowiedź, która nakazuje zdjęcie biżuterii z palców poszkodowanego, rozgrzanie dłoni oraz nałożenie jałowego opatrunku, jest zgodna z dobrą praktyką udzielania pierwszej pomocy w przypadku odmrożeń. Usunięcie biżuterii jest kluczowe, ponieważ obrzęk dłoni może spowodować ucisk na palce, co zwiększa ryzyko uszkodzenia tkanek. Rozgrzewanie dłoni powinno odbywać się w delikatny sposób, na przykład przez owinięcie jej w ciepłą chustę lub umieszczenie w ciepłej wodzie, co pomoże w stopniowym przywracaniu krążenia. Nałożenie jałowego opatrunku chroni ranę przed zakażeniem oraz utrzymuje odpowiednią wilgotność, co wspomaga proces gojenia. Warto również pamiętać, że podawanie leków przeciwbólowych może być korzystne, jednak w przypadku poważnych obrażeń najlepiej jest zapewnić szybki transport do placówki medycznej, gdzie pacjent otrzyma odpowiednią opiekę. Działania te są zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takimi jak Czerwony Krzyż, które zalecają natychmiastowe i adekwatne działania w sytuacjach medycznych.

Pytanie 11

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Przełącznika gwiazda-trójkąt
B. Przemiennika częstotliwości
C. Softstartu
D. Prostownika sterowanego trójpulsowego
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 12

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Lutowania miękkiego
B. Zgrzewania
C. Klejenia
D. Lutowania twardego
Zgrzewanie, lutowanie miękkie i klejenie to techniki, które w kontekście łączenia stali nierdzewnej i mosiądzu nie są optymalne. Zgrzewanie polega na połączeniu materiałów poprzez ich miejscowe stopienie w wyniku działania wysokiej temperatury, co w przypadku różnych metali może prowadzić do problemów z różnicami w temperaturze topnienia i rozszerzalności cieplnej. W rezultacie, zgrzewanie stali nierdzewnej z mosiądzem może skutkować osłabieniem struktury materiału i powstaniem pęknięć. Lutowanie miękkie, z drugiej strony, wykorzystuje niższe temperatury i luty, które nie zapewniają wystarczającej wytrzymałości na połączenia między tymi dwoma metalami. Lutowane połączenia miękkie są mniej odporne na wysokie temperatury i obciążenia mechaniczne, co czyni je niewłaściwym wyborem dla zastosowań, gdzie wymagana jest trwałość. Klejenie, mimo że jest skuteczne w wielu aplikacjach, nie oferuje tej samej wytrzymałości strukturalnej jak metody lutownicze. Przekonanie, że klejenie może zastąpić tradycyjne metody łączenia metali, jest często błędne, szczególnie w sytuacjach, gdzie występują zmienne warunki środowiskowe. Warto zatem zrozumieć, że wybór metody łączenia powinien być dokładnie przemyślany, uwzględniając właściwości materiałów, wymagania dotyczące połączeń oraz specyfikę zastosowania.

Pytanie 13

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zmierzyć rezystancję cewki
B. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
C. wymienić membranę
D. wymienić uszczelkę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 14

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. przeprowadzić reanimację poszkodowanego i wezwać pomoc
D. wezwać pomoc i przeprowadzić sztuczne oddychanie
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 15

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 5,77 A
B. 10,00 A
C. 7,70 A
D. 13,33 A
Błędne odpowiedzi w tym pytaniu wskazują na typowe nieporozumienia dotyczące obliczeń prądu pobieranego przez silnik trójfazowy. Wiele osób może skupić się na niewłaściwych założeniach, takich jak zaniedbanie wpływu współczynnika mocy na całkowitą moc silnika. Na przykład, odpowiedzi takie jak 5,77 A czy 10,00 A mogą sugerować, że obliczenia zostały wykonane bez uwzględnienia istotnych parametrów, takich jak napięcie zasilania czy współczynnik mocy. Często błędne odpowiedzi wynikają z uproszczenia wzoru na moc lub przyjęcia niewłaściwych wartości. Kluczowe jest zrozumienie, że moc czynna, napięcie oraz prąd są ze sobą silnie powiązane i każda zmiana jednego z parametrów wpływa na pozostałe. W praktyce, jeżeli silnik ma niższy współczynnik mocy, to prąd pobierany z sieci będzie wyższy, co nie zostało uwzględnione w niepoprawnych odpowiedziach. Warto pamiętać, że w przypadku obliczeń związanych z energią elektryczną należy zawsze korzystać z odpowiednich wzorów oraz uwzględniać wszelkie istotne zmienne, aby uniknąć błędów, które mogą prowadzić do nieprawidłowego doboru sprzętu czy nieefektywnego działania instalacji elektrycznych. Dlatego tak ważne jest, aby dokładnie analizować wszystkie parametry przed dokonaniem obliczeń.

Pytanie 16

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. zwiększyć obciążenie
B. obniżyć częstotliwość zasilania
C. zamienić miejscami dwa dowolne fazowe przewody zasilające
D. podłączyć przewód neutralny
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 17

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Podgrzać koło pasowe oraz wał
B. Podgrzać wał i schłodzić koło pasowe
C. Podgrzać koło pasowe i schłodzić wał
D. Obniżyć temperaturę koła pasowego i wału
Wybór nieprawidłowych metod zamocowania koła pasowego na wale jest często wynikiem nieprawidłowego zrozumienia procesów fizycznych zachodzących podczas montażu. Schładzanie koła pasowego, jak sugeruje jedna z odpowiedzi, byłoby szkodliwe, ponieważ doprowadziłoby do zmniejszenia jego średnicy, co znacznie utrudniłoby, a wręcz uniemożliwiło, jego montaż na wałku. W przypadku rozgrzewania wału i schładzania koła pasowego, również nie osiągnęlibyśmy pożądanego efektu, ponieważ schłodzenie koła spowodowałoby, że jego średnica zmniejszyłaby się, co również prowadziłoby do trudności z montażem. Ponadto, pomysły na rozgrzanie obu elementów mogą wydawać się logiczne, jednak nie uwzględniają one zasady, że oba elementy muszą mieć różne temperatury, aby mogły ze sobą współdziałać. Metody te są sprzeczne z podstawowymi zasadami inżynierii mechanicznej oraz praktykami montażowymi, które zalecają różnicowanie temperatur w celu ułatwienia montażu. Efektywność procesów montażowych opiera się na zrozumieniu zachowań materiałów i ich reakcji na zmiany temperatury, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania maszyn. Dlatego tak ważne jest przestrzeganie sprawdzonych procedur, które gwarantują nie tylko wygodę montażu, ale również długotrwałe i niezawodne działanie urządzeń.

Pytanie 18

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. laboratoryjnym mostkiem Thomsona
B. megaomomierzem
C. omomierzem
D. technicznym mostkiem Thomsona
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 19

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. przekaźnik termiczny
B. termistor
C. odgromnik
D. wyłącznik silnikowy
Choć przekaźnik termiczny, odgromnik i termistor są ważnymi elementami w systemach elektrycznych, nie pełnią one roli zabezpieczenia silników przed zwarciem i przeciążeniem. Przekaźnik termiczny działa na zasadzie detekcji wzrostu temperatury, co może być stosowane w zabezpieczeniach różnych obwodów, ale nie jest bezpośrednim zabezpieczeniem silnika. Jego zastosowanie ogranicza się do obwodów, w których przyczyny przegrzania są inne niż przeciążenie lub zwarcie. Odgromnik, z drugiej strony, jest urządzeniem ochronnym zapobiegającym skutkom przepięć, ale nie zabezpiecza przed problemami związanymi z przeciążeniem silników. Jego rola koncentruje się na ochronie instalacji przed wyładowaniami atmosferycznymi. Termistor, jako element elektroniczny, również nie jest praktycznym rozwiązaniem do zabezpieczania silników, gdyż jego zastosowanie ogranicza się do pomiarów temperatury, a nie do bezpośredniego odcięcia zasilania w przypadku awarii. W praktyce, przy projektowaniu systemów elektrycznych i automatyki, kluczowe jest stosowanie wyłączników silnikowych, które oferują odpowiednią reakcję na zmiany warunków pracy silnika, co gwarantuje jego dłuższą żywotność i bezawaryjność.

Pytanie 20

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Usuwanie kondensatu wodnego
B. Okresowe wyłączanie sprężarki
C. Codzienna wymiana filtra powietrza
D. Codzienna wymiana oleju w smarownicy
Usuwanie kondensatu wodnego jest kluczowym działaniem w konserwacji układów pneumatycznych, ponieważ kondensat, który gromadzi się w systemie, może prowadzić do wielu problemów operacyjnych. Woda w układzie pneumatycznym może spowodować korozję komponentów, zmniejszenie efektywności działania siłowników oraz obniżenie jakości powietrza dostarczanego do narzędzi pneumatycznych. Zgodnie z normami ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego, wilgotność powietrza jest istotnym czynnikiem do utrzymania w ryzach. Regularne usuwanie kondensatu, na przykład przy użyciu automatycznych osuszczy powietrza lub separatorów kondensatu, jest standardową praktyką, która pomaga zapewnić długą żywotność sprzętu i optymalną wydajność układów pneumatycznych. Przykładem tego może być zastosowanie separatorów wody w linii sprężonego powietrza, co pozwala na efektywne usuwanie wody i minimalizowanie ryzyka uszkodzeń oraz przestojów w pracy systemu.

Pytanie 21

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Dokładność pozycjonowania.
B. Liczba wrzecion.
C. Gramatura wtrysku.
D. Najwyższa prędkość ruchu dla poszczególnych osi.
Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to kluczowe parametry, które w znacznym stopniu wpływają na wydajność i jakość obróbki w frezarkach numerycznych. Liczba wrzecion odnosi się do ilości narzędzi, które mogą być zainstalowane w danej maszynie jednocześnie, co pozwala na realizację różnych operacji jednocześnie, zmniejszając czas przestoju i zwiększając wydajność produkcji. Powtarzalność pozycjonowania jest miarą precyzji, z jaką maszyna może powtórzyć te same ruchy, co jest kluczowe w kontekście produkcji części o ścisłych tolerancjach. Im wyższa powtarzalność, tym mniejsze ryzyko błędów produkcyjnych i mniejsze straty materiałowe. Z kolei maksymalna prędkość ruchu dla poszczególnych osi jest istotna dla ogólnego czasu cyklu obróbczej, co jest niezwykle ważne w kontekście konkurencyjności na rynku. Wybierając frezarkę numeryczną, inżynierowie muszą brać pod uwagę te parametry, aby dostosować wybór maszyny do specyficznych potrzeb produkcyjnych. Błędne rozumienie, że gramatura wtrysku jest istotna dla frezarek, może prowadzić do pominięcia kluczowych aspektów przy wyborze odpowiedniego sprzętu, co w konsekwencji może skutkować nieefektywnością produkcji oraz wyższymi kosztami operacyjnymi.

Pytanie 22

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 2 kN
B. 6 kN
C. 9 kN
D. 12 kN
Wybór błędnej odpowiedzi często wynika z nieprawidłowego zastosowania wzoru na siłę wywieraną przez ciśnienie. Wiele osób może mylnie założyć, że siła jest równoznaczna z ciśnieniem, co prowadzi do niepoprawnych obliczeń. Na przykład, przy wyborze 2 kN, może to sugerować, że ktoś pomylił jednostki lub nie uwzględnił prawidłowej powierzchni tłoka. Z kolei wybór 12 kN może wynikać z błędnego pomnożenia ciśnienia przez powierzchnię, w sytuacji gdy dana osoba nie przeliczyła jednostek na pascale. Ważne jest, aby pamiętać, że ciśnienie to siła działająca na jednostkę powierzchni, a zatem do obliczenia całkowitej siły musimy pomnożyć ciśnienie przez odpowiednią powierzchnię. W przypadku ciśnienia 2 MPa, co odpowiada 2 * 10^6 Pa, oraz powierzchni 0,003 m², obliczenia prowadzą jednoznacznie do wyniku 6 kN. Typowe błędy myślowe przy takich zadaniach obejmują niedokładne przeliczenia jednostek, błędne zrozumienie zależności między ciśnieniem, siłą i powierzchnią oraz pomijanie istotnych danych w zadaniu. Kluczowe jest, aby podczas rozwiązywania problemów hydraulicznych stosować właściwe wzory i zachować ostrożność w przeliczaniu jednostek, co ma ogromne znaczenie w kontekście projektowania i eksploatacji systemów hydraulicznych.

Pytanie 23

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 6 jednostek napędowych
B. 5 jednostek napędowych
C. 3 jednostki napędowe
D. 4 jednostki napędowe
Wybór innej liczby napędów, takich jak trzy, cztery lub sześć, może wynikać z nieporozumień dotyczących podstawowych zasad działania manipulatorów. Trzy napędy mogą wydawać się wystarczające w prostych aplikacjach, jednak w praktyce ograniczają one zakres ruchu i precyzję, co nie jest wystarczające w bardziej złożonych zadaniach. Warto zauważyć, że manipulatory zwykle wymagają co najmniej czterech napędów, aby uzyskać podstawowe możliwości ruchowe. Jednak cztery napędy mogą prowadzić do obszarów martwych, gdzie manipulator nie jest w stanie osiągnąć określonych pozycji. Z kolei wybór sześciu napędów, chociaż teoretycznie może zwiększyć możliwości robota, może prowadzić do nadmiaru i skomplikowania systemu, co nie zawsze jest uzasadnione w kontekście efektywności i kosztów. Niekiedy zaawansowane systemy operacyjne mogą wprowadzać dodatkowe trudności w programowaniu i konfiguracji robota. W praktyce, wybór liczby napędów powinien być starannie przemyślany w kontekście specyficznych wymagań aplikacji oraz zgodności z normami branżowymi, takimi jak ISO 9283, które podkreślają znaczenie optymalizacji w projektowaniu systemów robotycznych. Właściwe dobranie liczby napędów jest kluczowe dla uzyskania równowagi między wydajnością a prostotą operacyjną, co jest istotne dla każdego inżyniera zajmującego się robotyką.

Pytanie 24

Parametr określający zakres roboczy działania siłownika to

A. maksymalne ciśnienie
B. skok siłownika
C. teoretyczna siła pchająca
D. średnica cylindra
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 25

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. trój fazowy na prąd jednofazowy
B. zmienny o częstotliwości 50 Hz na prąd stały
C. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
D. stały na prąd zmienny o regulowanej częstotliwości
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 26

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Gęstość prądu elektrycznego
B. Rezystancja przewodnika
C. Natężenie prądu elektrycznego
D. Indukcyjność przewodnika
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 27

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy dwupołożeniowy (3/2)
B. pięciodrogowy dwupołożeniowy (5/2)
C. pięciodrogowy trójpołożeniowy (5/3)
D. trójdrogowy trójpołożeniowy (3/3)
Wybór zaworu trójdrogowego trójpołożeniowego (3/3) czy dwupołożeniowego (3/2) raczej nie jest dobrym pomysłem. To znaczy, te zawory mają swoje ograniczenia. Zawór trójdrogowy ma tylko trzy porty i nie może jednocześnie zasilać siłownika i go zatrzymać, co nie jest wystarczające w bardziej skomplikowanych układach. A jakbyś wybrał pięciodrogowy dwupołożeniowy (5/2), to też nie będzie ok, bo ma tylko dwa położenia robocze, czyli nie zatrzymasz siłownika w konkretnych punktach. Moim zdaniem, takie wybory mogą prowadzić do problemów w procesach, gdzie ważna jest precyzja. Ważne jest, żeby dobrze rozumieć różnice między różnymi typami zaworów i ich zastosowaniem, żeby nie wprowadzać nieefektywnych rozwiązań i trzymać się norm branżowych.

Pytanie 28

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4060,00 cm3
B. 406,00 cm3
C. 4,06 cm3
D. 40,60 cm3
Poprawna odpowiedź to 406,00 cm3, co wynika z obliczenia objętości cylindra siłownika hydraulicznego. Wzór na objętość cylindra to V = A * h, gdzie A to powierzchnia podstawy cylindra, a h to jego wysokość lub skok. W tym przypadku powierzchnia wynosi 20,3 cm2, a skok 200 mm, co po przeliczeniu daje 20 cm. Zatem objętość wynosi: V = 20,3 cm2 * 20 cm = 406,00 cm3. Praktyczne zastosowanie tej wiedzy jest nieocenione w hydraulice, gdzie precyzyjne obliczenia objętości pozwalają na właściwe dobranie siłowników do zadań, co wpływa na efektywność systemów mechanicznych. Dobrze dobrany siłownik zapewnia optymalne parametry pracy urządzenia, a także zwiększa trwałość i niezawodność systemów hydraulicznych. W przemyśle, w którym często wykorzystywane są siłowniki, zrozumienie zasad obliczania objętości jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa pracy maszyn.

Pytanie 29

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Litowy
B. Grafitowy
C. Silikonowy
D. Molibdenowy
Wybór niewłaściwego smaru do gumowych elementów może prowadzić do ich uszkodzenia oraz znacznie skrócić ich żywotność. Smar grafitowy, choć ceniony w aplikacjach gdzie wymagana jest odporność na wysokie temperatury i obciążenia, nie jest odpowiedni dla gumy. Grafit może wnikać w strukturę gumy, co prowadzi do jej degradacji, a efekt smarowania nie jest w pełni skuteczny. Zastosowanie smaru molibdenowego również nie jest zalecane, ponieważ zawiera on cząsteczki metalu, które mogą uszkodzić delikatne struktury gumowe, a także nie zapewnia odpowiedniej elastyczności w porównaniu do smarów silikonowych. Z kolei smar litowy, chociaż popularny w wielu zastosowaniach przemysłowych, również nie jest optymalny dla gumy. Może on powodować twardnienie materiału, co jest szczególnie problematyczne w aplikacjach, gdzie elementy gumowe muszą zachować swoją elastyczność i zdolność do odkształcania. Zastosowanie niewłaściwych smarów często wynika z błędnych przekonań dotyczących ich uniwersalności, co może prowadzić do nieodwracalnych szkód. Używanie odpowiednich smarów, takich jak silikonowy, zgodnie z zaleceniami producentów i standardami branżowymi, jest kluczem do efektywnej konserwacji elementów gumowych.

Pytanie 30

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 0,75 A
B. 2,5 A
C. 3 A
D. 10 A
Maksymalny prąd 3 A, który można obciążyć sterownik PLC, odpowiada specyfikacjom podanym w dokumentacji technicznej urządzenia. W praktyce oznacza to, że przy dołączaniu silnika indukcyjnego do wyjścia sterownika, nie można przekraczać tego prądu, aby uniknąć uszkodzenia urządzenia. Przykładowo, jeśli planujesz używać niewielkiego silnika do napędu wentylatora lub pompy, upewnij się, że jego maksymalne zapotrzebowanie na prąd nie przekracza tego limitu. W przemyśle, często stosuje się zabezpieczenia, takie jak bezpieczniki lub wyłączniki przeciążeniowe, które chronią sprzęt przed uszkodzeniami związanymi z nadmiernym prądem. Dobrym rozwiązaniem jest również monitorowanie prądu roboczego silnika przy pomocy amperomierza, co pozwala na bieżąco ocenić, czy urządzenie pracuje w dopuszczalnych granicach. Zrozumienie i przestrzeganie tych limitów jest kluczowe dla wydajności oraz długowieczności systemów automatyki przemysłowej, w których używane są sterowniki PLC.

Pytanie 31

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Falownika.
B. Czujnika optycznego.
C. Silnika.
D. Sterownika PLC.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 32

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. ultradźwiękowego
B. indukcyjnego
C. piezoelektrycznego
D. refleksyjnego
Pomiar poziomu cieczy przezroczystej i nieprzewodzącej przy użyciu czujników refleksyjnych to nie najlepszy pomysł. Dlaczego? Bo te urządzenia działają na zasadzie odbicia światła, a kiedy mamy do czynienia z przezroczystymi cieczami, takimi jak woda, światło po prostu przechodzi przez medium. To prowadzi do tego, że mamy bardzo małe odbicie, więc pomiary są mało dokładne. Czujniki indukcyjne z kolei są stworzone do wykrywania materiałów przewodzących prąd, a więc do nieprzewodzących cieczy się zupełnie nie nadają. Ich użycie ogranicza się głównie do pomiarów poziomu metalowych obiektów, co zupełnie nie działa w przypadku cieczy. A czujniki piezoelektryczne, chociaż są w różnych aplikacjach, to nie sprawdzają się do pomiaru poziomu cieczy - działają na zasadzie mierzenia ciśnienia, a ich zastosowanie w przypadku przezroczystych cieczy może prowadzić do błędów, bo mają inne właściwości fizyczne. Czasem użytkownicy mogą myśleć, że te czujniki są do wszystkiego, a to nieprawda. Kluczowe jest zrozumienie, co mierzymy i dostosowanie technologii pomiarowej do właściwości cieczy, bo to naprawdę ważne w inżynierii pomiarowej.

Pytanie 33

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Oscyloskop
B. Częstościomierz
C. Multimetr
D. Mostek RLC
Oscyloskop to zaawansowane narzędzie pomiarowe, które umożliwia wizualizację kształtu sygnałów elektronicznych w czasie rzeczywistym. Działa na zasadzie przetwarzania napięcia, które jest przedstawiane na ekranie w formie wykresu, gdzie oś X reprezentuje czas, a oś Y napięcie. Dzięki oscyloskopowi inżynierowie mogą analizować zarówno amplitudę, jak i częstotliwość sygnałów, co jest niezbędne przy projektowaniu i testowaniu urządzeń mechatronicznych. W praktyce oscyloskop jest wykorzystywany do badania układów elektronicznych, diagnostyki usterek czy oceny jakości sygnału. Na przykład, podczas analizy sygnałów z czujników w systemach automatyki przemysłowej, oscyloskop pozwala na szybkie wychwycenie anomalii w komunikacji czy nieprawidłowości w działaniu układów przetwarzających dane. W branży mechatronicznej standardem jest korzystanie z oscyloskopów, które spełniają normy IEC 61010, zapewniając bezpieczeństwo i dokładność pomiarów. Używanie oscyloskopu to nie tylko praktyka, ale i dobra praktyka, umożliwiająca skuteczną analizę skomplikowanych sygnałów.

Pytanie 34

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca długotrwała
B. Praca przerywana
C. Praca ciągła
D. Praca dorywcza
Właściwie zidentyfikowałeś rodzaj pracy silnika oznaczony symbolem S3 jako pracę przerywaną. Praca przerywana odnosi się do pracy, w której silnik działa z przerwami, co pozwala na jego schłodzenie i uniknięcie przegrzania. Taki typ pracy jest typowy dla aplikacji, gdzie silnik nie jest obciążony ciągłym wysiłkiem, na przykład w przypadku użytkowania w maszynach budowlanych czy w urządzeniach mobilnych. Przykładem może być silnik w wózku widłowym, który wykonuje cykle podnoszenia i transportu, a pomiędzy nimi następują krótkie przerwy na schłodzenie. W kontekście norm, praca przerywana jest zgodna z klasyfikacjami zawartymi w dokumentach takich jak IEC 60034-1, które definiują różne tryby pracy maszyn elektrycznych. Dobrą praktyką jest monitorowanie temperatury silnika oraz jego obciążenia, aby zapewnić jego długotrwałą eksploatację bez ryzyka uszkodzeń.

Pytanie 35

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. sprawdzenia poziomu naprężenia
B. weryfikacji wymiarów
C. oceny stopnia zużycia
D. kontroli czystości paska
Sprawdzanie stopnia naprężenia paska klinowego nie jest częścią operacji przygotowawczych przed jego montażem, ponieważ to zadanie wykonuje się już po zainstalowaniu paska. W ery technicznych i mechanicznych, takie jak w przemyśle automotive czy produkcyjnym, prawidłowe napięcie paska jest kluczowe dla efektywnej pracy przekładni pasowej. Przed montażem należy przede wszystkim zająć się weryfikacją wymiarów nowych komponentów, ocenić stopień zużycia istniejących części oraz zapewnić, że wszystkie elementy są czyste. Na przykład, czysty pasek oraz odpowiednio przygotowane koła pasowe minimalizują ryzyko poślizgu i przedwczesnego zużycia. Dobrą praktyką jest także stosowanie specjalistycznych narzędzi do pomiaru wymiarów, co wpływa na precyzję montażu. Wiedza na temat różnych typów pasków klinowych i ich specyfikacji pozwala na podejmowanie świadomych decyzji w procesie wymiany lub montażu, co jest zgodne ze standardami branżowymi, takimi jak ISO 9001.

Pytanie 36

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Pobranie programu z kontrolera
B. Przetłumaczenie programu na kod binarny
C. Konwersja kodu binarnego na format dziesiętny
D. Przesłanie programu do kontrolera
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 37

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. awarii stojana silnika
B. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
C. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
D. przeciążenia instalacji elektrycznej, co może skutkować pożarem
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 38

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. analogowego
B. binarnego
C. cyfrowego
D. programowalnego
Odpowiedź 'analogowego' jest na pewno trafna. Sensory, które działają ciągle, jak na przykład termistory czy fotorezystory, to istotne elementy układów analogowych. One przetwarzają różne fizyczne zmiany na sygnały, które płynnie się zmieniają. Potem te sygnały są wzmacniane przez wzmacniacze operacyjne, co jest naprawdę ważne, gdy potrzebujemy precyzyjnych pomiarów. W praktyce można je znaleźć w różnych systemach automatyzacji czy pomiarowych, gdzie dokładność ma kluczowe znaczenie. Dobrze jest też pamiętać o filtrowaniu sygnałów i ich kalibracji, żeby błędy pomiarowe były jak najmniejsze. W kontekście norm, układy analogowe są projektowane zgodnie z normami IEC, co zapewnia ich niezawodność. Moim zdaniem to bardzo ważne, żeby znać te zasady, bo są podstawą w inżynierii.

Pytanie 39

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. SCADA
B. CAM
C. CAD
D. CAP
Wybór oprogramowania SCADA, CAD, lub CAP w kontekście wspomagania procesów wytwarzania maszyn CNC jest nietrafiony, ponieważ każde z tych narzędzi pełni inną, specyficzną funkcję, która nie jest bezpośrednio związana z kontrolą maszyn produkcyjnych. SCADA (Supervisory Control and Data Acquisition) jest systemem zarządzania, który służy do monitorowania i sterowania procesami w czasie rzeczywistym, ale nie generuje kodów produkcyjnych ani nie bezpośrednio nie obsługuje maszyn CNC. CAD (Computer-Aided Design) natomiast to narzędzie służące do projektowania i modelowania, ale samo w sobie nie ma zdolności przekształcania projektów w instrukcje ruchu dla maszyn. CAD może współpracować z systemami CAM, jednak nie może ich zastąpić. CAP (Computer-Aided Planning) to oprogramowanie, które wspiera procesy planowania produkcji, ale również nie jest odpowiednie do bezpośredniego sterowania maszynami CNC. Typowe błędy myślowe prowadzące do pomyłki w wyborze tych odpowiedzi obejmują mylenie funkcji różnych rodzajów oprogramowania oraz braku zrozumienia, że skuteczna produkcja wymaga ściśle zdefiniowanych procesów, w których CAM jest niezbędnym elementem. W przypadku maszyn CNC, ważne jest, aby korzystać z odpowiednich narzędzi, które są zaprojektowane do specyficznych zadań, aby zapewnić optymalne wyniki produkcyjne.

Pytanie 40

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 8-bitowym
B. 16-bitowym
C. 32-bitowym
D. 64-bitowym
Odpowiedź 8-bitowa jest właściwa, ponieważ przy maksymalnym napięciu wejściowym wynoszącym 10 V oraz rozdzielczości na poziomie 40 mV można obliczyć liczbę dostępnych poziomów pomiarowych dla wejścia analogowego. Wejście 8-bitowe może reprezentować 256 wartości (2^8), co pozwala na podział napięcia 10 V na 256 poziomów. Dlatego pojedynczy krok napięcia wynosi 10 V / 256 = około 39,06 mV. Taka wartość jest bardzo bliska podanej rozdzielczości 40 mV, co czyni tę odpowiedź poprawną. W praktycznych zastosowaniach systemów automatyki, 8-bitowe przetworniki A/C są często wystarczające do monitorowania podstawowych parametrów, takich jak temperatura czy ciśnienie. Pomimo postępu technologicznego, wiele starszych systemów nadal wykorzystuje przetworniki 8-bitowe, co czyni je ważnym elementem w analizie i modernizacji istniejących instalacji. Warto również zauważyć, że zgodnie z normami branżowymi, takich jak IEC 61131, stosowanie prostych rozwiązań w kontrolerach PLC jest często preferowane ze względu na ich niezawodność i łatwość w integracji.