Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 11 kwietnia 2025 12:30
  • Data zakończenia: 11 kwietnia 2025 12:57

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W przypadku urazu mechanicznego oka, pierwsza pomoc polega na

A. spłukaniu oka
B. nałożeniu jałowej gazy na oko i wezwaniu pomocy medycznej
C. aplikacji kropli do oczu
D. próbie usunięcia ciała obcego z oka
Nałożenie wyjałowionej gazy na oko i wezwanie pomocy lekarskiej to kluczowy krok w udzielaniu pierwszej pomocy przy urazie mechanicznym oka. W przypadku kontuzji, takich jak uraz mechaniczny, istotne jest, aby nie próbować samodzielnie usunąć ciała obcego ani nie stosować płukania, ponieważ może to prowadzić do dalszych uszkodzeń lub zakażeń. Wyjałowiona gaza służy jako bariera ochronna, chroniąca oko przed zanieczyszczeniami oraz minimalizująca ryzyko pogorszenia stanu. Po nałożeniu gazy niezbędne jest jak najszybsze wezwanie pomocy medycznej, ponieważ urazy oka mogą prowadzić do poważnych komplikacji, w tym do utraty wzroku. Warto również podkreślić, że w przypadku urazów oka, czas reakcji jest kluczowy; jak najszybsze udzielenie profesjonalnej pomocy zwiększa szansę na pozytywne rokowanie. W sytuacjach takich jak te, stosuje się wytyczne i standardy dotyczące pierwszej pomocy, które podkreślają znaczenie ochrony urazu oraz unikania działań mogących pogorszyć stan pacjenta.

Pytanie 2

Ostatnia obróbka cylindra w silniku spalinowym to

A. toczenie
B. szlifowanie
C. honowanie
D. planowanie
Honowanie to naprawdę ważny proces, kiedy mówimy o końcowej obróbce cylindrów w silnikach spalinowych. Chodzi o to, żeby osiągnąć właściwą chropowatość i dokładne wymiary. Dzięki honowaniu, wewnętrzne ścianki cylindrów są gładkie i pozbawione malutkich niedoskonałości, co jest kluczowe, żeby pierścienie tłokowe dobrze przylegały. To z kolei wpływa na efektywność spalania i zmniejsza zużycie paliwa. Widziałem, że w nowoczesnych silnikach wyścigowych honowanie to standard, który pomaga uzyskać maksymalne osiągi. W motoryzacji mamy różne techniki honowania, jak honowanie na sucho czy na mokro, co zależy od materiałów i wymagań budowy. Dobre honowanie daje chropowatość Ra w granicach 0,2 - 0,5 μm, co jest naprawdę na poziomie najlepszych praktyk w branży.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Reperacja tarczy hamulcowej, której bicie osiowe przekracza dozwolone wartości, polega na

A. frezowaniu
B. przetaczaniu
C. osiowaniu
D. wyprostowaniu
Przetaczanie tarczy hamulcowej to proces, który pozwala na przywrócenie jej prawidłowego kształtu i grubości, eliminując bicie osiowe, które może wpływać na jakość hamowania. W trakcie przetaczania, tarcza jest obrabiana na specjalnej maszynie, co pozwala na usunięcie materiału w miejscach, gdzie występują nierówności. To zyskuje szczególne znaczenie, gdy tarcza jest już zużyta, a jej wymiana na nową nie jest konieczna, co jest korzystne z perspektywy ekonomicznej i ekologicznej. Przetaczanie tarcz hamulcowych powinno być przeprowadzane zgodnie z normami przemysłowymi, które określają minimalne grubości tarcz oraz tolerancje bicia, co zapewnia nie tylko bezpieczeństwo, ale i komfort jazdy. Dobre praktyki branżowe sugerują, aby przetaczanie wykonywać w wyspecjalizowanych warsztatach, gdzie fachowcy mają odpowiedni sprzęt oraz doświadczenie. Dzięki temu można uniknąć błędów, które mogłyby prowadzić do dalszego zużycia układu hamulcowego oraz zagrożenia dla bezpieczeństwa pojazdu.

Pytanie 5

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. ograniczenie momentu obrotowego przekazywanego na koła
B. modyfikacja prędkości kół napędowych
C. ochrona załączonego biegu przed rozłączeniem
D. wyrównanie prędkości obrotowych załączanych elementów
Synchronizator w skrzyni biegów odgrywa kluczową rolę w zapewnieniu płynności zmiany biegów przez wyrównanie prędkości obrotowych załączanych elementów, co pozwala na ich bezproblemowe połączenie. W momencie zmiany biegu, synchronizator synchronizuje prędkości obrotowe wałka napędowego i koła zębatego, eliminując ryzyko uszkodzenia elementów skrzyni biegów oraz zwiększając komfort jazdy. Przykładami zastosowania są manualne skrzynie biegów w samochodach osobowych, gdzie kierowca zmienia biegi, a synchronizatory zapewniają, że nie występują zgrzyty ani inne nieprzyjemne dźwięki związane z niewłaściwym połączeniem. Rozwiązania te oparte są na standardach inżynierii mechanicznej, które podkreślają znaczenie precyzyjnego dopasowania elementów mechanicznych oraz poprawnego doboru materiałów. W praktyce, odpowiednio zaprojektowane synchronizatory zmniejszają zużycie elementów układu napędowego, co przekłada się na dłuższą żywotność pojazdu oraz niższe koszty eksploatacji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Mechanik, który wymienia wahacze przedniej osi, ma możliwość dokręcenia

A. śruby/nakrętki sworznia dopiero po dokonaniu ustawienia zbieżności kół
B. wszystkich śrub w dowolnym ustawieniu zawieszenia
C. śrub usytuowanych w pionowej płaszczyźnie tylko w normalnej pozycji pracy zawieszenia
D. śrub znajdujących się w poziomej płaszczyźnie wyłącznie w normalnej pozycji pracy zawieszenia
Istnieje kilka koncepcji związanych z dokręcaniem śrub, które mogą wprowadzać w błąd. Zaczynając od pierwszej, idea, że śrubę lub nakrętkę sworznia można dokręcić tylko po ustawieniu zbieżności kół, jest niepoprawna. Zbieżność kół jest istotnym aspektem regulacji układu zawieszenia, ale nie ma bezpośredniego związku z momentem dokręcania wahaczy. Właściwe dokręcenie śrub powinno odbywać się w odpowiednim położeniu zawieszenia, aby zapobiec nieprawidłowym naprężeniom, które mogą wynikać z ich wcześniejszego luzowania. Kolejna koncepcja dotycząca dokręcania śrub w płaszczyźnie pionowej w położeniu normalnej pracy zawieszenia jest również myląca. W rzeczywistości, dokręcanie śrub w tej płaszczyźnie wymaga szczególnej uwagi i powinno odbywać się z zachowaniem zasad bezpieczeństwa oraz odpowiednich standardów. Ostatnia opcja, sugerująca, że wszystkie śruby można dokręcać w dowolnym ułożeniu zawieszenia, jest nie tylko niebezpieczna, ale także sprzeczna z najlepszymi praktykami w branży. Praca w niewłaściwym położeniu zawieszenia może prowadzić do nieprawidłowego dokręcania, a w konsekwencji do awarii układu zawieszenia, co stwarza poważne zagrożenie dla bezpieczeństwa jazdy. W związku z powyższym, kluczowe jest zrozumienie zasad dotyczących dokręcania śrub w odpowiednich położeniach oraz stosowanie się do wytycznych producenta, co zapewnia nie tylko bezpieczeństwo, ale i długowieczność elementów zawieszenia.

Pytanie 8

Jakiego rodzaju łożysko toczne wymaga dostosowania luzu montażowego?

A. Promieniowe
B. Oporowe
C. Stożkowe
D. Skośne
Łożyska stożkowe to taki ciekawy typ łożysk tocznych, który naprawdę różni się od innych. Musisz je regulować, bo mają specyficzne cechy, przez co ich konstrukcja jest bardziej skomplikowana. Inaczej niż łożyska promieniowe, które przenoszą obciążenie tylko w jednym kierunku, te stożkowe radzą sobie zarówno z obciążeniami promieniowymi, jak i osiowymi. Tego się nie da lekceważyć, bo przy niewłaściwej regulacji luzu montażowego może być nieciekawie. Zbyt mały luz to ryzyko przegrzania i szybkiego zużycia, a zbyt duży luz z kolei może narobić hałasu. Przykładowo, w kołach samochodowych te łożyska są kluczowe dla bezpieczeństwa i komfortu jazdy, a odpowiednia regulacja luzu jest tu bardzo istotna. Na dodatek, w normach ISO 492 i ISO 281 można znaleźć fajne wskazówki dotyczące dobierania i regulacji tych luzów, co jest ważne w branży motoryzacyjnej i maszynowej, żeby sprzęt działał długo i bezawaryjnie.

Pytanie 9

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta pochylenia sworznia zwrotnicy
B. zbieżności całkowitej
C. kąta wyprzedzenia sworznia zwrotnicy
D. pochylenia koła jezdnego
Zauważyłem, że wspomniałeś o różnych parametrach związanych z układem jezdnym, ale nie wszystkie one są powiązane z tym, co mierzymy na płycie pomiarowej. Pochylenie koła to coś innego, chodzi głównie o kąt w stosunku do pionu, ale to nie to, co bezpośrednio sprawdzamy na płycie. Tak samo kąt wyprzedzenia czy kąt pochylenia sworznia zwrotnicy to ważne rzeczy, ale wymagają innych metod pomiarowych. Często ludzie mylą te różne parametry i potem mogą źle interpretować wyniki. Dobrze jest zrozumieć, czym różnią się te pojęcia, bo to pomoże lepiej zadbać o auto.

Pytanie 10

Aby zmierzyć bicie boczne tarczy sprzęgła, należy zastosować

A. czujnik zegarowy.
B. mikrometr.
C. diagnoskop.
D. średnicówkę mikrometryczną.
Czujnik zegarowy jest urządzeniem pomiarowym, które doskonale nadaje się do precyzyjnego określania bicia bocznego tarczy sprzęgła. Dzięki swojej budowie, czujnik zegarowy umożliwia dokładne pomiary małych odchyleń, co jest kluczowe dla zapewnienia prawidłowej pracy komponentów mechanicznych. Przykładowo, w procesie ustawiania sprzęgła w pojazdach, czujnik zegarowy pozwala na szybkie i dokładne określenie, czy tarcza jest zainstalowana prawidłowo, co w konsekwencji wpływa na efektywność przenoszenia momentu obrotowego. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne sprawdzanie bicia bocznego tarczy sprzęgła z wykorzystaniem czujnika zegarowego jest zalecane, aby zminimalizować ryzyko awarii i przedłużyć żywotność elementów układu napędowego. Należy również zwrócić uwagę na kalibrację czujnika, aby zapewnić jego dokładność oraz wiarygodność odczytów, co jest niezbędne w kontekście diagnostyki pojazdów.

Pytanie 11

Badanie zadymienia spalin przeprowadza się w silnikach

A. z zapłonem iskrowym
B. zasilanych paliwem LPG
C. z zapłonem samoczynnym
D. zasilanych paliwem CNG
Wydaje mi się, że podejście do pomiaru zadymienia w silnikach z zapłonem iskrowym jest trochę błędne. Te silniki działają na zasadzie zapłonu od świecy, więc całkiem inaczej to wygląda niż w dieslach. W silnikach benzynowych spalanie jest bardziej stabilne, a cząstek stałych jest mniej. Nawet w silnikach na LPG czy CNG, które są gazowe, sytuacja wygląda inaczej. Choć te paliwa spalają się czyściej, nie produkują za dużo cząstek, więc pomiar zadymienia nie jest tam aż tak istotny. To, że wszędzie zakłada się podobne ilości cząstek we wszystkich silnikach, to błąd. Ważne jest, żeby znać różnice w konstrukcji i działaniu silników, bo ma to ogromne znaczenie dla analizy emisji. Dlatego trzeba stosować odpowiednie metody dla każdego typu silnika, bo normy różnią się w zależności od paliwa.

Pytanie 12

Producent wskazuje, że luz zaworowy powinien wynosić:
- zawory dolotowe 0,2á3,25 mm
- zawory wylotowe 0,25á0,3 mm
W trakcie inspekcji układu rozrządu uzyskano następujące wyniki pomiaru luzu zaworowego:
- zawory dolotowe 0,15á0,40 mm
- zawory wylotowe 0,1á0,3 mm

Uzyskane wyniki sugerują, że

A. luz jedynie zaworów wylotowych jest prawidłowy
B. luz zaworów dolotowych oraz wylotowych jest nieprawidłowy
C. luz zaworów dolotowych oraz wylotowych jest prawidłowy
D. luz jedynie zaworów dolotowych jest prawidłowy
Odpowiedź jest prawidłowa, ponieważ luz zaworowy zarówno dla zaworów dolotowych, jak i wylotowych nie mieści się w określonych przez producenta normach. Producent zaleca luz dolotowy w przedziale 0,2-3,25 mm oraz luz wylotowy w zakresie 0,25-0,3 mm. Mierząc luz dolotowy, uzyskano wartości od 0,15 do 0,40 mm, co wskazuje, że w jednym z pomiarów luz jest zbyt niski, a w drugim zbyt wysoki. W przypadku zaworów wylotowych, wartości od 0,1 do 0,3 mm również nie są zgodne z zaleceniem, ponieważ jeden z pomiarów wskazuje na luz poniżej wymaganego minimum. Niewłaściwe wartości luzu mogą prowadzić do problemów z pracą silnika, w tym do spadku mocy, wzrostu zużycia paliwa, a nawet uszkodzenia komponentów układu rozrządu. Dlatego kluczowe jest regularne kontrolowanie luzu zaworowego, aby zapewnić prawidłową pracę silnika oraz jego długowieczność.

Pytanie 13

Pomieszczenie, w którym przeprowadza się analizę spalin, powinno być wyposażone w

A. wentylację grawitacyjną
B. klimatyzację
C. ogólną wentylację nawiewną
D. odciąg spalin odprowadzający spaliny na zewnątrz
Odpowiedź 'odciąg spalin odprowadzający spaliny na zewnątrz' jest prawidłowa, ponieważ przeprowadzanie analizy spalin wymaga zapewnienia odpowiednich warunków bezpieczeństwa oraz minimalizacji ryzyka związanego z ich obecnością w pomieszczeniu. Odciąg spalin, który kieruje spaliny na zewnątrz, pozwala na skuteczne usunięcie szkodliwych substancji do atmosfery, co jest kluczowe dla zdrowia ludzi oraz ochrony środowiska. W praktyce, takie systemy są wykorzystywane w laboratoriach, zakładach przemysłowych oraz przy badaniach emisji spalin pojazdów. Zgodnie z normami branżowymi, takimi jak PN-EN 15259, systemy odciągowe powinny być projektowane i eksploatowane w sposób zapewniający ich efektywność i bezpieczeństwo, co obejmuje regularne przeglądy oraz konserwację. Dlatego zapewnienie odpowiedniego odciągu spalin nie tylko spełnia wymagania prawne, ale również chroni zdrowie pracowników i użytkowników.

Pytanie 14

Po wykonaniu próby olejowej i ponownym zmierzeniu ciśnienia sprężania zauważono, że ciśnienie w jednym z cylindrów pozostało bez zmian. Co najprawdopodobniej jest uszkodzone w tym cylindrze?

A. Pierścień tłokowy.
B. Gniazdo zaworowe.
C. Uszczelka głowicy.
D. Gładź cylindra.
Gniazdo zaworowe jest kluczowym elementem silnika, który odpowiada za prawidłowe zamykanie i otwieranie zaworów. W sytuacji, gdy po przeprowadzeniu próby olejowej nie odnotowano zmiany ciśnienia w cylindrze, może to sugerować, że gniazdo zaworowe nie zapewnia właściwego uszczelnienia. To zjawisko prowadzi do tzw. „przecieków ciśnienia”, gdzie sprężone powietrze lub mieszanina paliwowo-powietrzna uchodzi przez nieszczelności w gniazdach zaworowych. Praktyka pokazuje, że uszkodzenia gniazd zaworowych są powszechne w silnikach, które przeszły długotrwałe eksploatacje bez odpowiedniej konserwacji. W celu diagnozy problemu można zastosować metody testowania ciśnienia w cylindrze, a także analizę dymu spalinowego, która może ujawnić nadmierne wydobywanie się spalin. Zgodnie z najlepszymi praktykami w branży motoryzacyjnej, regularne przeprowadzanie przeglądów technicznych oraz kontrola stanu gniazd zaworowych mogą zapobiegać poważniejszym uszkodzeniom silnika i zapewniają jego długotrwałą żywotność.

Pytanie 15

Jaką czynność należy wykonać w pierwszej kolejności, udzielając pomocy osobie rażonej prądem elektrycznym?

A. informowanie dostawcy energii elektrycznej o potrzebie odłączenia napięcia.
B. sprawdzenie tętna oraz oddechu osoby poszkodowanej.
C. bezpieczne oddzielenie poszkodowanego od źródła prądu.
D. zawiadomienie przełożonego o wystąpieniu wypadku.
Podczas udzielania pomocy osobie porażonej prądem elektrycznym istotne jest zrozumienie, że podejmowanie działań bez odpowiedniej oceny sytuacji może prowadzić do poważnych konsekwencji, zarówno dla poszkodowanego, jak i dla samego ratownika. Sprawdzanie tętna i oddychania przed zapewnieniem bezpieczeństwa poszkodowanego jest nieodpowiednie, ponieważ w pierwszej kolejności należy zapewnić, że nie jesteśmy narażeni na dalsze porażenie. Jeśli ratownik wejdzie w kontakt z osobą, która jest w strefie porażenia, może sam doznać obrażeń, co doprowadzi do pogorszenia sytuacji. Powiadomienie dostawcy energii elektrycznej o konieczności odłączenia napięcia to działanie, które powinno być zrealizowane, ale nie może być pierwszym krokiem w sytuacji, gdy życie osoby poszkodowanej jest w niebezpieczeństwie. Ważne jest, aby pamiętać, że czas reakcji jest kluczowy w ratowaniu życia. Zgłoszenie incydentu przełożonemu również nie powinno być priorytetem, jeśli sytuacja wymaga natychmiastowych działań ratunkowych. Odpowiednia ocena priorytetów oraz znajomość procedur bezpieczeństwa są niezbędne, a każdy ratownik powinien posiadać umiejętności pierwszej pomocy, które pozwalają na podejmowanie właściwych decyzji w krytycznych sytuacjach.

Pytanie 16

Maksymalna dozwolona prędkość holowania pojazdu na obszarze zabudowanym wynosi

A. 40 km/h
B. 30 km/h
C. 50 km/h
D. 20 km/h
Dopuszczalna maksymalna prędkość holowania pojazdu na terenie zabudowanym wynosząca 30 km/h jest zgodna z obowiązującymi przepisami prawa w Polsce, które mają na celu zapewnienie bezpieczeństwa zarówno kierowców, jak i innych uczestników ruchu drogowego. Prędkość ta jest ustalana w kontekście specyfiki manewrów holowniczych, które wymagają większej ostrożności. Holowanie pojazdów, zwłaszcza w warunkach miejskich, stwarza dodatkowe ryzyko, ponieważ takie pojazdy mogą mieć ograniczoną zdolność do szybkiego manewrowania i zatrzymywania się. W praktyce, przestrzeganie tej prędkości jest kluczowe dla uniknięcia wypadków i kolizji, co jest poparte doświadczeniami wielu służb drogowych i organizacji zajmujących się bezpieczeństwem ruchu. Ponadto, wiele krajów stosuje podobne limity prędkości holowania, co świadczy o uznawaniu tej wartości za standardową w branży.

Pytanie 17

Aby przeprowadzić naprawę otworu na sworzeń tłokowy w tłoku metodą na wymiar naprawczy, należy wykorzystać

A. rozwiertarkę
B. wiertło spiralne
C. frez czołowy
D. gwintownik
Rozwiertarka jest narzędziem stosowanym do precyzyjnego powiększania otworów, co czyni ją idealnym wyborem do naprawy otworów na sworzeń tłokowy w tłoku metodą na wymiar naprawczy. Dzięki zastosowaniu rozwiertarki można uzyskać odpowiednią średnicę otworu, a także zapewnić wysoką jakość wykończenia, co jest kluczowe w kontekście utrzymania właściwej tolerancji oraz montażu sworznia. W praktyce, użycie rozwiertarki pozwala na eliminację niedoskonałości otworu powstałych w wyniku zużycia lub uszkodzenia, a także umożliwia precyzyjne dostosowanie otworu do wymagań technicznych producenta. Standardowe procedury inżynieryjne zalecają korzystanie z rozwiertarek, które są w stanie zapewnić odpowiednią sztywność i stabilność podczas obróbki, co przekłada się na długowieczność wykonywanej naprawy. Dodatkowo, rozwiertarki pozwalają na łatwe usunięcie zanieczyszczeń i resztek materiału z otworu, co jest istotne dla właściwego funkcjonowania tłoka w silniku.

Pytanie 18

W trakcie prowadzenia pojazdu zaświeciła się kontrolka ładowania. Jakie mogą być tego powody?

A. zerwanie paska napędowego alternatora
B. wadliwy akumulator
C. zbyt wysokie napięcie podczas ładowania
D. uszkodzony przekaźnik kontrolki
Zerwanie paska napędu alternatora to jedna z najczęstszych przyczyn zapalenia się lampki kontrolnej ładowania w samochodzie. Pasek ten jest odpowiedzialny za przenoszenie napędu z silnika do alternatora, który generuje prąd potrzebny do ładowania akumulatora i zasilania systemów elektrycznych pojazdu. W sytuacji, gdy pasek ulegnie zerwaniu, alternator przestaje pracować, co prowadzi do braku ładowania akumulatora oraz do sygnalizacji tego problemu przez lampkę kontrolną. Praktycznie, jeśli zauważysz zapaloną lampkę kontrolną ładowania, powinieneś natychmiast sprawdzić stan paska napędu alternatora oraz alternatora. Warto również pamiętać o regularnym przeglądaniu paska oraz jego wymianie zgodnie z zaleceniami producenta, co jest integralną częścią dobrych praktyk w eksploatacji pojazdów. Regularne sprawdzanie parametrów napędu alternatora i stanu akumulatora jest zalecane w celu zapewnienia niezawodności układu elektrycznego samochodu.

Pytanie 19

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. od wnętrza do zewnętrznej strony
B. po kolei od strony skrzyni biegów
C. po kolei od strony napędu wałka rozrządu
D. od zewnętrznej strony do wnętrza
Metody dokręcania śrub głowicy silnika, które zakładają kolejność od zewnątrz do środka lub inne nieprawidłowe podejścia, mogą prowadzić do poważnych konsekwencji konstrukcyjnych oraz funkcjonalnych. Dokręcanie od zewnątrz do środka nie zapewnia równomiernego rozkładu sił, co może prowadzić do lokalnych odkształceń głowicy oraz uszczelki. Nierównomierne dociśnięcie powoduje, że niektóre obszary mogą być zbyt mocno dociskane, podczas gdy inne pozostaną luźne, co sprzyja powstawaniu przecieków oleju i płynu chłodzącego. Ponadto, dokręcanie w kolejności niezgodnej z zaleceniami producenta, np. od strony skrzyni biegów lub od napędu wałka rozrządu, może prowadzić do uszkodzenia gwintów, co w konsekwencji wymaga kosztownej naprawy lub wymiany elementów. W przemyśle motoryzacyjnym stosowane są określone procedury i standardy, które dokładnie definiują, w jaki sposób powinno się dokręcać elementy. Lekceważenie tych procedur przez mechaników, w celu zaoszczędzenia czasu lub w wyniku niedostatecznej wiedzy, jest częstym błędem, który skutkuje nie tylko awariami mechanicznymi, ale również zwiększonymi kosztami eksploatacyjnymi pojazdów. Dlatego kluczowe jest, aby zawsze przestrzegać ustalonych zasad dokręcania w silnikach, stosując się do zaleceń producenta oraz branżowych standardów, aby zapewnić bezpieczeństwo i niezawodność działania pojazdu.

Pytanie 20

Przegub homokinetyczny zapewnia

A. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
B. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
C. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
D. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 21

Wykorzystując dane zawarte w tabeli, oblicz koszt wymiany dwóch łączników stabilizatora przednie osi pojazdu. Czas wymiany to 60 min. Dolicz wartość podatku VAT 23%.

łącznik stabilizatoraszt.Cena netto
60 zł
roboczogodzina150 zł

A. 120,00 zł
B. 209,10 zł
C. 229,20 zł
D. 170,20 zł
Aby obliczyć całkowity koszt wymiany dwóch łączników stabilizatora, należy uwzględnić kilka kluczowych elementów: koszt części, robociznę oraz podatek VAT. Koszt netto dla dwóch łączników stabilizatora powinien być pomnożony przez ich jednostkową cenę, a następnie dodany do kosztu robocizny, który w tym przypadku wynosi 60 minut. Z reguły w warsztatach samochodowych stawka robocizny jest ustalana na poziomie od 100 zł do 200 zł za godzinę, co daje nam konkretne wartości. Po obliczeniu sumy netto, należy doliczyć 23% VAT, co jest standardową stawką w Polsce. Przykładowo, jeśli koszt części wynosi 150 zł, a robocizna 100 zł, wtedy całkowity koszt bez VAT wyniesie 250 zł. Po doliczeniu VAT, całkowity koszt wyniesie 307,50 zł. Zrozumienie tej procedury jest istotne dla prawidłowego obliczania kosztów naprawy w warsztatach samochodowych oraz dla oceny budżetu na przyszłe wydatki związane z utrzymaniem pojazdu. Dlatego odpowiedź 209,10 zł jest poprawna, ponieważ uwzględnia wszystkie te czynniki zgodnie z obowiązującymi standardami branżowymi.

Pytanie 22

Czym jest bieg jałowy?

A. ustawienie dźwigni skrzyni biegów w pozycji N
B. prędkość poruszania się przy użyciu bezpośredniego przełożenia skrzyni biegów
C. najmniejsza prędkość obrotowa, przy której silnik może funkcjonować
D. prędkość obrotowa silnika w chwili rozłączenia sprzęgła
Bieg jałowy to najniższa prędkość obrotowa, z jaką może pracować silnik. W tym stanie silnik nie wykonuje żadnej pracy mechanicznej, a jego obroty są zminimalizowane, co pozwala na oszczędność paliwa oraz minimalizację emisji spalin. Przykładem zastosowania biegu jałowego jest sytuacja, gdy pojazd stoi w miejscu, a silnik wciąż pracuje, co umożliwia zasilenie systemów elektronicznych i klimatyzacji. Na standardy przemysłowe dotyczące pracy silnika wskazują, że utrzymywanie silnika na biegu jałowym przez dłuższy czas może prowadzić do jego zatarcia lub nadmiernego zużycia, dlatego zaleca się unikanie długotrwałego pozostawania na biegu jałowym. W kontekście motoryzacji, zrozumienie pracy silnika w różnych zakresach obrotów oraz ich wpływu na wydajność pojazdu stanowi kluczowy element dla każdego kierowcy i mechanika. Wiedza ta jest także istotna w kontekście regulacji dotyczących emisji spalin, gdzie dąży się do minimalizacji negatywnego wpływu na środowisko.

Pytanie 23

Sprężarka Rootsa może być wykorzystana w systemie

A. chłodzenia silnika
B. paliwowym
C. doładowania silnika
D. wspomagania
Zastosowanie sprężarek Rootsa w układach paliwowych, chłodzenia silnika czy wspomagania opiera się na nieporozumieniach dotyczących ich funkcji i zasad działania. Sprężarki te nie są projektowane do pracy w układach paliwowych, ponieważ nie mają możliwości sprężania cieczy, a ich konstrukcja zostałaby poddana zbyt dużym obciążeniom, co prowadziłoby do uszkodzeń. W układach chłodzenia silnika kluczowe są inne komponenty, takie jak chłodnice czy wentylatory, które są dostosowane do zarządzania temperaturą płynu chłodzącego. Użycie sprężarek Rootsa w taki sposób byłoby nieefektywne i mogłoby prowadzić do poważnych awarii. W kontekście wspomagania, sprężarki te nie pełnią roli, jaką mają pompy wspomagające układ kierowniczy, które są zaprojektowane do zmniejszania siły potrzebnej do skręcania pojazdem. Typowe błędy myślowe prowadzące do takich wniosków często wynikają z braku zrozumienia specyfiki działania sprężarek oraz ich przeznaczenia. Kluczowe jest rozróżnienie między różnymi rodzajami sprężarek i ich zastosowaniami, aby uniknąć mylnych koncepcji w inżynierii mechanicznej i motoryzacji.

Pytanie 24

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. smar stały
B. płyn hydrauliczny
C. olej silnikowy
D. olej przekładniowy
Płyn hydrauliczny, choć również stosowany w różnych systemach mechanicznych, nie jest odpowiedni do smarowania mechanizmów różnicowych. Jego główną rolą jest przenoszenie siły w układach hydraulicznych, takich jak hamulce czy wspomaganie kierownicy. Charakteryzuje się innymi właściwościami fizykochemicznymi, które nie są odpowiednie dla obciążeń występujących w przekładniach. Stosując płyn hydrauliczny w mechanizmie różnicowym, można napotkać poważne problemy, w tym nadmierne tarcie, co prowadzi do szybszego zużycia części. Porównując to do oleju silnikowego, który również nie nadaje się do tego celu, zauważamy, że jego główną funkcją jest smarowanie silnika spalinowego, a nie przekładni. Olej silnikowy nie zawiera odpowiednich dodatków zapewniających wysoką odporność na wysokie temperatury i ciśnienia występujące w mechanizmach różnicowych. Z kolei smar stały, mimo że skutecznie zmniejsza tarcie w zastosowaniach gdzie jest elementem stałym, nie jest odpowiedni do zastosowań w płynnych środowiskach, takich jak mechanizmy różnicowe, gdzie wymagane jest odpowiednie krążenie smaru. Zastosowanie niewłaściwych substancji smarnych prowadzi do nieefektywności, a w konsekwencji do awarii mechanizmu, co jest fundamentalnym błędem w podejściu do konserwacji i eksploatacji pojazdów.

Pytanie 25

Jakim narzędziem dokonujemy pomiaru średnicy czopa głównego wału korbowego?

A. średnicówką trójpunktową
B. sprawdzianem pierścieniowym
C. mikrometrem
D. czujnikiem zegarowym
Mikrometr jest narzędziem pomiarowym o wysokiej precyzji, które umożliwia dokładne mierzenie średnicy czopa głównego wału korbowego. Jego konstrukcja, oparta na śrubie mikrometrycznej, pozwala na odczyt wartości z dokładnością do 0,01 mm, co jest kluczowe w zastosowaniach motoryzacyjnych i mechanicznych, gdzie tolerancje wymiarowe są bardzo ograniczone. Mikrometry są powszechnie stosowane do pomiaru średnic wałów, co zapewnia ich odpowiednią jakość oraz precyzyjne dopasowanie w silnikach. W praktyce, użycie mikrometru polega na umieszczeniu narzędzia wokół czopa i delikatnym dokręceniu śruby, aż do momentu, gdy mikrometr zacznie stawiać opór. Odczyt na skali mikrometru dostarcza bezpośrednich informacji o średnicy. Dodatkowo, mikrometry są kalibrowane zgodnie z normami ISO, co zapewnia ich wiarygodność w procesie pomiarowym. W przypadku pomiaru średnicy czopa głównego wału, dokładność oraz precyzja oferowane przez mikrometr są nieodzowne, aby uniknąć błędów, które mogłyby prowadzić do niewłaściwego montażu lub uszkodzenia silnika.

Pytanie 26

Podczas analizy elektronicznych układów zapłonowych mogą wystąpić niebezpieczne napięcia dla ludzi. Dlatego zaleca się wyłączenie zapłonu lub odłączenie akumulatora przed przystąpieniem do

A. wymiany żarówek reflektorów
B. wymiany bezpieczników topikowych
C. sprawdzania pracy wtryskiwaczy
D. podłączania lampy stroboskopowej
Wymiana żarówek reflektorów, wymiana bezpieczników topikowych oraz sprawdzanie pracy wtryskiwaczy są czynnościami, które nie wymagają odłączenia akumulatora ani wyłączania zapłonu, co może prowadzić do błędnych wniosków o ich bezpieczeństwie. W przypadku wymiany żarówek reflektorów, chociaż nie są one związane z systemem zapłonowym, nadal istnieje ryzyko zwarcia, które może prowadzić do uszkodzenia elektroniki pojazdu. Podobnie, wymiana bezpieczników topikowych w systemach, gdzie zasilanie jest aktywne, może spowodować przepięcia i uszkodzenia komponentów. Sprawdzanie pracy wtryskiwaczy, choć również nie wiąże się bezpośrednio z układem zapłonowym, wiąże się z działaniem w obszarze wysokiego napięcia, co stwarza ryzyko porażenia elektrycznego. Typowym błędem myślowym jest założenie, że czynności, które nie są bezpośrednio związane z układem zapłonowym, są całkowicie bezpieczne. W rzeczywistości, każda interwencja w układach elektrycznych pojazdu niesie ze sobą ryzyko, które można zminimalizować jedynie przez przestrzeganie zasad bezpieczeństwa, takich jak odłączanie zasilania w trakcie wykonania jakichkolwiek napraw czy diagnostyki.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Na podstawie tabeli oblicz koszt wymiany świec zapłonowych w 4-cylindrowym silniku systemu DOHC 16 V, jeżeli czynność zajmuje 45 minut.

Nazwa części / usługiKwota [zł]
szlifowanie głowicy70,00
świeca zapłonowa30,00
wymiana prowadnicy 1 zaworu15,00
prowadnica zaworu10,00
1 roboczogodzina120,00

A. 120,00 zł
B. 570,00 zł
C. 210,00 zł
D. 240,00 zł
W przypadku błędnych odpowiedzi można zauważyć, że występują różne błędy w obliczeniach oraz w podejściu do problemu. Na przykład, odpowiedzi takie jak 570,00 zł oraz 240,00 zł mogą sugerować, że osoby udzielające tych odpowiedzi nie uwzględniły zarówno kosztu zakupu świec, jak i robocizny w sposób właściwy. Warto zauważyć, że koszt robocizny jest kwestią kluczową i nie można go pomijać ani ogólnie pomnażać bez analizy rzeczywistych kosztów. Odpowiedź 570,00 zł mogła powstać przez błędne zsumowanie kosztów lub zastosowanie niewłaściwej stawki robocizny, co nie jest zgodne z rzeczywistością. Natomiast 240,00 zł mogło być wynikiem błędnego pomnożenia liczby wymienianych świec przez ich koszt, bez uwzględnienia robocizny. Tego typu błędy myślowe mogą prowadzić do nieporozumień w zakresie kalkulacji kosztów, co jest istotne w kontekście zarządzania finansami w warsztatach samochodowych. Dlatego zawsze warto zwracać uwagę na wszystkie aspekty związane z kosztami usług i materiałów, aby uniknąć takich nieprawidłowości w przyszłości.

Pytanie 29

Wymiana uszczelki głowicy silnika jest konieczna w przypadku

A. wymiany pompy oleju
B. wymiany uszczelniacza wału korbowego
C. naprawy gniazd zaworowych
D. naprawy przekładni napędu wałka rozrządu
Wydaje mi się, że odpowiedzi dotyczące wymiany uszczelki w kontekście gniazd zaworowych mogą być trochę mylące. W sumie, naprawa gniazd zaworowych wiąże się z demontażem głowicy, a to właśnie w tym momencie trzeba wymienić uszczelkę głowicy. Wymiana pompy oleju, to niby ważny temat, ale nie ma bezpośredniego związku z głowicą. Zresztą, jak się demontuje pompę, to głowicy nie trzeba ruszać, więc uszczelka nie musi być zmieniana. Ponadto, naprawa wałka rozrządu czy uszczelniacza wału korbowego też nie ma związku z uszczelką głowicy. Często można się pomylić i myśleć, że uszczelka głowicy jest taka sama jak inne uszczelki w silniku, co prowadzi do błędnych wniosków. Kluczowe jest, żeby wiedzieć, kiedy i dlaczego wymienia się tę uszczelkę, żeby silnik działał prawidłowo i nie psuł się przez nieszczelność.

Pytanie 30

W silniku spalinowym z tłokiem luz zaworowy jest

A. konieczny aby zapobiec kolizji zaworu z denkiem tłoka
B. zbędny, ponieważ prowadzi jedynie do szybszego zużycia elementów układu rozrządu
C. niedopuszczalny, ponieważ powoduje wzrost ilości świeżego ładunku w cylindrze
D. konieczny w celu zrekompensowania rozszerzalności temperaturowej części układu rozrządu
Luz zaworowy, chociaż niektórzy mogą uważać go za zbędny, jest w rzeczywistości kluczowym elementem dla prawidłowego funkcjonowania tłokowego silnika spalinowego. Twierdzenie, że luz zaworowy powoduje tylko szybsze zużycie części układu rozrządu, jest niepoprawne i ignoruje fundamentalne zasady pracy silnika. W rzeczywistości, brak odpowiedniego luzu może prowadzić do znaczniejszych problemów, takich jak kolizje między zaworami a tłokami, co jest kosztowne w naprawie. Wskazanie, że luz zaworowy jest niewskazany z powodu zwiększenia ilości świeżego ładunku w cylindrze, również jest mylące. Luz zaworowy nie wpływa na ilość ładunku w cylindrze w taki sposób; jego główną rolą jest zapewnienie odpowiedniego otwarcia i zamknięcia zaworów w odpowiednich momentach cyklu pracy silnika. Przekonanie, że luz zaworowy jest zbędny, może prowadzić do katastrofalnych skutków w postaci uszkodzeń silnika, a jego prawidłowe ustawienie jest zgodne z najlepszymi praktykami serwisowymi. Ignorowanie tej zasady jest typowym błędem, który może wystąpić wśród osób nieznających tematyki, co podkreśla znaczenie odpowiedniej edukacji w zakresie mechaniki pojazdowej.

Pytanie 31

Pierwsze elektroniczne urządzenie sterujące w historii motoryzacji - system Motronic od firmy Bosch - stosowano do regulacji

A. układem przeciwpoślizgowym
B. centralnym systemem blokady drzwi
C. układem wtryskowo-zapłonowym
D. skrzynką biegów
Odpowiedź dotycząca układu wtryskowo-zapłonowego jest poprawna, ponieważ system Motronic, opracowany przez firmę Bosch, rewolucjonizował proces zarządzania silnikiem spalinowym. Zintegrowane sterowanie wtryskiem paliwa i zapłonem pozwalało na precyzyjne dostosowanie dawki paliwa do warunków pracy silnika, co znacząco wpłynęło na jego wydajność oraz redukcję emisji szkodliwych substancji. W praktyce, system ten analizuje różne parametry, takie jak temperatura silnika, prędkość obrotowa i ciśnienie atmosferyczne, aby optymalizować proces spalania. Dzięki zastosowaniu elektronicznych czujników i zaawansowanego oprogramowania, Motronic stał się wzorem dla nowoczesnych systemów zarządzania silnikami. Współczesne standardy w branży motoryzacyjnej, takie jak Euro 6, wymagają zastosowania zaawansowanych rozwiązań sterujących, które system Motronic zainspirował. Przykładem zastosowania tego systemu są pojazdy marki Volkswagen, które jako pierwsze wprowadziły ten typ sterowania w latach 80-tych XX wieku.

Pytanie 32

Urządzenie (elektryczne lub hydrodynamiczne) wykorzystywane do długotrwałego hamowania pojazdu, stosowane w pojazdach ciężarowych o wysokiej ładowności oraz w autobusach, to

A. rezonator
B. rekuperator
C. retarder
D. dyfuzor
Rezonator, rekuperator i dyfuzor, mimo że są terminami technicznymi, nie są związane z długotrwałym hamowaniem pojazdów. Rezonator, wykorzystywany głównie w systemach audio oraz niektórych układach wydechowych, ma na celu poprawę akustyki, a nie wpływa na proces hamowania. Rekuperator, który jest urządzeniem stosowanym w systemach odzyskiwania energii, ma zastosowanie w kontekście zwiększenia efektywności energetycznej, ale nie jest przeznaczony do długotrwałego hamowania dużych pojazdów. Dyfuzor natomiast jest elementem aerodynamiki, używanym głównie w kontekście poprawy przepływu powietrza wokół pojazdów, co wpływa na ich osiągi, a nie na systemy hamulcowe. Typowym błędem myślowym jest mylenie urządzeń służących do regulacji różnych aspektów działania pojazdu. Użytkownicy często nie dostrzegają, że każdy z tych komponentów ma zupełnie inne funkcje, co prowadzi do mylnych konkluzji na temat ich zastosowania w kontekście hamowania. Właściwe zrozumienie funkcji tych urządzeń jest kluczowe, aby uniknąć nieporozumień w ich eksploatacji.

Pytanie 33

Refraktometr stosowany w motoryzacji nie nadaje się do wykonania pomiaru

A. gęstości elektrolitu w akumulatorze
B. temperatury wrzenia płynu hamulcowego
C. temperatury krzepnięcia płynu chłodzącego
D. temperatury krzepnięcia płynu do spryskiwacza
Temperatura wrzenia płynu hamulcowego to parametr, który nie jest możliwy do zmierzenia za pomocą refraktometru, ponieważ to urządzenie służy do określenia wskaźników optycznych cieczy, takich jak gęstość czy indeks refrakcji. Płyn hamulcowy podlega różnym standardom, które wymagają stosowania specjalistycznych urządzeń do pomiaru jego właściwości fizykochemicznych, w tym temperatury wrzenia. Przykładowo, w przypadku płynów hamulcowych, istotnym parametrem jest ich stabilność termiczna, a odpowiednie standardy, jak DOT (Department of Transportation), wskazują na konieczność przeprowadzania testów w laboratoriach z użyciem sprzętu przystosowanego do takich pomiarów. Właściwy pomiar temperatury wrzenia jest kluczowy dla zapewnienia bezpieczeństwa jazdy, ponieważ obniżona temperatura wrzenia płynu może prowadzić do powstawania pęcherzy pary, co zmniejsza skuteczność hamulców. W praktyce, aby określić temperaturę wrzenia, należy stosować metody takie jak destylacja lub użycie specjalistycznych termometrów, dostosowanych do wysokich temperatur."

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Podczas pokonywania zakrętu przez pojazd, stabilizator w układzie zawieszenia zapobiega

A. blokowaniu kół.
B. utracie przyczepności kół wewnętrznych.
C. przesunięciu geometrycznemu osi drogi.
D. przemieszczaniu się bocznemu kół.
Odpowiedzi, które wskazujesz, demonstrują typowe nieporozumienia dotyczące działania układów zawieszenia w kontekście pokonywania zakrętów. Pierwsza z nich, dotycząca odchylenia geometrycznego osi toru jazdy, myli pojęcie stabilizacji z geometrią zawieszenia. Stabilizatory nie wpływają bezpośrednio na geometrię toru jazdy, lecz na równowagę pojazdu podczas manewrów. Utrata przyczepności kół wewnętrznych, którą stabilizator ma na celu zminimalizować, jest wynikiem sił odśrodkowych, a nie geometrycznych odchyleń. Kolejna odpowiedź dotycząca przesunięcia bocznego kół również jest nieprecyzyjna. Stabilizatory nie blokują kół ani nie uniemożliwiają ich ruchu; ich rolą jest ograniczenie przechyłów nadwozia, co z kolei stabilizuje położenie kół na drodze. Blokowanie kół jest zjawiskiem, które występuje w sytuacjach awaryjnych, takich jak hamowanie na śliskiej nawierzchni, a nie w kontekście normalnej jazdy w zakręcie. Błędy te wynikają z mylnego przekonania, że stabilizacja oznacza całkowite unieruchomienie kół lub zmiany ich geometrii, co jest niezgodne z zasadami działania nowoczesnych układów zawieszenia, które są projektowane zgodnie z normami bezpieczeństwa i wydajności, takimi jak ISO 26262.

Pytanie 36

Jakie będą łączne koszty części potrzebnych do wymiany szczęk hamulcowych w samochodzie osobowym z bębnowym układem hamulcowym, jeśli cena za komplet szczęk na przód wynosi 80 zł (jedna oś), a na tył 120 zł (jedna oś)?

A. 400,00 zł
B. 200,00 zł
C. 180,00 zł
D. 240,00 zł
Poprawna odpowiedź to 200,00 zł, co jest wynikiem prawidłowego obliczenia kosztów części do wymiany szczęk hamulcowych w samochodzie z bębnowym układem hamulcowym. Koszt szczęk hamulcowych na jedną oś z przodu wynosi 80 zł, natomiast na jedną oś z tyłu to 120 zł. Całkowity koszt wymiany szczęk hamulcowych można obliczyć, dodając te wartości do siebie: 80 zł (przód) + 120 zł (tył) = 200 zł. Takie kalkulacje są istotne nie tylko dla ustalenia budżetu na naprawy, ale również dla zrozumienia struktury kosztów związanych z konserwacją pojazdów. W praktyce, umiejętność dokładnego obliczania kosztów części zamiennych jest niezbędna dla mechaników i właścicieli warsztatów, co pozwala na bardziej przejrzyste zarządzanie finansami i efektywne planowanie przeglądów technicznych zgodnie z wytycznymi branżowymi.

Pytanie 37

W samochodzie osobowym, aby zabezpieczyć koło przed samoczynnym odkręceniem, używa się

A. nakrętek z kołnierzem stożkowym
B. podkładek płaskich
C. nakrętek samohamownych
D. podkładek sprężystych
Nakrętki z kołnierzem stożkowym są stosowane w samochodach osobowych do zabezpieczenia kół przed odkręceniem, ponieważ ich konstrukcja zapewnia lepsze połączenie z powierzchnią felgi. Kołnierz stożkowy umożliwia równomierne rozłożenie siły docisku, co skutkuje lepszą stabilnością i zmniejsza ryzyko luzów. Dzięki temu, w przypadku wibracji, które mogą wystąpić podczas jazdy, nakrętki te lepiej trzymają się na miejscu. W praktyce to oznacza, że kierowcy mogą być spokojni o bezpieczeństwo jazdy, gdyż odpowiednio zainstalowane koła nie odkręcą się w trakcie eksploatacji. Stosowanie tego typu nakrętek jest zgodne z zaleceniami producentów pojazdów oraz normami branżowymi, co podkreśla ich znaczenie w zapewnieniu prawidłowego funkcjonowania układu jezdnego. Ważne jest również, aby stosować odpowiedni moment dokręcania, co zapewnia optymalne działanie nakrętek z kołnierzem stożkowym.

Pytanie 38

Urządzenia warsztatowe nie obejmują

A. prasy
B. kanału najazdowego
C. miernika
D. podnośnika hydraulicznego
Kanał najazdowy to struktura umożliwiająca wjazd pojazdu na poziom warsztatu, nie jest jednak urządzeniem warsztatowym w sensie stricte. W kontekście standardów branżowych, urządzenia warsztatowe to narzędzia lub maszyny, które służą do wykonania określonych zadań, takich jak naprawa, konserwacja czy montaż. Przykładem takiego urządzenia jest podnośnik hydrauliczny, który pozwala na uniesienie pojazdu w celu przeprowadzenia inspekcji lub naprawy podwozia. Miernik z kolei służy do precyzyjnego pomiaru parametrów technicznych, co również jest kluczowym aspektem w pracach warsztatowych. Prasy, stosowane do formowania lub łączenia materiałów, również zaliczają się do tej grupy, ponieważ umożliwiają realizację specyficznych procesów technologicznych. W praktyce kanał najazdowy współdziała z wymienionymi urządzeniami, ale nie pełni ich funkcji, co czyni go nieklasyfikującym się jako urządzenie warsztatowe.

Pytanie 39

W głowicy czterosuwowego silnika spalinowego wykorzystuje się zawory

A. suwakowe
B. membranowe
C. grzybkowe
D. kulowe
Zawory suwakowe, membranowe i kulowe nie pasują za bardzo do głowic czterosuwowych silników, bo mają różne ograniczenia. Zawory suwakowe, co prawda, można spotkać w niektórych silnikach, ale są dość skomplikowane i ciężko zapewnić ich szczelność. Ich działanie nie jest wystarczająco szybkie i precyzyjne, co jest kluczowe dla silników przy zmieniających się obrotach. Zawory membranowe to już zupełnie inna bajka, bo są raczej do silników o niskiej mocy, jak w różnych przenośnych urządzeniach. One nie wytrzymują tych wysokich ciśnień i temperatur, które są w głowicy silnika spalinowego. A zawory kulowe, chociaż świetne w hydraulice, to w silnikach spalinowych są wolniejsze i nie dają możliwości łatwej regulacji przepływu. Ważne jest, żeby wiedzieć, że zawory muszą być odpowiednio dobrane do rodzaju silnika, bo jak źle coś wybierzesz, to możesz mieć problemy z wydajnością i wyższym zużyciem paliwa oraz emisją spalin.

Pytanie 40

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. całkowitej cylindra do objętości komory spalania
B. skokowej do objętości całkowitej cylindra
C. komory spalania do objętości całkowitej cylindra
D. całkowitej cylindra do objętości skokowej
Stopień sprężania w silnikach spalinowych definiuje się jako stosunek objętości całkowitej cylindra do objętości komory spalania. Prawidłowe zrozumienie tego pojęcia jest kluczowe dla oceny wydajności silnika oraz jego pracy. W praktyce, wyższy stopień sprężania pozwala na lepsze wykorzystanie mieszanki paliwowo-powietrznej, co skutkuje zwiększoną mocą oraz efektywnością energetyczną. Przykładowo, w silnikach wysokoprężnych, które zazwyczaj charakteryzują się dużo wyższymi wartościami stopnia sprężania niż silniki benzynowe, proces sprężania powietrza w cylindrze prowadzi do jego nagrzania, co umożliwia zapłon paliwa bez użycia świecy zapłonowej. W branży motoryzacyjnej standardy dotyczące stopnia sprężania są ściśle regulowane, a inżynierowie projektujący silniki często dążą do optymalizacji tego parametru, aby osiągnąć jak najlepsze parametry pracy silnika oraz spełnić normy emisji spalin.