Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 24 maja 2025 13:40
  • Data zakończenia: 24 maja 2025 14:13

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wszystkie pojemniki z odpadami, zarówno stałymi, jak i ciekłymi, które są przekazywane do służby zajmującej się utylizacją, powinny być opatrzone informacjami

A. o dacie i godzinie przekazania
B. o nazwie wytwórcy oraz dacie zakupu
C. o rodzaju analizy, do której były używane
D. o jak najbardziej dokładnym składzie tych odpadów
Odpowiedź dotycząca możliwie szczegółowego składu odpadów jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi gospodarowania odpadami, szczegółowe informacje o składzie odpadów są kluczowe dla ich prawidłowej utylizacji. Umożliwia to odpowiednim służbom ustalenie, jakie procesy recyklingu lub unieszkodliwiania są najbardziej odpowiednie. Na przykład, jeśli odpady zawierają substancje niebezpieczne, konieczne jest zastosowanie specjalnych procedur ich przetwarzania, aby zminimalizować ryzyko dla środowiska i zdrowia publicznego. Dodatkowo, zgodnie z normami ISO 14001, organizacje powinny prowadzić ewidencję oraz monitorować rodzaje i ilości odpadów, co sprzyja efektywnemu zarządzaniu nimi i zgodności z przepisami. W praktyce, dokumentacja zawierająca szczegółowy skład odpadów może również ułatwić audyty oraz kontrole środowiskowe, a także przyczynić się do optymalizacji procesów gospodarki odpadami w przedsiębiorstwie.

Pytanie 2

Proces nastawiania miana kwasu solnego na wodorowęglan potasu KHCO3 przebiega zgodnie z następującą instrukcją:
Na wadze analitycznej odmierzyć 1 g KHCO3 (z precyzją 0,00001 g) i przesypać go ilościowo do kolby stożkowej, dodać około 50 cm3 destylowanej wody i dokładnie wymieszać roztwór. Następnie dodać kilka kropel roztworu czerwieni metylowej. Przeprowadzić miareczkowanie kwasem aż do pierwszej zmiany koloru wskaźnika.
W tym przypadku titrantem jest

A. kwas
B. roztwór wodorowęglanu potasu
C. czerwień metylowa
D. woda destylowana
Poprawną odpowiedzią jest kwas, ponieważ w procesie miareczkowania to on pełni rolę titranta, czyli substancji, której stężenie jest znane i która jest dodawana do próbki w celu ustalenia jej stężenia. W opisanym eksperymencie miareczkowanie polega na dodawaniu kwasu solnego do roztworu wodorowęglanu potasu, co powoduje jego neutralizację. W wyniku reakcji kwasu z wodorowęglanem potasu dochodzi do uwolnienia dwutlenku węgla oraz powstania soli i wody. Kwas solny, jako mocny kwas, jest w stanie szybko zareagować z wodorowęglanem, co czyni go idealnym titrantem w tej procedurze. W praktyce, miareczkowanie jest powszechnie stosowane w laboratoriach do analizy jakościowej i ilościowej substancji chemicznych, a umiejętność prawidłowego przeprowadzania tego procesu jest kluczowa dla chemików. Dobrym przykładem zastosowania miareczkowania jest określenie zawartości kwasu w różnych produktach spożywczych, co jest istotne z punktu widzenia ich jakości i bezpieczeństwa dla konsumentów.

Pytanie 3

Próbka wzorcowa to próbka

A. otrzymana w wyniku zmieszania próbek jednostkowych
B. przygotowana z próbki laboratoryjnej przez jej zmniejszenie
C. o dokładnie znanym składzie
D. przeznaczona w całości do jednego oznaczenia
Próbka wzorcowa to próbka o dokładnie znanym składzie, co czyni ją kluczowym elementem w procesach analitycznych. W analizie chemicznej i badaniach laboratoryjnych próbki wzorcowe są niezbędne do kalibracji instrumentów pomiarowych, a także do walidacji metod analitycznych. Przykładem może być stosowanie standardów w technikach spektroskopowych, gdzie próbki wzorcowe pozwalają na uzyskanie precyzyjnych wyników pomiarów. Zgodnie z normami ISO, próbki wzorcowe powinny być przygotowane z najwyższą starannością, aby zminimalizować błędy pomiarowe. W praktyce, ich zastosowanie obejmuje również monitorowanie jakości procesu produkcyjnego, co pozwala na wykrywanie potencjalnych nieprawidłowości. Stosowanie próbki wzorcowej jest również zgodne z dobrymi praktykami laboratoryjnymi (GLP), które podkreślają znaczenie znanego składu prób w zapewnieniu wiarygodności wyników i umożliwieniu ich porównywalności. Dlatego też, rozwiązując problemy analityczne, znajomość i umiejętność wykorzystania próbek wzorcowych jest niezbędna dla każdego specjalisty w dziedzinie analizy chemicznej i biologicznej.

Pytanie 4

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. ogólną
B. analityczną
C. wtórną
D. średnią
Odpowiedź ogólna jest poprawna, ponieważ po zmieszaniu wszystkich próbek pierwotnych danej partii materiału uzyskuje się jedną reprezentatywną próbkę, która odzwierciedla właściwości całej partii. W praktyce jest to kluczowe w procesach analitycznych, gdzie zapewnienie reprezentatywności próbki ma fundamentalne znaczenie dla uzyskanych wyników. W kontekście norm ISO 17025 dotyczących akredytacji laboratoriów badawczych oraz metod pobierania próbek, istotne jest, aby reprezentatywna próbka była zgodna z zaleceniami dotyczącymi wielkości i sposobu pobierania. Dzięki temu możemy mieć pewność, że wyniki analizy będą miały zastosowanie do całej partii materiału, a nie tylko do wybranych fragmentów. W praktyce, proces ten jest często stosowany w laboratoriach, które zajmują się kontrolą jakości, gdzie analiza jednego z wielu komponentów materiału pozwala na ocenę jego właściwości fizycznych czy chemicznych, co jest niezbędne w branżach takich jak przemysł spożywczy, farmaceutyczny czy chemiczny. W związku z tym, zrozumienie, czym jest próbka ogólna, jest niezbędne dla właściwej interpretacji wyników badań.

Pytanie 5

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 2500 g
B. 1000 g
C. 200 g
D. 100 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 6

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - synteza, II - analiza, DI - wymiana podwójna.
B. I - wymiana pojedyncza, II — analiza, III - synteza.
C. I - analiza, II - synteza, HI - wymiana podwójna.
D. I - synteza, II - analiza, HI - wymiana pojedyncza.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 7

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. czyszczenia szkła laboratoryjnego
B. wytrącania trudno rozpuszczalnych soli w wodzie
C. roztwarzania różnych stopów
D. odkamieniania urządzeń wodnych
Wybór odpowiedzi na temat wytrącania soli trudno rozpuszczalnych w wodzie jest błędny, ponieważ dichromian(VI) potasu nie jest stosowany w procesie wytrącania soli, lecz głównie w myciu szkła. W kontekście chemii, wytrącanie soli polega na mieszaniu rozpuszczalników i reagentów w takich warunkach, które sprzyjają krystalizacji, co jest procesem chemicznym zupełnie odmiennym od działania dichromianu(VI), który nie powoduje tworzenia osadów. Roztwór dichromianu potasu w stężonym kwasie siarkowym nie jest również odpowiedni do roztwarzania stopów, ponieważ jego działanie utleniające nie przekształca metali w formę rozpuszczalną. Przy roztwarzaniu stopów najczęściej wykorzystuje się kwasy o silniejszym działaniu, takie jak kwas azotowy, które są w stanie rozpuścić metale. Z kolei zastosowanie dichromianu w odkamienianiu łaźni wodnych jest również niepoprawne. W tego rodzaju procesach stosuje się zazwyczaj kwasy takie jak kwas solny, które skutecznie usuwają osady kamienia, a nie utleniacze. Użycie dichromianu w tych kontekstach sugeruje brak zrozumienia podstawowych reakcji chemicznych oraz ich zastosowań, co prowadzi do błędnych wniosków i może skutkować nieefektywnymi lub wręcz niebezpiecznymi praktykami laboratoryjnymi, dlatego ważne jest, aby mieć na uwadze odpowiednie metody oraz dobre praktyki laboratoryjne przy wyborze substancji do określonych zadań.

Pytanie 8

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. chemiczne
B. dla człowieka
C. dla środowiska
D. fizyczne
Odpowiedzi wskazujące na zagrożenie fizyczne, chemiczne lub dla środowiska są błędne, ponieważ nie odnoszą się bezpośrednio do zagrożeń, jakie substancje chemiczne mogą stwarzać dla zdrowia ludzi. Zrozumienie różnicy między tymi zagrożeniami jest kluczowe w kontekście bezpieczeństwa chemicznego. Zagrożenia fizyczne dotyczą cech substancji, takich jak łatwopalność, wybuchowość lub reakcje z innymi chemikaliami, które mogą prowadzić do niebezpiecznych sytuacji w warunkach pracy. Z kolei zagrożenia chemiczne odnoszą się do właściwości substancji, które wpływają na jej stabilność i reakcje chemiczne, co może prowadzić do uwolnienia toksycznych gazów bądź tworzenia niebezpiecznych odpadów. Natomiast zagrożenie dla środowiska dotyczy wpływu substancji na ekosystemy, takie jak zanieczyszczenie wód czy gleby. W praktyce, skupienie się na tych aspektach, zamiast na zagrożeniach dla zdrowia ludzkiego, może prowadzić do niewłaściwego stosowania środków ochrony osobistej, co zwiększa ryzyko wypadków w miejscu pracy. Używanie etykiet i zwrotów H jest bardzo istotne, aby zapewnić odpowiednią informację o potencjalnym zagrożeniu zdrowotnym dla pracowników oraz ułatwić przestrzeganie norm BHP.

Pytanie 9

Sód metaliczny powinien być przechowywany w laboratorium

A. w butlach metalowych z wodą destylowaną
B. w butelkach plastikowych
C. w szklanych naczyniach
D. w szklanych pojemnikach wypełnionych naftą
Przechowywanie sodu w plastikowych butelkach jest nieodpowiednie, ponieważ materiały plastikowe mogą nie być wystarczająco odporne na agresywne działanie sodu, co może prowadzić do ich degradacji. Sód jest metalem, który w reakcji z wodą wytwarza wodór, a wybuchowe połączenia mogą powstać w przypadku uwolnienia gazu do zamkniętej przestrzeni. Wypełnianie metalowych butli wodą destylowaną również jest błędnym podejściem, ponieważ kontakt sodu z wodą prowadzi do reakcji wybuchowej. Sód reaguje z wodą, wytwarzając wiele ciepła, a wydzielający się wodór może łatwo zapalić się w kontakcie z tlenem. Ostatecznie, przechowywanie sodu w szklanych butlach bez wypełnienia ich naftą nie zapewnia odpowiedniej ochrony przed utlenianiem. Szkło może być neutralne, ale brak izolacji od powietrza i wilgoci sprawia, że sód może wchodzić w reakcje chemiczne, co stanowi potencjalne zagrożenie. Kluczowym błędem w myśleniu jest niedocenianie reaktywności sodu oraz zaniedbanie podstawowych zasad bezpieczeństwa. Właściwe przechowywanie substancji chemicznych, zwłaszcza tych o wysokiej reaktywności, powinno zawsze być zgodne z najlepszymi praktykami oraz wytycznymi branżowymi, aby zapewnić bezpieczeństwo i efektywność pracy w laboratoriach.

Pytanie 10

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
B. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
C. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
D. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
Zastosowanie zlewki w procesie przygotowywania roztworów może prowadzić do licznych problemów pomiarowych i nieprecyzyjnych rezultatów. Zlewki, choć są użyteczne do ogólnych operacji laboratoryjnych, nie zapewniają odpowiedniej dokładności w pomiarach objętości. Nie mają one podziałek, które pozwalałyby na precyzyjne odmierzenie potrzebnych ilości rozpuszczalnika. Ponadto, rozpuszczenie substancji w 100 cm³ rozpuszczalnika w zlewce nie gwarantuje, że końcowy roztwór będzie miał pożądane stężenie. W momencie przenoszenia roztworu do kolby miarowej, możliwe jest, że niecała objętość roztworu zostanie przetransportowana, co prowadzi do błędnych obliczeń. Dodatkowo, takie podejście może być wprowadzające w błąd, ponieważ nie uwzględnia się zasady dopełniania kolby do kreski, co jest kluczowe dla uzyskania dokładnego stężenia. Wiele osób może pomylić przygotowanie roztworu zlewce z kolbą miarową, co jest typowym błędem myślowym. W laboratoriach stosuje się konkretne protokoły, które podkreślają znaczenie użycia odpowiednich narzędzi do precyzyjnego przygotowania roztworów, a niewłaściwy wybór sprzętu może prowadzić do nieprawidłowych wyników badań chemicznych i analiz.

Pytanie 11

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 4,48 dm3
B. 11,2 dm3
C. 22,4 dm3
D. 2,24 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 12

Jaką próbkę stanowi woreczek gleby pobranej zgodnie z instrukcją?

Instrukcja pobierania próbek glebowych
Próbki pierwotne pobiera się laską glebową z wierzchniej warstwy gleby 0-20 cm, kolejno wykonując czynności:
– w miejscu pobierania próbki pierwotnej (pojedynczej), rolę świeżo zaoraną przydeptać,
– pionowo ustawić laskę do powierzchni gleby,
– wcisnąć laskę do oporu (na wysokość poprzeczki ograniczającej),
– wykonać pełny obrót i wyjąć laskę,
– zawartość wgłębienia (zasobnika) przenieść do pojemnika skrobaczki.
Po pobraniu próbek pojedynczych, całość wymieszać i napełnić kartonik lub woreczek.

A. Ogólną.
B. Analityczną.
C. Laboratoryjną.
D. Jednostkową.
Woreczek gleby pobrany zgodnie z instrukcją stanowi próbkę ogólną, ponieważ jego celem jest uzyskanie reprezentatywnej analizy gleby z określonego obszaru. Przykładowo, jeżeli pobieramy próbki z pola uprawnego, wykonujemy to w różnych punktach, aby uwzględnić zmienność gleby, jak np. różnice w składzie mineralnym, wilgotności czy strukturze. Próbka ogólna, będąca wynikiem połączenia kilku próbek jednostkowych, pozwala na dokładniejsze zrozumienie średnich właściwości gleby, co jest kluczowe dla rolnictwa, oceny jakości gleby oraz zrównoważonego zarządzania zasobami naturalnymi. Zgodnie z normami ISO, takie podejście do pobierania próbek jest standardem w ocenie jakości gleby, co potwierdza znaczenie próbki ogólnej w badaniach środowiskowych oraz rolniczych.

Pytanie 13

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. filtracją
B. chromatografią
C. adsorpcją
D. destylacją
Każda z niepoprawnych odpowiedzi odnosi się do różnych technik separacyjnych, które nie są zgodne z opisanym procesem. Adsorpcja to proces, w którym cząstki z jednego medium zbierają się na powierzchni innego, co nie wiąże się z różnicą w szybkości wędrowania składników, lecz z ich przyleganiem do powierzchni. Technika ta jest używana w różnych aplikacjach, ale nie jest odpowiednia do rozdzielania składników w mieszaninach, jak to ma miejsce w przypadku chromatografii. Z kolei destylacja polega na rozdzielaniu cieczy na podstawie różnicy w ich temperaturach wrzenia. Jest to skuteczna metoda dla mieszanin cieczy, ale nie opiera się na różnicy w wędrowaniu składników, a raczej na ich właściwościach fizycznych. Filtracja natomiast dotyczy separacji ciał stałych od cieczy lub gazów przy użyciu porowatych materiałów, co również nie pasuje do mechanizmu działania chromatografii. Wybór jednej z tych metod mógłby wynikać z błędnego zrozumienia procesów rozdzielania, gdzie myli się fizyczne właściwości substancji z ich interakcjami w kontekście metod chromatograficznych. Kluczowe dla zrozumienia chromatografii jest pojęcie mobilności i powinowactwa składników do różnych faz, co nie jest adekwatne dla pozostałych wymienionych technik separacyjnych.

Pytanie 14

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 21°C
B. 20°C
C. 19°C
D. 25°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 15

Czego brakuje w zestawie pokazanym na ilustracji?

A. stojak, termometr oraz siatka
B. bagietka, termometr oraz siatka
C. stojak, łącznik i łapa
D. stojak, łącznik oraz termometr
Wybór innych odpowiedzi często wiąże się z niepełnym zrozumieniem roli, jaką poszczególne elementy odgrywają w laboratoriach. Bagietka, będąca elementem używanym w kuchni, nie ma zastosowania w kontekście laboratoryjnym. Jej obecność w zestawie nie tylko nie pasuje do środowiska laboratorium, ale także wskazuje na brak wiedzy o standardowych narzędziach wykorzystywanych w procesach eksperymentalnych. Termometr, choć ważny w wielu pomiarach, nie jest elementem strukturalnym, który wspierałby stabilność zestawów montażowych. Odpowiedzi zawierające termometr pomijają kluczowe komponenty, takie jak statyw i łącznik, które są nieodzowne w każdym eksperymencie wymagającym precyzyjnego pomiaru. Z kolei łącznik i łapa, będące istotnymi elementami w laboratoriach, są fundamentalne dla łączenia i stabilizacji, co jest kluczowe dla uniknięcia wypadków w trakcie doświadczeń. Często popełnianym błędem jest skupianie się na pojedynczych narzędziach, zamiast na całościowej konfiguracji sprzętu, co prowadzi do nieporozumień. Właściwe zrozumienie komplementarności elementów sprzętu laboratoryjnego jest kluczowe dla ich efektywnego wykorzystania w praktyce.

Pytanie 16

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o najmniejszych porach
B. elastyczne, o najmniejszych porach
C. elastyczne, o największych porach
D. sztywne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 17

Oblicz, jaką ilość węglanu sodu w gramach należy przygotować, aby uzyskać 500 cm3 roztworu tej soli o stężeniu 0,1000 mol/dm3.
MNa = 23 g/mol, MC = 12 g/mol, MO = 16 g/mol

A. 5,3000 g
B. 7,0000 g
C. 7,5000 g
D. 5,0000 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 500 cm³ roztworu o stężeniu 0,1000 mol/dm³, należy najpierw obliczyć liczbę moli tej soli. Stężenie 0,1000 mol/dm³ oznacza, że w 1 dm³ (1000 cm³) roztworu znajduje się 0,1000 mola Na2CO3. Zatem, w 500 cm³ roztworu znajdować się będzie 0,0500 mola: 0,1000 mol/dm³ * 0,500 dm³ = 0,0500 mol. Następnie, należy obliczyć masę węglanu sodu, stosując wzór: masa = liczba moli * masa molowa. Masa molowa Na2CO3 wynosi: 23 g/mol (Na) * 2 + 12 g/mol (C) + 16 g/mol (O) * 3 = 106 g/mol. Zatem, masa Na2CO3 potrzebna do przygotowania roztworu wynosi: 0,0500 mol * 106 g/mol = 5,3000 g. Takie obliczenia są powszechnie wykorzystywane w laboratoriach chemicznych i są zgodne z zasadami przygotowywania roztworów. Zachowanie precyzji w obliczeniach jest kluczowe dla uzyskania pożądanych stężeń roztworów w praktyce.

Pytanie 18

Wskaż metodę rozdzielenia układu, w którym fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz.

faza rozproszonafaza rozpraszająca
gazcieczciało stałe
gaz-pianapiana stała
cieczaerozol ciekłyemulsjaemulsja stała
ciało stałeaerozol stałyzolzol stały

A. Sedymentacja.
B. Dekantacja.
C. Destylacja.
D. Filtracja.
Sedymentacja, destylacja i dekantacja to techniki rozdzielania, które nie są odpowiednie dla układów, w których fazą rozproszoną jest ciało stałe, a fazą rozpraszającą gaz. Sedymentacja polega na opadaniu cząstek stałych na dno cieczy pod wpływem siły grawitacji, co sprawia, że jest efektywna w przypadku układów stały-ciecz, ale nie sprawdza się w sytuacjach, gdy jedna z faz jest gazem. Destylacja, z kolei, jest procesem polegającym na odparowaniu cieczy i jej skropleniu, co jest efektywną metodą rozdzielania cieczy na podstawie różnicy temperatur wrzenia, jednak nie ma zastosowania w układach stały-gaz. Dekantacja to technika, która polega na oddzielaniu cieczy od osadu, ale również odnosi się głównie do układów ciecz-ciecz lub ciecz-stała. Przy wyborze metody rozdzielania, ważne jest zrozumienie, że każda technika ma swoje specyficzne zastosowania i ograniczenia. Typowe błędy myślowe mogą prowadzić do nieprawidłowych wniosków, takie jak błędne założenie, że każda technika rozdzielania jest uniwersalna i stosowana w każdej sytuacji. Kluczowe jest, aby dostosować metodę do charakterystyki faz, które są rozdzielane, co ma istotne znaczenie w praktykach laboratoryjnych i przemysłowych.

Pytanie 19

Gdzie należy przechowywać cyjanek potasu KCN?

A. w stalowej szafie, zamkniętej na klucz
B. w warunkach chłodniczych
C. w szczelnie zamkniętym eksykatorze
D. w pojemniku, z dala od źródeł ciepła
Przechowywanie cyjanku potasu w szczelnym eksykatorze, w warunkach chłodniczych lub w pojemniku z dala od źródeł ciepła jest niewłaściwym podejściem, które nie uwzględnia kluczowych aspektów bezpieczeństwa. Eksykatory są zazwyczaj używane do przechowywania substancji higroskopijnych, a nie toksycznych, jak KCN. Umieszczanie go w eksykatorze może prowadzić do trudności w dostępie i kontroli nad substancją, co zwiększa ryzyko przypadkowego uwolnienia. Przechowywanie w warunkach chłodniczych może wydawać się racjonalne z perspektywy obniżenia reaktywności, jednak nie eliminuje ryzyka kontaktu z osobami nieuprawnionymi. Poza tym, substancje chemiczne powinny być przechowywane w odpowiednich warunkach, które są zgodne z zależnościami prawnymi i normami, jednak nie w warunkach, które mogą zmylić personel co do poziomu zagrożenia. Ostatnia koncepcja przechowywania KCN w pojemniku z dala od źródeł ciepła nie uwzględnia faktu, że nie jest to wystarczające zabezpieczenie. Każda substancja chemiczna wymaga odpowiedniego przechowywania, które zapewni nie tylko ochronę przed wysoką temperaturą, ale również przed dostępem osób nieuprawnionych. Prawidłowe podejście do przechowywania substancji niebezpiecznych wiąże się z zastosowaniem dedykowanych, zamykanych przestrzeni magazynowych, co stanowi najlepszą praktykę w zarządzaniu substancjami chemicznymi.

Pytanie 20

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. palność
B. czystość
C. rozpuszczalność
D. reaktywność
Rozpuszczalność, palność i reaktywność to cechy chemiczne, które nie są bezpośrednio związane z temperaturą topnienia. Rozpuszczalność odnosi się do zdolności substancji do tworzenia roztworu w danym rozpuszczalniku, a jej pomiar wymaga zupełnie innych metod, takich jak testy rozpuszczalności w różnych rozpuszczalnikach czy badania na podstawie równowagi fazowej. Palność to z kolei właściwość dotycząca łatwości, z jaką substancje palą się w obecności tlenu, co wymaga analizy jej właściwości fizykochemicznych, a nie temperatury topnienia. Reaktywność odnosi się do skłonności substancji do reagowania z innymi substancjami chemicznymi, co można ocenić poprzez różnorodne testy chemiczne, ale również nie jest związane z pomiarem temperatury topnienia. Często błędne myślenie pojawia się, gdy studenci mylą te pojęcia z czystością substancji. Każda z tych cech wymaga odrębnych metod analizy, a skupienie się wyłącznie na temperaturze topnienia do ich oceny prowadzi do nieprawidłowych wniosków i niewłaściwej interpretacji wyników. Dlatego ważne jest, aby zrozumieć, że temperatura topnienia jest szczególnie przydatna w określaniu czystości substancji, a nie w analizie jej rozpuszczalności, palności czy reaktywności.

Pytanie 21

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia masy na szalce zastosowano odważniki: 10 g, 5 g, 500 mg, 200 mg, 200 mg, 50 mg, 20 mg, 10 mg oraz 10 mg. Masa substancji razem z naczynkiem wyniosła

A. 15,94 g
B. 15,99 g
C. 16,04 g
D. 16,94 g
Odpowiedź 15,99 g jest prawidłowa, ponieważ podczas ważenia substancji w naczynku wagowym, sumujemy masy odważników, które zostały użyte do zrównoważenia. W analizowanym przypadku odważniki to: 10 g, 5 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 200 mg (0,2 g), 50 mg (0,05 g), 20 mg (0,02 g), 10 mg (0,01 g) i 10 mg (0,01 g). Gdy dodamy te wartości, otrzymujemy: 10 g + 5 g + 0,5 g + 0,2 g + 0,2 g + 0,05 g + 0,02 g + 0,01 g + 0,01 g = 15,99 g. W praktyce, ważenie substancji należy przeprowadzać na dobrze skalibrowanych wagach technicznych, które powinny być regularnie poddawane kalibracji zgodnie z normami ISO 9001, aby zapewnić dokładność pomiarów. Użycie odważników o precyzyjnych wartościach jest kluczowe dla uzyskania wiarygodnych wyników, co ma ogromne znaczenie w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie niewielkie odchylenia w ważeniu mogą prowadzić do poważnych konsekwencji dla jakości produktów.

Pytanie 22

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. spawanie
B. wymywanie lub wymianę jonową
C. mineralizację suchą
D. rozpuszczanie i rozcieńczanie
Mineralizacja sucha jest procesem, który umożliwia skuteczne rozdzielanie i zatężanie składników próbki poprzez ich przekształcenie w postać mineralną. Ta metoda polega na podgrzewaniu próbki w obecności reagentów mineralizujących, co prowadzi do odparowania wody oraz organicznych związków, pozostawiając jedynie minerały i nieorganiczne składniki. Przykładowym zastosowaniem mineralizacji suchej jest analiza prób glebowych, w których istotne jest wyodrębnienie minerałów dla dalszych badań chemicznych. Dzięki tej metodzie można uzyskać dokładne dane o zawartości składników odżywczych oraz metali ciężkich, co jest niezbędne w rolnictwie, ochronie środowiska oraz w badaniach geologicznych. Mineralizacja sucha jest zgodna z wieloma międzynarodowymi standardami, takimi jak ISO, co zapewnia wiarygodność i porównywalność wyników. Dobrą praktyką jest również stosowanie odpowiednich procedur bezpieczeństwa oraz monitorowanie temperatury, aby uniknąć rozkładu niektórych składników, co mogłoby zafałszować wyniki analizy.

Pytanie 23

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste do badań
B. czyste
C. czyste chemicznie
D. spektralnie czyste
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 24

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. niebieski
B. czerwony
C. malinowy
D. fioletowy
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 25

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. topnienia próbki
B. wyprażenia próbki do stałej masy
C. mineralizacji próbki na mokro
D. mineralizacji próbki na sucho
Wybór innych odpowiedzi, takich jak mineralizacja próbki na sucho, stapianie próbki czy wyprażenie próbki do stałej masy, jest błędny, ponieważ te metody mają różne cele i procedury. Mineralizacja na sucho polega na poddawaniu próbki wysokotemperaturowemu procesowi bez użycia rozpuszczalników, co w przypadku substancji organicznych może prowadzić do niepełnego rozkładu i utraty cennych informacji analitycznych. Takie podejście jest często stosowane do przygotowania próbek mineralnych, ale nie jest odpowiednie dla materiałów zawierających substancje organiczne. Stapianie próbki to proces charakteryzujący się połączeniem próbek z topnikami i ogrzewaniem w celu ich przetworzenia, co również nie odpowiada opisanej procedurze mineralizacji. Z kolei wyprażenie próbki do stałej masy polega na długotrwałym ogrzewaniu w sytuacji, gdy celem jest uzyskanie surowca o stałej masie, co nie jest tożsame z neutralizowaniem organicznych związków chemicznych w obecności kwasu. Dlatego też, błędne zrozumienie tych metod może prowadzić do nieefektywnych lub wręcz niemożliwych do zrealizowania analiz, co podkreśla znaczenie znajomości odpowiednich metod w kontekście celu badania. W praktyce laboratoryjnej kluczowym jest rozróżnienie tych metod, aby zastosować właściwe podejście do uzyskania wiarygodnych wyników.

Pytanie 26

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. piknometr
B. waga hydrostatyczna
C. manometr
D. areometr
Piknometr, areometr i waga hydrostatyczna to przyrządy, które mają na celu pomiar gęstości cieczy, każdy z nich w nieco inny sposób. Piknometr jest naczyniem o znanej objętości, które umożliwia dokładny pomiar masy cieczy, co pozwala na obliczenie gęstości przez zastosowanie prostego wzoru. Areometr, z kolei, działa na zasadzie pływania w cieczy, gdzie głębokość zanurzenia jest proporcjonalna do gęstości cieczy, co ułatwia pomiar w praktycznych sytuacjach, takich jak kontrola stężenia roztworów. Waga hydrostatyczna stosuje zasadę Archimedesa do pomiaru masy cieczy w powietrzu i w wodzie, dostarczając precyzyjnych informacji o gęstości. Wybór niewłaściwego przyrządu, jak manometr, do pomiaru gęstości może prowadzić do błędnych wniosków oraz problemów operacyjnych w laboratoriach i zakładach przemysłowych. Manometr, skonstruowany do pomiaru ciśnienia, nie dostarcza informacji o masie ani objętości cieczy, co jest kluczowe do wyznaczenia gęstości. Dlatego ważne jest, aby dobrze znać funkcje poszczególnych przyrządów i ich zastosowanie w określonych kontekstach pomiarowych, aby uniknąć nieporozumień i błędów w analizach chemicznych oraz fizycznych.

Pytanie 27

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. AgF
B. BaCl2
C. NaCl
D. Pb(NO3)2
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 28

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 0,5 g
B. 50 g
C. 2 g
D. 0,02 g
W przypadku obliczeń związanych z krystalizacją często dochodzi do nieporozumień dotyczących interpretacji wydajności oraz masy próbki. Wydajność krystalizacji to kluczowy parametr, który informuje nas, jaką część początkowej masy substancji udało się uzyskać w formie czystego związku. Niektórzy mogą błędnie zakładać, że masa odważki powinna być równa masie czystego produktu, co jest znamienne dla błędnej interpretacji wyników. Odpowiedzi, które sugerują masę mniejszą niż rzeczywista masa próbki, ignorują fakt, że wydajność jest zawsze wyrażana jako wartość mniejsza niż 1 lub 100%. To prowadzi do poważnych błędów w obliczeniach. Na przykład, odpowiedzi, które sugerują masy takie jak 0,02 g czy 0,5 g, pomijają podstawowy związek pomiędzy masą uzyskanego produktu a jego wydajnością. Ważne jest również to, aby zrozumieć, że przy krystalizacji nie tylko ilość, ale także jakość uzyskanego produktu jest kluczowa. W praktyce, niewłaściwe obliczenia mogą prowadzić do nieefektywnego procesu oczyszczania, co może mieć poważne konsekwencje w przemyśle chemicznym. W kontekście standardów branżowych, takie błędy mogą skutkować niezgodnością z wymaganiami jakościowymi, co jest nieakceptowalne w produkcji farmaceutyków i chemikaliów specjalistycznych. Z tego powodu niezwykle ważne jest, aby zrozumieć i zastosować poprawne metody obliczeń w każdym etapie procesu chemicznego.

Pytanie 29

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe

A. H2SO4
B. żel krzemionkowy
C. Na
D. CaCl2
Wybór CaCl2 jako środka suszącego do osuszenia acetonu (CH3)2CO jest poprawny, ponieważ jest to substancja, która skutecznie wiąże wodę dzięki swojej higroskopijności. Chlorek wapnia jest powszechnie stosowany do osuszania rozpuszczalników organicznych, w tym ketonów, co czyni go idealnym rozwiązaniem w przypadku acetonu. W praktyce, stosując CaCl2, można uzyskać wysoce czysty aceton, co jest istotne w wielu aplikacjach laboratoryjnych i przemysłowych, takich jak syntezy chemiczne czy preparatyka próbek. Dodatkowo, w kontekście dobrych praktyk laboratoryjnych, ważne jest, aby zawsze stosować odpowiednie metody osuszania, aby uniknąć zanieczyszczeń i uzyskać wiarygodne wyniki. Zgodnie ze standardami branżowymi, takie jak ISO 9001, dbanie o jakość materiałów i ich obróbkę jest kluczowe dla zapewnienia wysokiego poziomu produktów końcowych.

Pytanie 30

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. na powierzchni wody, w centralnej części zbiornika
B. na powierzchni wody, w pobliżu brzegu zbiornika
C. w najgłębszym punkcie, z którego czerpana jest woda
D. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
Prawidłowa odpowiedź wskazuje na konieczność pobierania próbek wody w miejscu i na głębokości, w którym następuje pobór wody. Jest to kluczowe dla zapewnienia, że próbki odzwierciedlają rzeczywiste warunki wody, jaka jest dostarczana do użytkowników. W praktyce oznacza to, że próbki należy pobierać w punktach, gdzie woda jest zasysana przez system wodociągowy, co pozwala na dokładne monitorowanie jakości wody oraz jej ewentualnych zanieczyszczeń. Zgodnie z normami i zaleceniami takich organizacji jak WHO czy EPA, próbki powinny być zbierane w sposób, który minimalizuje ryzyko zanieczyszczenia próbek. W praktyce, pobieranie próbek na głębokości w miejscu poboru wody jest niezbędne, aby uwzględnić różne warstwy wody oraz potencjalne różnice w jej jakości. Przykładem zastosowania tej wiedzy jest kontrola jakości wody pitnej, gdzie regularne badania próbek w różnych warunkach pozwalają na odpowiednie reagowanie na zmiany i zapewnienie bezpieczeństwa zdrowotnego mieszkańców.

Pytanie 31

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu etylowego
B. glicyny
C. glikolu propylowego
D. glicerolu
Glicerol, znany również jako 1,2,3-propanotriol, jest trójwodorotlenowym alkoholem, który odgrywa kluczową rolę w biochemii oraz przemyśle chemicznym. Proces przekształcania propanu (C3H8) w glicerol odbywa się poprzez szereg reakcji chemicznych, które obejmują chlorowanie, dehydratację oraz hydrolizę. Glicerol znajduje zastosowanie w wielu dziedzinach, w tym w farmaceutyce jako środek nawilżający i rozpuszczalnik, a także w kosmetykach ze względu na swoje właściwości humektantne. Dodatkowo, glicerol jest wykorzystywany w przemyśle spożywczym jako substancja słodząca i stabilizująca. W kontekście dobrych praktyk branżowych, glicerol jest stosowany zgodnie z normami bezpieczeństwa żywności oraz regulacjami dotyczącymi kosmetyków, co podkreśla jego wszechstronność i znaczenie w różnych sektorach. Znajomość tego procesu i właściwości glicerolu jest istotna dla chemików oraz inżynierów zajmujących się produkcją substancji chemicznych oraz formulacjami kosmetycznymi.

Pytanie 32

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. matrycą
B. domieszką
C. śladem
D. ultraśladem
Odpowiedzi takie jak 'domieszka', 'matryca' i 'ultraślad' nie oddają właściwego znaczenia terminu 'ślad'. Domieszka odnosi się do dowolnego składnika, który jest obecny w próbce, ale niekoniecznie w tak niskich stężeniach, jak te opisane w pytaniu. Z kolei matryca to termin używany do opisu podstawowej substancji, w której zawarte są inne składniki. W kontekście analitycznym matryca ma ogromne znaczenie, ponieważ jej skład i właściwości mogą wpływać na dokładność i precyzję analizy. Ultraślad to termin, który jest rzadziej używany i może sugerować jeszcze niższe stężenia niż te określone dla 'śladu', ale nie jest to standardowa definicja, co może prowadzić do nieporozumień. Typowe błędy myślowe związane z tymi odpowiedziami często wynikają z niepełnego zrozumienia terminologii chemicznej oraz kontekstu analitycznego. Kluczowe jest, aby rozróżniać te pojęcia i wiedzieć, jak wpływają one na interpretację wyników analitycznych. Niepoprawne zrozumienie tych terminów może prowadzić do poważnych błędów w ocenie jakości próbek oraz ich składników, co jest niezbędne w wielu dziedzinach, takich jak kontrola jakości, badania środowiskowe czy bezpieczeństwo żywności.

Pytanie 33

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. ciepła
B. tlenu
C. światła
D. powietrza
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 34

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
B. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
D. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
Rozważając inne dostępne odpowiedzi, można zauważyć szereg nieprawidłowości wynikających z błędnych obliczeń lub niewłaściwego rozumienia pojęcia stężenia i objętości roztworu. Na przykład, odpowiedź, która sugeruje przygotowanie kolby miarowej o pojemności 500 cm³ z roztworem o stężeniu 0,05 mol/dm³, nie uwzględnia faktu, że stężenie to jest połową wymaganego stężenia, co prowadzi do błędnego wniosku o ilości wymaganej substancji. Przygotowanie roztworu o stężeniu 0,05 mol/dm³ wymagałoby jedynie 0,025 mola AgNO₃, co jest niewystarczające w kontekście zadania. Z kolei sugerowana odpowiedź dotycząca przygotowania czterech kolb miarowych o pojemności 250 cm³ z roztworem o stężeniu 0,025 mol/dm³ nie tylko nie spełnia wymagań dotyczących stężenia, ale także podaje złą ilość moli potrzebną do uzyskania takiego roztworu. Niezrozumienie zależności między objętością, stężeniem i ilością moli prowadzi do typowych błędów myślowych, które mogą skutkować niepoprawnymi wynikami w laboratoriach chemicznych. W kontekście standardów laboratoryjnych, takim jak ISO, kluczowe jest, aby przygotowywanie roztworów było realizowane zgodnie z jasno określonymi procedurami oraz zasadami, co pozwala uniknąć błędów, które mogą wpłynąć na jakość i wiarygodność analiz chemicznych.

Pytanie 35

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 10 g
B. 1,00 g
C. 10 mg
D. 0,01 mg
Wybór innej odpowiedzi niż 10 mg może wynikać z nieporozumienia dotyczącego możliwości pomiarowych wag laboratoryjnych. Odpowiedź 1,00 g jest zbyt dużą wartością, ponieważ wskazuje na możliwość pomiaru masy z dokładnością, która jest znacznie niższa niż ta oferowana przez precyzyjną wagę. W praktyce, wagi o takiej dokładności mogą nie być wystarczające do zastosowań wymagających wysokiej precyzji, co jest istotne w chemii analitycznej, lecz bardziej w codziennym użytkowaniu. Wybór 0,01 mg jest niewłaściwy, ponieważ przekracza możliwości typowych wag laboratoryjnych, które nie osiągają tak wysokiej precyzji w standardowych zastosowaniach, co może prowadzić do niepomiaru lub błędów w analizach. Odpowiedź 10 g również jest nieadekwatna, ponieważ wagi precyzyjne mają na celu dokładne ważenie niewielkich ilości substancji, a nie większych próbek, które mogą być ważone na wagach analitycznych o innej specyfikacji. W związku z tym, każdy z wybranych błędnych odpowiedzi ilustruje typowe błędy myślowe, które mogą wynikać z braku zrozumienia charakterystyki wag laboratoryjnych oraz ich zastosowań w praktyce. Kluczowe jest, aby przy wyborze odpowiedzi na pytania dotyczące pomiarów masy kierować się zrozumieniem dokładności urządzeń oraz ich przeznaczenia w kontekście laboratoryjnym.

Pytanie 36

Ekstrakcję w trybie ciągłym przeprowadza się

A. w rozdzielaczu z korkiem
B. w aparacie Soxhleta
C. w zestawie do ogrzewania
D. w kolbie płaskodennej
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 37

Połączono równe ilości cynku i bromu, a następnie poddano je reakcji Zn + Br2 → ZnBr2. W tych warunkach stopień reakcji cynku wynosi (masy atomowe: Zn – 65u, Br – 80u)?

A. 0,6
B. 0,8
C. 1,0
D. 0,4
Wybór odpowiedzi, który nie uwzględnia właściwych proporcji reagentów w reakcji, prowadzi do błędnych wniosków. W przypadku reakcji Zn + Br2 → ZnBr2 należy zaznaczyć, że reakcja zachodzi w idealnych warunkach stechiometrycznych, w których reagenty są w równych ilościach molowych. Osoby, które odpowiedziały inaczej, często popełniają błąd w obliczeniach molowych lub mylą się w ocenie, który reagent jest ograniczający. Warto zwrócić uwagę, że jeśli reagent jest w nadmiarze, to nie wpływa na stopień przereagowania reagentu ograniczającego. Dlatego też, niezależnie od ilości bromu, cynk w tej reakcji ogranicza, co oznacza, że tylko część bromu zareaguje. Obliczenia powinny bazować na masach atomowych oraz na przeliczeniu ich na mole, co jest kluczowym elementem analizy chemicznej. Zazwyczaj błędy te wynikają z zbyt ogólnego podejścia do kwestii stechiometrii, a także braku zrozumienia, jak molowość reagentów wpływa na wynik reakcji. Aby zminimalizować takie błędy, ważne jest praktykowanie obliczeń stechiometrycznych oraz znajomość zasad dotyczących ilości molowych reagentów i ich wpływu na reakcję. Wiedza ta jest fundamentalna, ponieważ w przemyśle chemicznym należy precyzyjnie kontrolować proporcje reagentów, aby zapewnić efektywność procesów chemicznych.

Pytanie 38

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,2000 mol/dm3
B. 0,1200 mol/dm3
C. 0,1500 mol/dm3
D. 0,1000 mol/dm3
Wiele osób może nie dostrzegać, że poprawne obliczenia miana roztworu NaOH opierają się na znajomości stoichiometrii reakcji chemicznych oraz zrozumieniu, jak stosunki molowe wpływają na obliczenia. Wybrane odpowiedzi, takie jak 0,1000 mol/dm³, mogą sugerować błędne założenie, że miano NaOH odpowiada stężeniu HCl, co jest nieprawidłowe. Odpowiedzi wskazujące na miano 0,1500 mol/dm³ lub 0,2000 mol/dm³ mogą wynikać z błędnego przeliczenia objętości reagenta lub pomyłki w stosunku molowym. W praktyce, takie błędy są częste, gdy osoby nie biorą pod uwagę, że w reakcji neutralizacji między NaOH a HCl dochodzi do wymiany moli zgodnie z równaniem 1:1. Dlatego kluczowe jest, aby w obliczeniach uwzględniać zarówno objętości, jak i właściwe stężenia reagentów. Typowymi pułapkami są również błędy w jednostkach, gdzie pomijanie konwersji cm³ na dm³ prowadzi do nieprawidłowych wyników. Niewłaściwe zrozumienie reakcji chemicznych oraz ich stoichiometrii może skutkować fałszywymi wynikami, co w kontekście analitycznym jest niedopuszczalne. Rekomendacje branżowe sugerują regularne sprawdzanie obliczeń oraz stosowanie wzorców referencyjnych, aby zapewnić prawidłowość wyników, co jest niezwykle istotne w laboratoriach badawczych i przemysłowych.

Pytanie 39

Piknometr służy do określania

A. wilgotności
B. gęstości
C. rozpuszczalności
D. lepkości
Piknometr jest precyzyjnym przyrządem służącym do pomiaru gęstości substancji, co jest niezwykle istotne w wielu dziedzinach, takich jak chemia, biochemia czy inżynieria materiałowa. Gęstość jest definiowana jako masa na jednostkę objętości i ma kluczowe znaczenie w identyfikacji substancji oraz w kontrolowaniu jakości produktów. Piknometry są wykorzystywane w laboratoriach do pomiaru gęstości cieczy, a także ciał stałych po uprzednim ich przekształceniu w zawiesiny. Przykładowo, w analizie chemicznej, znajomość gęstości substancji pozwala na obliczenie stężenia roztworów, co jest krytyczne dla wielu procesów syntezy chemicznej i analitycznej. Zgodnie z zasadami metrologii, pomiar gęstości powinien być przeprowadzany w warunkach kontrolowanej temperatury, a piknometry muszą być kalibrowane, aby zapewnić wiarygodność wyników. Standardy, takie jak ASTM D1481, wyznaczają metody pomiaru gęstości z wykorzystaniem piknometrów, co dodatkowo podkreśla ich znaczenie w praktyce laboratywnej.

Pytanie 40

Gęstość próbki cieczy wyznacza się przy użyciu

A. piknometru
B. refraktometru
C. spektrofotometru
D. biurety
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.