Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 11 kwietnia 2025 10:05
  • Data zakończenia: 11 kwietnia 2025 10:05

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Wykonano pomiary rezystancji Rab czujki ruchu typu NC połączonej w konfiguracji 2EOL/NC z rezystorami R1 = R2 = 1,1 kΩ zgodnie ze schematem. Na podstawie zamieszczonych w tabeli wyników pomiarów oraz schematu połączeń można stwierdzić, że

Stan
styków
naruszeniesabotażnaruszenie
i sabotaż
brak naruszenia
i sabotażu
Rab [kΩ]2,21,1

Ilustracja do pytania
A. uszkodzony jest wyłącznie styk TMP.
B. czujka ruchu działa poprawnie.
C. uszkodzone są styki NC i TMP.
D. uszkodzony jest wyłącznie styk NC.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujka ruchu działa poprawnie, co zostało potwierdzone pomiarami rezystancji R_ab wynoszącymi 1,1 kΩ w stanie braku naruszenia i sabotażu. Taka wartość odpowiada oczekiwanym wartościom dla sprawnych czujek tego typu, które powinny wykazywać stabilną rezystancję w czasie normalnej pracy. Dobrą praktyką w systemach zabezpieczeń jest regularne sprawdzanie rezystancji obwodów czujników, co pozwala na wczesne wykrywanie ewentualnych usterek. Na przykład, w instalacjach alarmowych, regularna konserwacja i testowanie czujników pozwala na zapewnienie ich niezawodności. Oprócz pomiarów rezystancji, warto również zwracać uwagę na inne parametry, takie jak czas reakcji czujnika czy jego zasięg działania. W przypadku czujek ruchu, zgodność z wartościami określonymi przez producenta jest kluczowa, ponieważ niewielkie odchylenia mogą wskazywać na problemy, które mogą zagrażać bezpieczeństwu. Dlatego też, w kontekście wymagań branżowych, zaleca się stosowanie odpowiednich protokołów testowania oraz dokumentowanie wyników, co przyczynia się do ogólnej poprawy efektywności systemów zabezpieczeń.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Tuner DVB-T pozwala na odbiór sygnałów

A. telewizji satelitarnej cyfrowej
B. telewizji naziemnej analogowej
C. telewizji satelitarnej analogowej
D. telewizji naziemnej cyfrowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tuner DVB-T (Digital Video Broadcasting - Terrestrial) jest urządzeniem zaprojektowanym do odbioru sygnałów cyfrowej telewizji naziemnej. W odróżnieniu od analogowej telewizji, która jest stopniowo wycofywana, DVB-T pozwala na odbiór sygnałów w wysokiej jakości, co jest możliwe dzięki kompresji danych oraz cyfrowemu przesyłaniu. W praktyce oznacza to, że użytkownicy mogą korzystać z lepszej jakości obrazu i dźwięku, a także z dodatkowych usług, takich jak napisy czy wiele kanałów w ramach jednego multipleksu. Standard DVB-T jest powszechnie stosowany w wielu krajach, co czyni go rozwiązaniem uniwersalnym. Przykładem zastosowania tunera DVB-T mogą być telewizory i dekodery, które umożliwiają odbiór kanałów telewizyjnych dostępnych w danym regionie bez potrzeby korzystania z kabli czy satelitów. Dodatkowo, tunery te są kompatybilne z różnymi formatami kodowania, co zwiększa ich funkcjonalność i elastyczność w użytkowaniu.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Włókno jednomodowe przenosi w swoim rdzeniu osiowo

A. trzy fale świetlne
B. dwie fale świetlne
C. jedną falę świetlną
D. cztery fale świetlne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Włókno jednomodowe, ze względu na swoją konstrukcję, przenosi jedną falę świetlną w osiowym rdzeniu. Ta cecha jest kluczowa dla jego zastosowania w telekomunikacji i systemach transmisji danych, gdzie wysoka jakość sygnału i minimalne straty są niezwykle istotne. Włókna jednomodowe mają bardzo małą średnicę rdzenia, zazwyczaj wynoszącą około 8–10 mikrometrów, co umożliwia propagację tylko jednej modełki świetlnej. Dzięki temu, włókna te charakteryzują się niskim współczynnikiem tłumienia, co pozwala na przesyłanie sygnałów na dużych odległościach bez znacznych strat. Przykładem zastosowania włókien jednomodowych są systemy światłowodowe w infrastrukturze telekomunikacyjnej, gdzie stosuje się je do łączenia stacji bazowych z centralami. Właściwe zastosowanie włókien jednomodowych, zgodnie z normami ITU-T G.652, pozwala na efektywne i niezawodne przesyłanie danych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20

A. czujnik pirometryczny.
B. termistor.
C. czujnik rezystancyjny.
D. termoparę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujniki rezystancyjne, takie jak Pt100, Pt500 czy Pt1000, to naprawdę ważne elementy w pomiarze temperatury. Działają na zasadzie zmiany rezystancji, gdy temperatura się zmienia. W praktyce, są super popularne w automatyce przemysłowej i systemach HVAC, bo potrzebujemy tam precyzyjnych i niezawodnych pomiarów. Ich stabilność i dokładność sprawiają, że są zgodne z normami, jak IEC 60751, które mówią o ich specyfikacjach. Używa się ich w wielu różnych aplikacjach, na przykład do kontrolowania procesów czy monitorowania warunków środowiskowych. Moim zdaniem, dla regulatorów temperatury te czujniki to strzał w dziesiątkę, bo są łatwe do integracji i dają wysoką dokładność.

Pytanie 14

W dokumentacji technicznej multimetru stwierdzono, że potrafi on wyświetlać wyniki pomiarów w formacie trzy i pół cyfry. Jaką najwyższą liczbę jednostek jest w stanie pokazać ten multimetr?

A. 3999
B. 19999
C. 39999
D. 1999

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1999 jest jak najbardziej trafna! Multimetry z oznaczeniem 'trzy i pół cyfry' mogą wyświetlać liczby do 1999. To oznaczenie oznacza, że pierwsza cyfra może być tylko 0 albo 1, a pozostałe mogą być od 0 do 9. Dlatego dostajemy zakres od 000 do 1999. Praktycznie oznacza to, że ten typ multimetru jest w stanie zmierzyć wartości do 2000 jednostek. Multimetry tego typu są super przydatne, szczególnie przy pomiarach napięcia, prądu i oporu. Są to sprzęty, które każdy, kto zaczyna przygodę z elektroniką, powinien mieć. Dobrze się sprawdzają też w różnych przemysłowych zastosowaniach, zwłaszcza przy konserwacji urządzeń elektronicznych. Warto z nich korzystać, bo są proste w obsłudze i dobrze pokazują wyniki.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Mostek wykorzystywany jest do pomiaru parametrów cewek indukcyjnych?

A. Wheatstone'a
B. Maxwella
C. Thomsona
D. Wiena

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mostek Maxwella to naprawdę fajny układ do pomiarów cewek. Dzięki niemu można zmierzyć różne parametry, jak indukcyjność czy rezystancję, a wszystko to w miarę dokładnie. Działa na zasadzie równowagi, więc można określić indukcyjność bez zakłócania innych wartości w obwodzie. W laboratoriach elektronicznych i inżynieryjnych jest wykorzystywany do testowania różnych komponentów, jak transformatory czy dławiki. Ważne jest też, że mostek Maxwella spełnia normy IEC i IEEE, co daje nam pewność, że pomiary są rzetelne. W porównaniu do mostka Wheatstone'a, który skupia się głównie na rezystancji, mostek Maxwella ma szersze możliwości, jeśli chodzi o analizę cewek. I jeszcze jedna rzecz – dzięki pomiarom można ocenić, jak czynniki jakości (Q) wpływają na wydajność układów indukcyjnych, co jest naprawdę istotne w projektowaniu obwodów elektronicznych. Moim zdaniem, jeśli zajmujesz się elektroniką, warto znać ten mostek.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby określić współczynnik wypełnienia fali prostokątnej, należy użyć

A. miernika współczynnika fal stojących
B. oscyloskopu elektronicznego
C. miernika nieliniowych zniekształceń
D. woltomierza prądu stałego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oscyloskop to naprawdę super narzędzie, jeśli chodzi o analizowanie sygnałów elektrycznych. Jest szczególnie przydatny, kiedy chcemy sprawdzić współczynnik wypełnienia fali prostokątnej. W skrócie, współczynnik wypełnienia mówi nam, jak długo sygnał jest w stanie wysokim (czyli '1') w stosunku do całego okresu fali. Dzięki oscyloskopom możemy zobaczyć, jak wygląda ta fala, co pozwala nam dokładnie ocenić czas impulsu oraz okres fali. Na przykład w projektach cyfrowych, dobrze ustawiony współczynnik wypełnienia jest mega ważny, by nasze układy działały prawidłowo i były wydajne. Dobrze jest wybierać oscyloskopy, które mają funkcję automatycznego liczenia współczynnika wypełnienia, bo to znacznie ułatwia życie. W branży elektrotechnicznej podkreśla się, jak ważne są oscyloskopy do pomiarów sygnałów, więc to naprawdę kluczowe narzędzie w laboratorium.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Czym jest radiator?

A. tor używany w transmisji radiowej
B. radiacyjny pirometr termoelektryczny
C. element odprowadzający ciepło do otoczenia
D. nastawna cewka toroidalna do strojenia radioodbiornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Radiator to naprawdę ważny element w systemach chłodzenia, który odprowadza ciepło z różnych urządzeń, jak silniki czy sprzęt elektroniczny. Jego głównym zadaniem jest przekazywanie ciepła do otoczenia, żeby urządzenia się nie przegrzały. Radiatory znajdziesz w wielu miejscach, od komputerów po systemy klimatyzacji. Ważne, żeby były wykonane z odpowiednich materiałów, jak aluminium czy miedź, bo mają one super przewodność cieplną. Warto zwrócić uwagę na to, jak projektuje się radiatory – dobrze jest optymalizować powierzchnię, która wymienia ciepło, i zapewnić właściwy przepływ powietrza, co można wspierać wentylatorami. W branżowych standardach, jak IPC-9592, mówi się o tym, jak ważne są efektywne systemy chłodzenia w elektronice, więc naprawdę warto zrozumieć, czemu radiator jest tak istotny dla trwałości urządzeń.

Pytanie 29

Do przetwornicy 12 V DC/ 230 V AC 1 000 W podłączono działający silnik indukcyjny o mocy 120 W. Silnik nie funkcjonuje prawidłowo. Żarówka o mocy 200 W podłączona do tej przetwornicy działa poprawnie. Zmierzona wartość napięcia wyjściowego przetwornicy wynosi 229 V. Na podstawie obserwacji oraz wyniku pomiaru można wnioskować, że

A. przetwornica dysponuje zbyt niską mocą, aby zasilić silnik
B. napięcie wyjściowe jest zbyt wysokie
C. przetwornica nie generuje przebiegu sinusoidalnego
D. akumulator zasilający przetwornicę jest wyczerpany

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik indukcyjny wymaga do prawidłowego działania napięcia o określonym przebiegu, najlepiej sinusoidalnym. Przetwornice z reguły powinny wytwarzać taki przebieg, aby urządzenia elektryczne mogły pracować bez zakłóceń. W przypadku silników indukcyjnych, ich działanie opiera się na zjawisku magnetycznym, które jest silnie uzależnione od jakości dostarczonego napięcia. Jeśli przetwornica nie generuje przebiegu sinusoidalnego, lecz na przykład przebieg prostokątny lub modyfikowany, może to prowadzić do nieprawidłowej pracy silnika. Przykładem praktycznym jest sytuacja, gdy używamy przetwornicy, aby zasilać urządzenia wymagające stabilnego napięcia, jak komputery czy silniki, ponieważ niewłaściwy przebieg może prowadzić do uszkodzeń urządzeń. Zgodnie z normami, takimi jak IEC 61000, jakość napięcia i jego przebieg są kluczowe dla zapewnienia niezawodności działania urządzeń. W przypadku silników indukcyjnych, które mogą być bardziej wrażliwe na jakość zasilania, zaleca się użycie przetwornic o czystym przebiegu sinusoidalnym.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm

A. JVR14N431K
B. JVRO7N431K
C. B72210S0301K101
D. TSV07D471

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 33

Jakiego przyrządu pomiarowego powinno się użyć do zmierzenia wartości skutecznej napięcia prostokątnego o częstotliwości 100 Hz?

A. Woltomierza AC z opcją TRUE RMS
B. Galwanometru do pomiaru napięcia zmiennego
C. Galwanometru do pomiaru napięcia stałego
D. Woltomierza AC bez opcji TRUE RMS

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz AC z funkcją TRUE RMS jest odpowiednim narzędziem do pomiaru wartości skutecznej napięcia przebiegu prostokątnego, zwłaszcza przy częstotliwości 100 Hz. Funkcja TRUE RMS (Root Mean Square) pozwala na dokładne określenie wartości skutecznej napięcia, niezależnie od kształtu jego przebiegu. W przypadku przebiegów prostokątnych, które mają wyraźnie zdefiniowane wartości szczytowe, tradycyjne woltomierze AC bez funkcji TRUE RMS mogą dawać zafałszowane wyniki, ponieważ są zaprojektowane do pomiaru przebiegów sinusoidalnych. Użycie woltomierza z funkcją TRUE RMS jest zgodne z najlepszymi praktykami w pomiarach elektrycznych, co zapewnia rzetelność wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie często spotyka się różnorodne kształty przebiegów napięcia, posługiwanie się woltomierzem TRUE RMS jest kluczowe dla precyzyjnej analizy parametrów elektrycznych urządzeń, takich jak silniki elektryczne czy generatory. Takie podejście zwiększa efektywność diagnostyki i pozwala na lepsze zarządzanie energią.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Na podstawie danych technicznych regulatora temperatury zawartych w tabeli określ, jakiego typu pamięć zastosowana jest w tym urządzeniu?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20

A. Przechowująca dane do utraty zasilania.
B. Kasowana promieniowaniem UV.
C. Kasowana elektrycznie.
D. Tylko do odczytu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór "Kasowana elektrycznie" jest trafny, bo to właśnie ten typ pamięci EEPROM, który jest mega istotny w dzisiejszych urządzeniach elektronicznych, jak na przykład regulatory temperatury. Dzięki EEPROM można wygodnie kasować i programować dane, co super ułatwia życie, gdy trzeba zmieniać różne ustawienia, takie jak temperatura. Użytkownicy nie muszą wymieniać pamięci, co jest całkiem spoko i oszczędne. EEPROM nie jest tylko dla regulatorów, ale działa też w systemach wbudowanych, na przykład w urządzeniach IoT, gdzie potrzebna jest pamięć do zapisywania ważnych danych konfiguracyjnych. To jest w sumie zgodne z tym, co teraz się robi w elektronice — liczy się trwałość oraz elastyczność, co w efekcie wydłuża żywotność urządzeń i ich wydajność.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jeżeli wartość rezystancji potencjometru suwakowego pomiędzy zaciskiem krańcowym a zaciskiem ślizgacza zmienia się proporcjonalnie do położenia ślizgacza, to charakterystyka takiego potencjometru stanowi funkcję

A. logarytmiczną
B. wykładniczą
C. hiperboliczną
D. liniową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Potencjometr suwakowy działa na zasadzie zmiany rezystancji w zależności od położenia ślizgacza. Kiedy mówimy, że wartość rezystancji zmienia się wprost proporcjonalnie do położenia ślizgacza, oznacza to, że zmiana wartości rezystancji jest liniowa w odniesieniu do ruchu ślizgacza. Przykładowo, w przypadku potencjometru suwakowego o całkowitej rezystancji 10 kΩ, jeśli ślizgacz znajduje się w połowie drogi, wartość rezystancji między skrajnym zaciskiem a ślizgaczem wyniesie 5 kΩ. Taki charakterystyka jest niezwykle przydatna w aplikacjach audio, gdzie potencjometry linowe są wykorzystywane do regulacji głośności. W standardach branżowych, takich jak IEC, zaleca się użycie potencjometrów liniowych w sytuacjach, gdzie oczekuje się precyzyjnej i proporcjonalnej regulacji. Zrozumienie tej zasady pozwala na lepsze projektowanie obwodów elektronicznych oraz zrozumienie dynamiki działania różnych komponentów. Praca z potencjometrami liniowymi daje inżynierom szeroki wachlarz możliwości dostosowywania i optymalizacji systemów elektronicznych.

Pytanie 39

Aby wymienić uszkodzony rezystor, należy

A. odczytać wartość jego rezystancji z dokumentacji lub schematu
B. zmierzyć jego rezystancję
C. przygotować rezystor o rezystancji o 50% mniejszej
D. przygotować rezystor o tych samych wymiarach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby prawidłowo wymienić uszkodzony rezystor, kluczowym krokiem jest odczytanie wartości jego rezystancji ze schematu lub dokumentacji. Taki dokument zawiera szczegółowe informacje na temat wszystkich komponentów elektronicznych w danym układzie, w tym ich specyfikacji, takich jak wartość rezystancji, tolerancja oraz moc znamionowa. Stosując się do schematu, możemy uniknąć zastosowania niewłaściwego rezystora, co mogłoby doprowadzić do dalszych uszkodzeń w układzie. W praktyce, rezystory są często klasyfikowane według standardowych kodów kolorów, które również mogą być wykorzystane do szybkiej identyfikacji ich wartości. Warto także pamiętać, że zastosowanie rezystora o nieodpowiedniej rezystancji może wpłynąć na działanie całego obwodu, prowadząc do nieprawidłowego funkcjonowania urządzenia. Dlatego precyzyjne odczytywanie dokumentacji i schematów jest częścią dobrych praktyk w elektronice, która zapewnia niezawodność i bezpieczeństwo systemów elektronicznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.