Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 maja 2025 08:54
  • Data zakończenia: 19 maja 2025 09:27

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. kombinerki
B. pincety
C. praski ręcznej
D. ucinaczki boczne
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 2

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 3000 mm2
B. 1000 mm2
C. 2000 mm2
D. 1500 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności Fu = η ∙ S ∙ p. Wstawiając znane wartości: Fu = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = Fu / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m2, co odpowiada 2000 mm2. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 3

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. mikroskopu technicznego
B. przymiaru średnicowego
C. przymiaru kreskowego
D. śruby mikrometrycznej
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 4

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. oczyścić z resztek oleju
B. przefiltrować przy użyciu węgla aktywnego
C. odprowadzić bezpośrednio do ścieków
D. osuszyć z nadmiaru wody
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 5

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7

A. 6 x 6 mm
B. 3 x 3 mm
C. 4 x 4 mm
D. 5 x 5 mm
Odpowiedź 4 x 4 mm jest poprawna, ponieważ zgodnie z danymi przedstawionymi w tabeli, wymiary wpustu pryzmatycznego powinny być dostosowane do średnicy wału. Dla wałów o średnicy od 10 mm do 12 mm, wymagany wpust ma wymiary 4 x 4 mm. Odpowiednie dopasowanie wymiarów wpustu jest kluczowe dla prawidłowego przenoszenia momentu obrotowego oraz zapewnienia stabilności i trwałości mechanizmu. Zastosowanie niewłaściwych wymiarów wpustu może prowadzić do luzów, co z kolei może skutkować uszkodzeniem elementów współpracujących. W praktyce, poprawnie dobrany wpust pryzmatyczny stosuje się w wielu zastosowaniach, w tym w przekładniach, wałach napędowych oraz silnikach, gdzie precyzyjne połączenie elementów jest niezbędne. Dobrą praktyką w inżynierii mechanicznej jest zawsze odniesienie się do standardów przemysłowych, takich jak ISO, które precyzują wymagania dotyczące wymiarów i tolerancji wpustów. Takie podejście zapewnia nie tylko funkcjonalność, ale również bezpieczeństwo i niezawodność konstrukcji.

Pytanie 6

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. krwawienie z nosa
B. uszkodzenie wzroku
C. uszkodzenie słuchu
D. poparzenie dłoni
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 7

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z jak najmniejszą rezystancją wewnętrzną
B. z jak największą rezystancją wewnętrzną
C. z rezystancją wewnętrzną równą rezystancji obciążenia
D. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru
Odpowiedź dotycząca użycia amperomierza z jak najmniejszą rezystancją wewnętrzną jest poprawna, ponieważ niska rezystancja wewnętrzna minimalizuje wpływ przyrządu pomiarowego na układ elektryczny, w którym dokonujemy pomiaru natężenia prądu. Gdy amperomierz ma dużą rezystancję wewnętrzną, wprowadza znaczące zmiany w obwodzie, co prowadzi do zniekształcenia wyników pomiarów. W praktyce oznacza to, że amperomierze stosowane w aplikacjach mechatronicznych, takich jak pomiary w systemach automatyki przemysłowej czy robotyce, powinny być projektowane tak, aby miały jak najmniejszy wpływ na mierzony obwód. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie odpowiednich parametrów technicznych przyrządów pomiarowych, aby zapewnić ich dokładność i wiarygodność. Przykładowo, w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, jak w diagnostyce sprzętu czy pomiarach laboratoryjnych, wybór amperomierza o niskiej rezystancji wewnętrznej staje się kluczowy dla uzyskania rzetelnych wyników. Dodatkowo, w sytuacjach gdzie prąd jest zmienny, a nie stały, zastosowanie odpowiedniego amperomierza pozwala na dokładne monitorowanie parametrów pracy urządzeń elektrycznych.

Pytanie 8

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w hełm ochronny
B. w odzież ochronną
C. w gogle ochronne
D. w rękawice antywibracyjne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 9

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 15 V
B. 6 V
C. 3 V
D. 5 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 10

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HG
B. HL
C. HH
D. HR
Ciecze hydrauliczne typu HL, HG i HR mocno różnią się od HH i mogą wprowadzać w błąd, jeśli chodzi o zastosowanie. Ciecze HL mają dodatki, które chronią przed korozją i smarują, więc są lepsze tam, gdzie trzeba dbać o elementy przed zużyciem. Gdy są stosowane w warunkach wysokiego ciśnienia i temperatury, ich smarujące właściwości mogą bardzo wpłynąć na żywotność hydrauliki. Jeśli chodzi o ciecze HG, to one są stworzone z myślą o ryzykownych środowiskach, jak przemysł petrochemiczny, gdzie istnieje większe zagrożenie pożarem. Z kolei ciecze HR, też chroniące przed korozją, sprawdzają się w bardziej skomplikowanych układach hydraulicznych, gdzie obciążenia są większe i warunki pracy trudniejsze. Często mylimy się przy wyborze cieczy hydraulicznych, bo nie rozumiemy ich specyficznych potrzeb, dlatego warto znać klasyfikacje i właściwości płynów, żeby dopasować je do wymagań, a takie normy jak ISO 11158 są tu bardzo pomocne.

Pytanie 11

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
B. wymienić uszczelkę
C. wymienić membranę
D. zmierzyć rezystancję cewki
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 12

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. ustawienie na boku, sztuczne oddychanie
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
C. sztuczne oddychanie oraz masaż serca
D. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące kolejności działań przy udzielaniu pomocy osobie porażonej prądem elektrycznym. Na przykład, w sytuacjach, w których krążenie jest zachowane, ale oddech jest zatrzymany, kluczowe jest najpierw zapewnienie drożności dróg oddechowych, a następnie przystąpienie do sztucznego oddychania. Wybór odpowiedzi, która pomija ten krok, może prowadzić do poważnych konsekwencji zdrowotnych, takich jak niedotlenienie mózgu, które może nastąpić w ciągu kilku minut. Ułożenie na boku, które można znaleźć w niektórych odpowiedziach, jest istotne w kontekście ochrony dróg oddechowych, jednak stosuje się je głównie w przypadku, gdy pacjent wykazuje oznaki świadomego oddychania lub po epizodach wymiotów, a nie w sytuacji całkowitego zatrzymania oddechu. Dodatkowo, przeprowadzanie masażu serca w sytuacji, gdy krążenie jest zachowane, jest nieuzasadnione i może prowadzić do niepotrzebnych uszkodzeń klatki piersiowej oraz zaburzeń rytmu serca. Takie podejścia mogą wskazywać na niepełne zrozumienie zasad pierwszej pomocy, co może zagrażać życiu poszkodowanego. W sytuacji udzielania pomocy przedlekarskiej, kluczowe znaczenie ma znajomość właściwej sekwencji działań, co opiera się na wiedzy z zakresu medycyny ratunkowej i wytycznych resuscytacyjnych.

Pytanie 13

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 5,1 kW
B. 85,0 kW
C. 8,5 kW
D. 51,0 kW
Obliczanie mocy hydraulicznej siłownika wymaga zrozumienia podstawowych wzorów oraz jednostek, co często prowadzi do błędnych interpretacji wśród osób mniej doświadczonych. Na przykład, przyjęcie mocy 5,1 kW bywa wynikiem nieprawidłowego przeliczenia ciśnienia lub natężenia przepływu. Niektórzy mogą błędnie zakładać, że ilość energii zużytej przez siłownik jest po prostu suma ciśnienia i przepływu bez uwzględnienia jednostek, co prowadzi do mylnych konkluzji. Z kolei odpowiedź 51,0 kW może wynikać z błędnego pomnożenia ciśnienia przez natężenie bez właściwej konwersji jednostek, co jest kluczowym krokiem w tego typu obliczeniach. Często w takich błędach ludzie zapominają, że moc hydrauliczna jest inna od mocy mechanicznej, co może prowadzić do nieporozumień przy projektowaniu systemów hydraulicznych. Ostatecznie, ignorując odpowiednie konwersje jednostek oraz właściwe zastosowanie wzorów, można nadmiernie ocenić moc siłownika, co skutkuje niewłaściwym doborem komponentów i potencjalnymi problemami w operacyjności systemu hydraulicznego. W związku z tym, kluczowe jest, aby inżynierowie stosowali się do odpowiednich norm i dobrych praktyk, takich jak te zawarte w normach ISO oraz normach branżowych dotyczących hydrauliki, aby uniknąć takich pułapek w obliczeniach.

Pytanie 14

Jaką kolejność należy zastosować przy montażu zespołu do przygotowania powietrza, zaczynając od sprężarki?

A. manometr, filtr powietrza, smarownica
B. smarownica, filtr powietrza, manometr
C. filtr powietrza, zawór redukcyjny z manometrem, smarownica
D. smarownica, filtr powietrza, zawór redukcyjny, manometr
Montaż elementów systemu przygotowania powietrza jest kluczowy dla jego efektywności i bezpieczeństwa. Wybór niewłaściwej kolejności montażu może prowadzić do poważnych problemów, w tym uszkodzeń sprzętu oraz obniżenia efektywności systemu. Odpowiedzi, które nie uwzględniają zasady, że filtr powietrza należy zainstalować jako pierwszy, ignorują podstawową funkcję tego elementu. Filtr powietrza ma za zadanie usunąć zanieczyszczenia oraz wilgoć, które mogłyby uszkodzić inne elementy systemu. Montując smarownicę przed filtrem, ryzykujemy, że zanieczyszczenia dostaną się do smarowania, co może prowadzić do uszkodzenia zarówno smarownicy, jak i urządzeń, które ona zasilają. Ponadto, zawór redukcyjny powinien być umiejscowiony za filtrem, aby zapewnić, że ciśnienie regulowane jest na czystym i wysuszonej powietrzu, co jest zgodne z zasadą stosowania komponentów w optymalnych warunkach. Właściwa kolejność montażu jest nie tylko kwestią estetyki czy wygody, ale przede wszystkim funkcjonalności całego systemu oraz zgodności z normami technicznymi i branżowymi, które nakładają na nas obowiązek zapewnienia odpowiednich warunków dla pracy sprężonego powietrza.

Pytanie 15

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. USB
B. RS 485
C. RS 232
D. IRDA
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 16

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. rozmiarem
B. kolejnością montażu
C. formą
D. poziomem skomplikowania
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 17

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRR - trzy osie obrotowe
B. RTT - jedną oś obrotową i dwie osie prostoliniowe
C. RRT - dwie osie obrotowe i jedną oś prostoliniową
D. TTT - trzy osie prostoliniowe
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 18

W jakiej maksymalnej odległości od czoła czujnika powinien znajdować się przedmiot, aby został wykryty przez czujnik o parametrach podanych w tabeli?

Napięcie zasilania: 12 ÷ 24V DC
Zasięg: 8 mm
Typ wyjścia: NPN N.O., NPN N.C., PNP N.O., PNP N.C.
Rodzaj czoła: odkryte
Obudowa czujnika: M18
Przyłącze: przewód 2 m
Maksymalny prąd pracy: 100 mA
Czas odpowiedzi układu: max. 2 ms
Materiał korpusu: metal
Stopień ochrony: IP66
Temperatura pracy: -20°C ÷ +60°C

A. 8mm
B. 66mm
C. 2mm
D. 12mm
Poprawna odpowiedź to 8 mm, co zgadza się z parametrami czujnika podanymi w tabeli. Zasięg detekcji czujnika wynosi dokładnie 8 mm, co oznacza, że przedmiot musi znajdować się w tej odległości od czoła czujnika, aby mógł zostać skutecznie wykryty. W praktycznych zastosowaniach, takich jak automatyka przemysłowa, robotyka czy systemy zabezpieczeń, znajomość zasięgu detekcji czujników jest kluczowa. Umożliwia to prawidłowe zaprojektowanie systemów, które polegają na precyzyjnym wykrywaniu obiektów. Na przykład, w aplikacjach z wykorzystaniem czujników zbliżeniowych, jeśli odległość obiektu przekroczy zasięg czujnika, wykrycie nie będzie możliwe, co może prowadzić do błędów w działaniu całego systemu. Dlatego też, przy projektowaniu układów automatyki, ważne jest, aby zawsze uwzględniać parametry techniczne czujników, co zapewnia ich efektywne działanie i zgodność ze standardami branżowymi.

Pytanie 19

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. wyboczenie tłoczyska
B. zakleszczenie tłoka
C. blokada odpowietrzania
D. niespodziewany spadek ciśnienia roboczego
W analizowanej sytuacji, wyboczenie tłoczyska, nagły spadek ciśnienia roboczego oraz blokada odpowietrzania mogą wydawać się możliwymi przyczynami zatrzymania ruchu tłoczyska, ale ich rzeczywista analiza wskazuje na inne aspekty. Wyboczenie tłoczyska, czyli jego odkształcenie, zazwyczaj prowadzi do nieregularnych ruchów, a nie do nagłego zatrzymania. Tego typu problem najczęściej występuje w wyniku niewłaściwego montażu lub użycia nieodpowiednich komponentów, lecz w opisywanej sytuacji tłok pracował bez obciążenia, co znacząco zmniejsza ryzyko wystąpienia tego zjawiska. Spadek ciśnienia roboczego mógłby być powiązany z nieszczelnościami, jednak, jak zaznaczone w pytaniu, nie zaobserwowano takich usterek. Blokada odpowietrzania również nie jest typową przyczyną nagłego zatrzymania, gdyż raczej skutkowałaby ona powolnym wzrostem ciśnienia, a nie natychmiastowym zatrzymaniem ruchu. Takie myślenie może wynikać z niepełnej analizy pojęć związanych z układami pneumatycznymi, a warto zwrócić uwagę na to, że przyczyną problemu mogą być zewnętrzne czynniki, takie jak zanieczyszczenia lub uszkodzenia mechaniczne, które nie zostały uwzględnione w analizie. Wiedza na temat poprawnej diagnostyki i konserwacji układów pneumatycznych jest kluczowa dla prawidłowego funkcjonowania tego typu systemów.

Pytanie 20

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnetooptyczne (Faradaya)
B. magnotorezystancji (Gaussa)
C. zwane efektem Dopplera
D. piezoelektryczne
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 21

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HV, HLP, HLPD
C. HLP, HFA, HTG
D. HFA, HFC, HFD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 22

Olej hydrauliczny klasy HL to olej

A. mineralny bez dodatków uszlachetniających
B. syntetyczny
C. mineralny posiadający właściwości antykorozyjne
D. o polepszonych parametrach lepkości i temperatury
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 23

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. woda
B. proszek gaśniczy
C. piana gaśnicza
D. dwutlenek węgla
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 24

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 2 200 zł
B. 2 440 zł
C. 1 220 zł
D. 1 440 zł
Wielu uczestników testu może mieć trudności z poprawnym zrozumieniem sposobu obliczania całkowitego kosztu urządzenia elektronicznego, co prowadzi do błędnych odpowiedzi. Kluczowym błędem jest pominięcie całkowitych kosztów wykonania, które w tym przypadku są równe kosztowi materiałów. Niezrozumienie tego faktu skutkuje przyjęciem błędnych wartości dla kosztów całkowitych. Dodatkowo, niedokładne obliczenie podatku VAT może prowadzić do znacznego zaniżenia lub zawyżenia kosztu końcowego. Na przykład, jeśli ktoś nie dodałby kosztów wykonania do materiałów, mógłby błędnie założyć, że całkowity koszt wynosi 1 220 zł, co jest kwotą jedynie materiałów powiększoną o podatek. Ponadto, błędne podejście do obliczania VAT, takie jak błędne zastosowanie stawki lub niewłaściwe obliczenia, może prowadzić do nieprawidłowych rezultatów. Kluczowe jest zrozumienie, że wszelkie koszty powinny być sumowane przed naliczeniem podatku, co jest zgodne z zasadami rachunkowości i przepisami podatkowymi. Aby uniknąć takich błędów, warto stosować standardowe procedury kalkulacji kosztów, które pozwolą na dokładne i systematyczne podejście do wyceny projektów.

Pytanie 25

Jakie elementy należy zweryfikować podczas kontroli smarownicy w zespole przygotowania powietrza w systemie pneumatycznym?

A. Poziom oleju
B. Ciśnienie w systemie
C. Wilgotność powietrza
D. Spust kondensatu
Poziom oleju w smarownicy jest kluczowym parametrem, który należy kontrolować, aby zapewnić prawidłowe funkcjonowanie systemu pneumatycznego. Olej jest niezbędny do smarowania ruchomych elementów maszyn oraz do redukcji tarcia, co bezpośrednio wpływa na ich żywotność oraz efektywność pracy. Zbyt niski poziom oleju może prowadzić do nadmiernego zużycia komponentów, a w skrajnych przypadkach do ich uszkodzenia. W praktyce, regularne kontrole poziomu oleju powinny być częścią rutynowego przeglądu technicznego instalacji pneumatycznej, zgodnie z zaleceniami producentów urządzeń oraz normami branżowymi, takimi jak ISO 8573. Konsekwentne monitorowanie poziomu oleju oraz jego jakości w smarownicach przyczynia się do zwiększenia niezawodności systemów pneumatycznych, co jest kluczowe w procesach przemysłowych, gdzie ciągłość produkcji jest priorytetem.

Pytanie 26

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 10 Nm
C. 1 Nm
D. 986 Nm
Obliczenie momentu obrotowego na wale silnika synchronicznego można przeprowadzić za pomocą wzoru: M = P / (2 * π * n), gdzie M to moment obrotowy w niutonometrach (Nm), P to moc w watach (W), a n to prędkość obrotowa w obrotach na minutę (obr/min). W przypadku mocy 3,14 kW, co odpowiada 3140 W, oraz prędkości obrotowej 3000 obr/min, obliczenia wyglądają następująco: M = 3140 W / (2 * π * (3000/60)) = 10 Nm. Wynik ten jest zgodny z praktycznymi zastosowaniami silników synchronicznych, które często znajdują zastosowanie w aplikacjach przemysłowych. Silniki te charakteryzują się wysoką efektywnością oraz stabilną prędkością obrotową, co czyni je idealnym wyborem do napędu maszyn wymagających precyzyjnej kontroli prędkości. W kontekście standardów branżowych, takie obliczenia są istotne dla prawidłowego doboru silników oraz ich efektywnego wykorzystania w różnych aplikacjach.

Pytanie 27

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. o wyższej gęstości
B. odpornym na proces starzenia
C. tworzącym emulsję z wodą
D. o niższej lepkości
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 28

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. przełącznika instalacyjnego systemu
C. ochrony prądowej systemu
D. wskaźnika działania systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 29

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
B. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
C. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
D. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 30

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany pojemności elektrycznej
C. zmiany indukcyjności własnej
D. zmiany rezystancji
Czujniki oparte na zmianie rezystancji, znane jako tensometry, są kluczowe w pomiarze odkształceń konstrukcji nośnych. Ich działanie opiera się na zasadzie zmiany rezystancji elektrycznej materiału pod wpływem odkształcenia mechanicznego. Kiedy materiał jest rozciągany lub ściskany, jego długość oraz przekrój poprzeczny ulegają zmianie, co bezpośrednio wpływa na jego rezystancję. Tensometry są powszechnie stosowane w inżynierii budowlanej, zwłaszcza przy monitorowaniu mostów, wieżowców oraz innych obiektów narażonych na duże obciążenia. Dzięki ich użyciu inżynierowie mogą ocenić stan techniczny konstrukcji i przewidzieć potencjalne zagrożenia. Standardy branżowe, takie jak ISO 376, definiują wymagania dotyczące precyzyjnych pomiarów odkształceń, co czyni tensometry niezastąpionym narzędziem w nowoczesnym monitorowaniu strukturalnym. Umożliwiają one również przeprowadzanie analiz statycznych i dynamicznych, co jest kluczowe w projektowaniu bezpiecznych i trwałych obiektów budowlanych.

Pytanie 31

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
B. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
C. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
D. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 32

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. poziomnicę
B. przymiar liniowy
C. czujnik zegarowy
D. kątomierz
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 33

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 5 stopni swobody
B. 6 stopni swobody
C. 4 stopnie swobody
D. 3 stopnie swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 34

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. szerokości silnika oraz średnicy wirnika
B. odległości między osią wału a podstawą uchwytów silnika
C. średnicy stojana
D. wysokości silnika
Odległość między osią wału a podstawą łap silnika to naprawdę ważna sprawa, jeśli chodzi o wznios silnika indukcyjnego. W zasadzie pokazuje, jak ten silnik jest zamontowany w danym miejscu. Z tego wynika, na jakiej wysokości silnik jest w stosunku do jego osi obrotu, co ma spory wpływ na to, jak wszystko działa w całym układzie napędowym. Na przykład, jak wznios jest źle ustawiony, to może to spowodować, że silnik będzie dużo więcej zużywał energii i szybciej się psuł. W przemyśle, gdzie silniki indukcyjne są na porządku dziennym, na przykład w wentylacjach czy taśmach transportowych, dokładne pomiary wzniosu są niezbędne, żeby wszystko działało jak należy. Przydaje się też trzymanie się standardów, jak IEC 60034, bo to pomaga w montażu i eksploatacji silników elektrycznych.

Pytanie 35

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. przepływomierz
B. miernik prędkości
C. miernik mętności
D. czujnik poziomu
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 36

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. chwytania elementu z odpowiednią siłą
B. ochrony ramienia robota przed przeciążeniem
C. umieszczania elementu w odpowiedniej lokalizacji
D. ochrony ramienia robota przed zderzeniem z operatorem
Wybór odpowiedzi dotyczącej zabezpieczania ramienia robota przed kolizją z operatorem jest nieprawidłowy, ponieważ główną funkcją efektora jest manipulacja obiektami, a nie zapewnianie bezpieczeństwa użytkowników. Choć bezpieczeństwo jest kluczowe w kontekście pracy z robotami, to odpowiedzialność ta leży w gestii innych komponentów systemu, takich jak czujniki i urządzenia zabezpieczające. Ustawianie elementu we właściwej pozycji również nie jest zadaniem efektora, lecz wynikiem programowania robota i jego algorytmów ruchu. Efektor działa w oparciu o informacje dostarczane przez system kontrolny, a jego rola koncentruje się na chwytaniu i manipulacji, a nie na precyzyjnym pozycjonowaniu. Zabezpieczanie ramienia robota przed przeciążeniem jest również nieadekwatne, ponieważ ten aspekt jest regulowany przez systemy monitorowania obciążenia i kontroli siły. Efektory są projektowane tak, aby dostarczać odpowiednią siłę chwytu w zależności od materiału, co sprawia, że zabezpieczenie przed przeciążeniem nie jest ich podstawową funkcją. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli efektora z innymi systemami zabezpieczeń oraz niedostateczne zrozumienie jego funkcji w kontekście całości systemu automatyzacji.

Pytanie 37

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Klejenia
B. Lutowania miękkiego
C. Zgrzewania
D. Lutowania twardego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 38

Która z wymienionych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zaginanie
B. Zgrzewanie
C. Spawanie
D. Klejenie
Klejenie jest jedną z technik łączenia elementów wykonanych z tworzyw sztucznych, jednak jej zastosowanie nie prowadzi do trwałego połączenia w sensie mechanicznym, jak to ma miejsce w przypadku zgrzewania, spawania czy zaginania. Kleje używane do łączenia tworzyw sztucznych często działają na zasadzie adhezji, co oznacza, że wiążą elementy poprzez przyciąganie molekularne, a nie poprzez ich fuzję. W praktyce oznacza to, że w przypadku obciążeń mechanicznych, czy zmian temperatury, połączenie może ulegać osłabieniu. Zgrzewanie i spawanie polegają na miejscowym podgrzaniu materiału i połączeniu go w stanie ciekłym, co tworzy jednorodną strukturę. Zaginanie jest techniką formowania, która także nie prowadzi do trwałych połączeń, ale zmienia kształt materiału. W zastosowaniach przemysłowych, takich jak produkcja mebli z tworzyw sztucznych czy elementów elektronicznych, klejenie stosowane jest głównie w procesach, gdzie ważna jest estetyka lub kiedy inne metody są niepraktyczne. Warto zwrócić uwagę na dobór odpowiednich klejów, które są zgodne z typem tworzywa sztucznego oraz wymaganiami aplikacyjnymi, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 39

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Nitowanie
B. Zgrzewanie
C. Spawanie
D. Klejenie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 40

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. spadku obrotów silnika
B. obniżenia wartości napięcia zasilania
C. zmniejszenia reaktancji uzwojeń silnika
D. wzrostu obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.