Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 17 maja 2025 16:34
  • Data zakończenia: 17 maja 2025 16:48

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W pojeździe, w którym występuje szarpanie podczas ruszania, należy przede wszystkim zweryfikować stopień zużycia

A. elementów sprzęgła
B. synchronizatora pierwszego biegu
C. silnika w związku z "wypadaniem zapłonów"
D. układu hamulcowego (blokowanie kół)
Szarpanie w czasie ruszania z miejsca może być mylone z wieloma innymi problemami mechanicznymi, co może prowadzić do błędnych diagnoz i niepotrzebnych kosztów naprawy. Synchronizator pierwszego biegu, na przykład, odpowiada za płynne przejście między biegami, jednak jego uszkodzenie najczęściej objawia się trudnościami w zmianie biegów, a nie szarpaniem przy ruszaniu. W praktyce, problemy z synchronizatorem są zauważalne przede wszystkim podczas zmian biegów przy wysokich obrotach silnika, a nie w momencie uruchamiania pojazdu. Układ hamulcowy, z kolei, odpowiedzialny jest za zatrzymywanie pojazdu i nie powinien mieć wpływu na szarpanie podczas ruszania. Blokowanie kół może prowadzić do ślizgania się opon, ale nie jest bezpośrednią przyczyną szarpania, co czyni tę odpowiedź nieodpowiednią. Wreszcie, wypadanie zapłonów w silniku może powodować szarpanie podczas jazdy, ale jest to symptom bardziej zaawansowanego problemu z silnikiem niż bezpośrednia przyczyna szarpania w momencie ruszania. Dlatego ważne jest, aby skupić się na diagnostyce układu sprzęgłowego, który najczęściej jest źródłem problemów przy ruszaniu z miejsca.

Pytanie 2

Parametrem związanym z geometrią kół nie jest

A. kąt nachylenia sworznia zwrotnicy
B. kąt wyprzedzenia sworznia zwrotnicy
C. ciśnienie w ogumieniu
D. zbieżność kół
Ciśnienie w ogumieniu nie jest parametrem geometrii kół, ponieważ dotyczy jedynie stanu opon, a nie ich ustawienia czy kątów. Parametry geometrii, takie jak kąt pochylenia sworznia zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznia zwrotnicy, mają kluczowe znaczenie dla właściwego prowadzenia pojazdu oraz jego stabilności na drodze. Kąt pochylenia sworznia zwrotnicy wpływa na kąt, pod jakim opona styka się z nawierzchnią, co z kolei ma wpływ na przyczepność i zużycie opon. Zbieżność kół odnosi się do ustawienia osi kół względem siebie oraz do kierunku jazdy, co jest istotne dla prawidłowego zachowania się pojazdu podczas skrętów. Kąt wyprzedzenia sworznia zwrotnicy, określający kąt, pod jakim oś obrotu koła jest ustawiona względem pionu, ma znaczenie dla stabilności jazdy i samoczynnego wracania kierownicy do pozycji neutralnej po skręcie. Dlatego znajomość tych parametrów jest kluczowa dla zapewnienia bezpieczeństwa, a ich regularna kontrola jest zalecana w praktyce motoryzacyjnej.

Pytanie 3

Podczas wymiany zużytej tulei cylindrowej w silniku na nową, co jeszcze powinno zostać wymienione?

A. tłok wraz z korbowodem
B. tylko tłok
C. tłok i pierścienie
D. jedynie korbowód
Wybór odpowiedzi, która sugeruje wymianę tylko korbowodu lub tylko tłoka, pomija kluczowy aspekt współpracy wszystkich elementów w silniku. Korbowód jest elementem, który przekształca ruch posuwisty tłoka na ruch obrotowy wału korbowego, ale jego wymiana nie ma sensu, jeśli tuleja cylindrowa i tłok nie są również wymienione. W szczególności korbowód, jeśli nie wykazuje oznak zużycia, może pozostać w silniku bez potrzeby jego wymiany. Z kolei wymiana tylko tłoka bez pierścieni jest niewłaściwa, ponieważ pierścienie odgrywają istotną rolę w utrzymaniu ciśnienia kompresji. W przypadku silników spalinowych, pierścienie tłokowe uszczelniają przestrzeń roboczą i zapobiegają przedostawaniu się oleju do komory spalania. Zaniedbanie ich wymiany prowadzi do nieefektywnego spalania, co może skutkować zwiększonym zużyciem paliwa oraz emisją spalin. Odpowiedzi wskazujące na wymianę tylko tłoka czy korbowodu są niekompletne i mogą prowadzić do długoterminowych problemów z silnikiem. Takie podejście, polegające na wybieraniu tylko pojedynczych komponentów do wymiany, jest często wynikiem błędnego myślenia o funkcjonowaniu silnika jako zintegrowanego systemu, w którym każdy element ma swoje ściśle określone zadanie i wpływa na działanie pozostałych. W praktyce zawsze warto podejść do naprawy z perspektywy całości, unikając późniejszych problemów oraz dodatkowych kosztów związanych z naprawą elementów, które mogłyby zostać oszczędzone przy kompleksowej wymianie.

Pytanie 4

W systemie klimatyzacyjnym parownik umiejscowiony jest

A. obok sprężarki klimatyzacji
B. obok nagrzewnicy
C. za wentylatorem chłodnicy
D. obok chłodnicy silnika
W układzie klimatyzacji występuje wiele kluczowych komponentów, a jego zrozumienie wymaga znajomości ich roli i umiejscowienia. Wiele osób może mylnie sądzić, że parownik znajduje się przy sprężarce klimatyzacji, jednak to nieprawda. Sprężarka jest odpowiedzialna za sprężanie czynnika chłodniczego i jego cyrkulację w układzie, ale to nie w jej sąsiedztwie odbywa się proces chłodzenia powietrza. Z kolei umiejscowienie parownika przy chłodnicy silnika również jest nieprawidłowe. Chłodnica silnika ma za zadanie odprowadzać ciepło generowane przez silnik, a nie brać udział w procesie klimatyzacji. Ponadto, umiejscowienie parownika za wentylatorem chłodnicy jest również mylne, ponieważ ten wentylator ma na celu wspomaganie chłodzenia cieczy w chłodnicy, co nie ma bezpośredniego związku z funkcjonowaniem parownika. Kluczowym błędem, który prowadzi do tych nieprawidłowych wniosków, jest niezrozumienie, że parownik pełni funkcję eliminacji ciepła z wnętrza pojazdu, a jego lokalizacja przy nagrzewnicy pozwala na skuteczne działanie układu klimatyzacji. Należy pamiętać, że skuteczna wentylacja i klimatyzacja są ze sobą ściśle powiązane, a zrozumienie tych relacji jest niezbędne do prawidłowego funkcjonowania systemu. Właściwe umiejscowienie parownika jest zatem kluczowe dla zapewnienia komfortu w kabinie pojazdu i efektywności całego układu.

Pytanie 5

Aby ocenić techniczny stan układu chłodzenia silnika, należy w pierwszej kolejności

A. skontrolować poziom cieczy chłodzącej
B. zweryfikować zakres działania wentylatora
C. sprawdzić czystość żeber chłodnicy
D. dokonać pomiaru ciśnienia w układzie chłodzenia
Sprawdzanie poziomu cieczy chłodzącej to mega ważna sprawa, jeśli chodzi o ocenę stanu układu chłodzenia silnika. Ciecz chłodząca, czyli ta mieszanka wody i płynu, ma kluczowe znaczenie, żeby silnik działał w odpowiedniej temperaturze i żeby się nie przegrzewał. Jak poziom cieczy jest za niski, to może być problem z chłodzeniem, a to z kolei stwarza ryzyko awarii silnika. Z mojego doświadczenia, przed tymi bardziej skomplikowanymi pomiarami, warto najpierw sprawdzić poziom płynu. Zawsze dobrze jest uzupełniać płyn chłodzący odpowiednimi specyfikami, bo one nie tylko zmniejszają ryzyko zamarzania, ale też chronią przed korozją. Regularne kontrolowanie poziomu cieczy to coś, co powinno być stałym elementem dbania o auto, bo to wydłuża jego żywotność i niezawodność.

Pytanie 6

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. ciśnienia wtrysku
B. wydatku pompy
C. podciśnienia ssania
D. ciśnienia tłoczenia
Podczas diagnostyki pompy paliwowej, niektórzy mogą pomyśleć, że pomiar ciśnienia wtrysku jest kluczowy, jednak takie podejście jest mylące. Ciśnienie wtrysku wiąże się z pracą układu wtryskowego, który jest niezależny od samej pompy paliwowej. Pompa ma za zadanie dostarczenie paliwa pod określonym ciśnieniem, a wtryskiwacze kontrolują, kiedy i jak dużo paliwa dostarczyć do komory spalania. Z tego powodu, pomiar ciśnienia wtrysku nie dostarcza informacji o efektywności pompy. Dodatkowo, pomiar ciśnienia tłoczenia jest kluczowy, ponieważ pozwala ocenić, czy pompa dostarcza odpowiednią ilość paliwa do silnika. Pomiar wydatku pompy, który określa, ile paliwa jest w stanie dostarczyć pompa w danym czasie, również jest niezbędny do oceny jej wydajności. Niewłaściwe zrozumienie roli poszczególnych elementów systemu paliwowego może prowadzić do błędnych diagnoz i niewłaściwych decyzji dotyczących naprawy. Użytkownicy często mylą funkcje pompy z funkcjami wtryskiwaczy, co może skutkować próbami diagnozowania problemu w niewłaściwy sposób. Dlatego ważne jest, aby w diagnostyce koncentrować się na pomiarach, które bezpośrednio odnoszą się do działania pompy, aby właściwie ocenić jej stan i uniknąć zbędnych napraw.

Pytanie 7

Jakie zużycie określa wskaźnik TWI?

A. paliwa
B. płynu hamulcowego
C. oleju silnikowego
D. opony
Wskaźnik TWI (Tread Wear Indicator) jest kluczowym elementem bezpieczeństwa w oponach, który informuje kierowcę o stopniu zużycia bieżnika. Właściwe funkcjonowanie wskaźnika TWI jest niezbędne dla zachowania optymalnej przyczepności i stabilności pojazdu. W miarę eksploatacji opon, głębokość bieżnika zmniejsza się, co wpływa na zdolność do skutecznego odprowadzania wody i minimalizowania ryzyka aquaplaningu. Wskaźniki TWI są zazwyczaj umieszczone w rowkach bieżnika opon i stają się widoczne, gdy głębokość bieżnika spadnie do minimalnego poziomu, zazwyczaj 1,6 mm, co jest zgodne z przepisami prawa w wielu krajach. Regularne monitorowanie wskaźników TWI pozwala na wczesne wykrywanie konieczności wymiany opon, co nie tylko poprawia bezpieczeństwo, ale także wpływa na efektywność paliwową pojazdu. Dobre praktyki wskazują na konieczność wymiany opon w momencie, gdy TWI wskazuje na ich zużycie, co zapobiega dalszym uszkodzeniom i zapewnia lepsze osiągi pojazdu.

Pytanie 8

Aby zweryfikować bicia czopów głównych wału korbowego, należy zastosować

A. mikrometru
B. średnicówki czujnikowej
C. czujnika zegarowego
D. średnicówki mikrometrycznej
Czujnik zegarowy jest narzędziem pomiarowym, które jest powszechnie stosowane w mechanice do precyzyjnego pomiaru luzu i bicia czopów głównych wału korbowego. Jego działanie opiera się na zjawisku wskazywania upływu czasu na zegarze, co pozwala na dokładne odczytywanie niewielkich przemieszczeń. W przypadku wału korbowego, ważne jest, aby sprawdzić, czy czopy są odpowiednio osadzone w łożyskach, co ma kluczowe znaczenie dla prawidłowego funkcjonowania silnika. Pomiar bicia czopów za pomocą czujnika zegarowego daje możliwość zmierzenia odchylenia od idealnej osi, co jest niezbędne dla zapewnienia długotrwałej i niezawodnej pracy silnika. W praktyce, czujnik zegarowy ustawia się na powierzchni czopu, a następnie obraca wał, co pozwala na obserwację wahań wskazówki czujnika, które odzwierciedlają ewentualne niedoskonałości w osadzeniu wału. Zgodnie z normami branżowymi, akceptowalne wartości bicia nie powinny przekraczać określonych limitów, co również potwierdza zastosowanie czujnika zegarowego jako standardowego narzędzia w warsztatach mechanicznych i zakładach produkcyjnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. pochylenia koła jezdnego
B. zbieżności całkowitej
C. kąta wyprzedzenia sworznia zwrotnicy
D. kąta pochylenia sworznia zwrotnicy
Jak wiesz, jazda po płycie pomiarowej w stacji kontroli jest mega ważna dla sprawdzenia, jak dobrze ustawione są koła. Zbieżność całkowita to różnica w kącie kół przednich i to naprawdę wpływa na to, jak jedzie auto. Kiedy zbieżność jest źle ustawiona, opony szybciej się zużywają, auto gorzej się prowadzi, a paliwa idzie więcej. Na przykład, jeżeli zbieżność jest ujemna, to może się zdarzyć, że koła będą się ze sobą stykać, co jest niebezpieczne. Producent zawsze zaleca, żeby kontrolować te ustawienia regularnie, a szczególnie po wymianie opon czy naprawie zawieszenia. Dzięki tym pomiarom można wydłużyć życie opon i układu kierowniczego, co w dłuższej perspektywie się na pewno opłaca.

Pytanie 11

Podczas montażu suchych tulei cylindrowych w korpusie silnika powinno się

A. nasmarować olejem miejsca styku tulei z korpusem
B. umieścić uszczelki pomiędzy dolną częścią tulei a korpusem
C. ostrożnie wbijać tuleję gumowym młotkiem
D. wciskać tuleję przy użyciu prasy lub specjalnego narzędzia
Założenie uszczelek między dolną częścią tulei a kadłubem jest praktyką, która nie jest zgodna z zasadami montażu tulei cylindrowych. W rzeczywistości, uszczelki te mogą wprowadzać dodatkowe luz i nieprawidłowe napotkanie tulei na kadłub, co negatywnie wpłynie na właściwości pracy silnika. W przypadku wciskania tulei przy użyciu młotka gumowego, może to prowadzić do nierównomiernego rozłożenia siły, co z kolei zwiększa ryzyko uszkodzenia tulei oraz kadłuba, a także nie zapewnia odpowiedniej szczelności, co jest kluczowe dla prawidłowego funkcjonowania silnika. Nasmarowanie olejem powierzchni styku tulei z kadłubem nie jest zalecane, ponieważ może prowadzić do zmniejszenia tarcia, co w konsekwencji utrudnia osiągnięcie odpowiedniego dopasowania i stabilności tulei. W przypadku stosowania prasy lub przyrządów do montażu, nie tylko zapewnia się odpowiednią kontrolę nad procesem, ale również zachowuje się standardy jakości i bezpieczeństwa w przemysłowych praktykach montażowych. Zachowanie tych zasad jest istotne z perspektywy długoterminowej niezawodności silnika oraz zapobiegania problemom, które mogą wystąpić w wyniku niewłaściwego montażu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Podczas elektrycznego spawania metali konieczne jest stosowanie

A. maski spawalniczej
B. kasku ochronnego
C. ochraniaczy słuchu
D. maski przeciwpyłowej
Maska spawalnicza jest niezbędnym elementem ochrony osobistej podczas elektrycznego spawania metali, gdyż chroni oczy i twarz przed szkodliwym promieniowaniem, w tym światłem łuku elektrycznego. Promieniowanie UV i IR emitowane podczas spawania może powodować poważne uszkodzenia wzroku, w tym oparzenia siatkówki oraz zaćmę. Maska zapewnia również ochronę przed odpryskującymi cząstkami metalu oraz wysoką temperaturą. W praktyce, profesjonalni spawacze korzystają z masek wyposażonych w filtry, które automatycznie przyciemniają się w momencie rozpoczęcia spawania, co zwiększa komfort pracy. Zgodnie z normami ochrony osobistej, takimi jak PN-EN 175, stosowanie maski spawalniczej jest kluczowe dla zapewnienia bezpieczeństwa oraz zdrowia pracowników w środowisku spawalniczym. Zaleca się także, aby maski były regularnie kontrolowane pod kątem ich stanu technicznego oraz prawidłowego działania, co jest istotne dla zachowania wysokiego poziomu ochrony.

Pytanie 14

Na etykiecie znamionowej pojazdu brakuje informacji o

A. numerze identyfikacyjnym VIN
B. numerze świadectwa homologacji
C. dopuszczalnej masie całkowitej pojazdu
D. wymiarach zewnętrznych pojazdu
Tabliczka znamionowa pojazdu zawiera kluczowe informacje identyfikacyjne, które są niezbędne do jego rejestracji, a także do zapewnienia bezpieczeństwa użytkowania. W szczególności numer identyfikacyjny VIN (Vehicle Identification Number) jest unikalnym identyfikatorem, który pozwala na śledzenie historii pojazdu oraz jego specyfikacji technicznych. Numer świadectwa homologacji potwierdza zgodność pojazdu z obowiązującymi normami i przepisami technicznymi, co jest istotne w kontekście dopuszczenia pojazdu do ruchu. Wymiary zewnętrzne pojazdu również są zazwyczaj zawarte na tabliczce, ponieważ mają kluczowe znaczenie dla oceny jego zdolności manewrowych oraz zgodności z przepisami drogowymi. Dopuszczalna masa całkowita pojazdu, mimo że jest istotnym parametrem w kontekście eksploatacyjnym i wpływa na bezpieczeństwo jazdy, nie jest zawsze umieszczana na tabliczce znamionowej, ponieważ zazwyczaj jest dostępna w dokumentacji pojazdu lub może być określona przez producenta w instrukcji obsługi. Wiedza na temat tych informacji jest niezbędna dla właścicieli pojazdów, a także dla służb odpowiedzialnych za ich kontrolę.

Pytanie 15

Filtr cząstek stałych, który jest zablokowany, powinien

A. być zamieniony na tłumik
B. zostać wymieniony na nowy
C. zostać na stałe usunięty z pojazdu
D. zostać zastąpiony łącznikiem elastycznym
Zatkany filtr cząstek stałych (DPF) jest kluczowym elementem systemu emisji spalin w nowoczesnych silnikach diesla. Jego podstawowym zadaniem jest redukcja emisji cząstek stałych, co jest zgodne z normami emisji, takimi jak Euro 6. Gdy filtr staje się zatkany, nie jest w stanie prawidłowo pełnić swojej funkcji, co prowadzi do wzrostu emisji szkodliwych substancji. Wymiana zanieczyszczonego filtra na nowy jest jedynym właściwym rozwiązaniem, które zapewnia przywrócenie sprawności układu. Ponadto, nowoczesne filtry cząstek stałych są projektowane z myślą o długoterminowym użytkowaniu, a ich wymiana powinna być wykonana zgodnie z zaleceniami producenta pojazdu, aby uniknąć potencjalnych usterek. Należy również zwrócić uwagę na proces regeneracji DPF, który w niektórych przypadkach może pomóc w przywróceniu jego funkcji, ale nie zawsze jest skuteczny. Dlatego wymiana na nowy podzespoł jest najbezpieczniejszym i najskuteczniejszym rozwiązaniem, aby zapewnić sprawność i ekologiczność pojazdu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Pasek zębaty w napędzie kół mechanizmu rozrządu?

A. trzeba nasuwać najpierw na koło zębate na wale korbowym
B. trzeba nasuwać najpierw na koło zębate na wale rozrządu
C. trzeba nasuwać jednocześnie na oba koła zębate
D. kolejność nasuwania jest dowolna
Nasuwanie paska zębatego w niewłaściwej kolejności może prowadzić do poważnych problemów w pracy silnika. Rozpoczęcie od jednego koła zębatego, na przykład na wale rozrządu, może spowodować nierównomierne napięcie paska. Takie działanie negatywnie wpłynie na synchronizację pomiędzy wałem korbowym a wałem rozrządu, co jest niezwykle istotne w silnikach spalinowych, gdzie precyzyjne dopasowanie tych elementów ma kluczowe znaczenie dla efektywności i trwałości silnika. Niezrozumienie tej zasady może wynikać z błędnego założenia, że można zmontować elementy w dowolnej kolejności, co jest dużym uproszczeniem. Ponadto, nasuwanie paska najpierw na koło zębate na wale korbowym lub w innej niezgodnej kolejności stwarza ryzyko, że pasek się zakleszczy lub zniekształci, prowadząc do awarii. W praktyce, zarządzanie montażem paska zębatego wymaga precyzyjnego podejścia, w tym zastosowania odpowiednich narzędzi oraz technik, które zapewniają poprawne napięcie i synchronizację. Dlatego szczególnie istotne jest, aby nie lekceważyć tych aspektów i zawsze stosować się do zaleceń producenta, co pozwala na uniknięcie kosztownych napraw i wydłużenie żywotności silnika.

Pytanie 18

Jakie są metody weryfikacji efektywności działania hamulca roboczego po dokonaniu naprawy?

A. podczas próby na drodze
B. przeprowadzając symulację
C. na płycie testowej
D. na stanowisku do badania podwozi
Symulacja nie może zastąpić rzeczywistych warunków testowych, ponieważ nie uwzględnia zmienności warunków zewnętrznych, takich jak zmienna przyczepność nawierzchni, różne obciążenia pojazdu czy warunki atmosferyczne. Wykonywanie testów na hamowni podwoziowej, chociaż przydatne do oceny ogólnej wydajności pojazdu, nie oddaje rzeczywistego zachowania układu hamulcowego w dynamicznych warunkach drogowych. Hamownia może dostarczać danych dotyczących siły hamowania w kontrolowanych warunkach, ale brakuje jej aspektów praktycznych, które ujawniają się wyłącznie podczas jazdy. Testy na płycie przejazdowej, chociaż mogą być użyteczne do wstępnej weryfikacji działania hamulców, nie zastąpią pełnego testu drogowego, gdyż płyta nie pozwala na symulację zmienności warunków drogowych oraz interakcji z innymi pojazdami. Wiele osób popełnia błąd, myśląc, że wyniki uzyskane w warunkach laboratoryjnych są wystarczające do oceny rzeczywistej efektywności hamulców, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Dlatego kluczowe jest przeprowadzanie testów drogowych jako etapu końcowego oceny systemu hamulcowego po naprawie.

Pytanie 19

W trakcie diagnozowania systemu zawieszenia przy użyciu urządzenia typu "szarpak diagnostyczny", zauważono nadmierny luz koła w kierunku pionowym. Który z elementów nie ma na to wpływu?

A. Łożyska piasty koła przedniego
B. Końcówka drążka kierowniczego
C. Sworzeń wahacza
D. Tuleja wahacza
Nadmierny luz koła w płaszczyźnie pionowej jest zjawiskiem, które może wynikać z uszkodzenia lub zużycia różnych komponentów układu zawieszenia, a błędne odpowiedzi na to pytanie można zrozumieć poprzez analizę wpływu poszczególnych elementów. Sworzeń wahacza jest kluczowym elementem, który łączy wahacz z nadwoziem pojazdu. Jeśli sworzeń jest uszkodzony lub ma zbyt dużą luz, może to prowadzić do nieprawidłowego ustawienia koła, co skutkuje jego nadmiernym luźnym ruchem w płaszczyźnie pionowej. Podobnie, łożyska piasty koła przedniego są odpowiedzialne za prawidłowe obracanie się koła; zużycie lub uszkodzenie tych łożysk skutkuje luzem, który odczuwany jest na kole. Tuleja wahacza z kolei ma istotny wpływ na stabilność zawieszenia i redukcję luzów. Uszkodzona tuleja może powodować, że koło nie jest poprawnie utrzymywane w swojej pozycji, co przekłada się na nadmierny luz. Problemem, który często prowadzi do błędnych wniosków, jest mylenie funkcji różnych elementów układu zawieszenia; końcówka drążka kierowniczego, mimo że odgrywa istotną rolę w sterowaniu, nie ma wpływu na pionowe ruchy koła. Zrozumienie specyfiki poszczególnych komponentów oraz ich wpływu na zachowanie pojazdu jest kluczowe dla właściwej diagnostyki i naprawy układów zawieszenia.

Pytanie 20

Jaki jest główny cel stosowania układu ABS w pojazdach?

A. Poprawa komfortu jazdy
B. Zwiększenie prędkości maksymalnej pojazdu
C. Zwiększenie kontroli nad pojazdem podczas hamowania
D. Zmniejszenie zużycia paliwa
Układ ABS, czyli Anti-lock Braking System, jest jednym z najważniejszych systemów bezpieczeństwa w pojazdach samochodowych. Jego głównym celem jest zapobieganie blokowaniu się kół podczas gwałtownego hamowania, co pozwala na utrzymanie kontroli nad pojazdem. Dzięki ABS kierowca ma możliwość jednoczesnego hamowania i manewrowania, co jest kluczowe w sytuacjach awaryjnych. System ten działa poprzez monitorowanie prędkości obrotowej kół i, w przypadku wykrycia ryzyka blokady, modulowanie ciśnienia hamulcowego. To pozwala na utrzymanie optymalnego kontaktu opon z nawierzchnią, co jest szczególnie ważne na śliskich lub mokrych drogach. W praktyce ABS znacznie skraca drogę hamowania na większości nawierzchni, co może dosłownie uratować życie. Wprowadzenie ABS stało się standardem w przemyśle motoryzacyjnym i jest zgodne z międzynarodowymi normami bezpieczeństwa. Układ ten jest również wsparciem dla innych systemów, jak ESP czy TCS, zwiększając ogólne bezpieczeństwo jazdy.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakiej właściwości nie ma ciecz chłodząca używana w silnikach spalinowych?

A. Przeciwdziałanie zjawisku kawitacji i wrzenia
B. Niska skłonność do zamarzania
C. Zabezpieczenie przed korozją układu chłodzenia
D. Ograniczenie nadmiernego przewodnictwa cieplnego
Ciecz chłodząca w silnikach spalinowych pełni kilka dość istotnych funkcji. Niektórzy mogą myśleć, że chodzi o ograniczanie przewodnictwa cieplnego, ale to raczej nieprawda. To nie jej rola. Ciecz chłodząca ma przede wszystkim zarządzać ciepłem, które silnik produkuje. Problemy z kawitacją i wrzeniem są naprawdę poważne, ale to nie jest coś, co ciecz chłodząca powinna robić, a raczej jak ma być stosowana, żeby utrzymać dobre ciśnienie i temperaturę. Warto też zwrócić uwagę na zamarzanie, bo ciecz chłodząca musi działać nawet w trudnych warunkach pogodowych. Ciecze takie jak glikole mają niską temperaturę zamarzania, co jest fajne przy zimnym klimacie. Korozja to inna sprawa, bo składniki chemiczne w cieczy chronią metale przed utlenianiem. Wniosek? Mówiąc że ciecz chłodząca ogranicza przewodnictwo cieplne, nie oddajemy tego, co naprawdę robi w silniku.

Pytanie 23

Nadmierne ścieranie się środkowej części bieżnika na całym obwodzie opony jest rezultatem

A. zbyt niskim ciśnieniem powietrza w oponie
B. niewłaściwym wyważeniem koła
C. zbyt wysokim ciśnieniem w oponie
D. częstym uderzaniem w krawężnik
Wielu kierowców myli przyczyny nadmiernego zużycia opon, co wynika z niepełnego zrozumienia wpływu różnych czynników na stan bieżnika. Zbyt małe ciśnienie powietrza prowadzi do zwiększonego oporu toczenia oraz nadmiernego nagrzewania się opony, co skutkuje jej szybszym zużyciem, ale nie jest to przyczyna nadmiernego zużycia środkowej części bieżnika. Najeżdżanie na krawężniki może powodować uszkodzenia boczne opon oraz wpływać na wyważenie, natomiast nie ma bezpośredniego związku z zużyciem środkowej części. Złe wyważenie koła z kolei skutkuje nierównomiernym zużyciem opon, przy czym trudno przypisać to bezpośrednio do środkowej części bieżnika. Typowym błędem myślowym jest zakładanie, że każdy problem z oponami można przypisać do jednego czynnika, podczas gdy w rzeczywistości wiele aspektów wpływa na ich stan. Zrozumienie, że ciśnienie powietrza w oponach jest kluczowe dla ich wydajności i trwałości, powinno być fundamentem wiedzy każdego kierowcy. Rekomendacje branżowe wyraźnie wskazują, że regularne kontrolowanie i dostosowywanie ciśnienia powietrza jest niezbędne dla optymalizacji trwałości opon oraz bezpieczeństwa jazdy.

Pytanie 24

Jakie będą łączne koszty części potrzebnych do wymiany szczęk hamulcowych w samochodzie osobowym z bębnowym układem hamulcowym, jeśli cena za komplet szczęk na przód wynosi 80 zł (jedna oś), a na tył 120 zł (jedna oś)?

A. 400,00 zł
B. 200,00 zł
C. 180,00 zł
D. 240,00 zł
Poprawna odpowiedź to 200,00 zł, co jest wynikiem prawidłowego obliczenia kosztów części do wymiany szczęk hamulcowych w samochodzie z bębnowym układem hamulcowym. Koszt szczęk hamulcowych na jedną oś z przodu wynosi 80 zł, natomiast na jedną oś z tyłu to 120 zł. Całkowity koszt wymiany szczęk hamulcowych można obliczyć, dodając te wartości do siebie: 80 zł (przód) + 120 zł (tył) = 200 zł. Takie kalkulacje są istotne nie tylko dla ustalenia budżetu na naprawy, ale również dla zrozumienia struktury kosztów związanych z konserwacją pojazdów. W praktyce, umiejętność dokładnego obliczania kosztów części zamiennych jest niezbędna dla mechaników i właścicieli warsztatów, co pozwala na bardziej przejrzyste zarządzanie finansami i efektywne planowanie przeglądów technicznych zgodnie z wytycznymi branżowymi.

Pytanie 25

W sytuacji, gdy na powierzchni tarcz hamulcowych osi kierowanej zauważono pęknięcia, jakie działania naprawcze należy podjąć?

A. szlifowanie powierzchni tarcz
B. spawanie tarcz
C. wymiana tarcz na nowe
D. splanowanie tarcz
Wymiana tarcz hamulcowych na nowe jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności pojazdu. Pęknięcia na powierzchni tarcz hamulcowych mogą prowadzić do poważnych problemów z hamowaniem, w tym do zmniejszenia skuteczności hamulców oraz ryzyka uszkodzenia innych elementów układu hamulcowego. Wymiana tarcz na nowe jest zgodna z zaleceniami producentów oraz normami bezpieczeństwa, które podkreślają, że uszkodzone tarcze powinny być natychmiast wymieniane. Nowe tarcze hamulcowe zapewniają optymalną powierzchnię cierną, co jest niezbędne do uzyskania odpowiedniej siły hamowania. Przykładowo, w przypadku pojazdów sportowych, gdzie wymagane są intensywne hamowania, zaniedbanie wymiany uszkodzonych tarcz może prowadzić do poważnych konsekwencji, w tym wypadków. Dlatego, w praktyce, nie tylko sama wymiana, ale również dobra jakość nowych tarcz ma kluczowe znaczenie, aby spełniały one standardy producenta i zapewniały bezpieczeństwo w ruchu drogowym.

Pytanie 26

Oznaczenie na alternatorze: 14V, 90A wskazuje

A. najniższe zdolności produkcyjne prądu
B. maksymalne natężenie prądu dla akumulatora
C. najmniejszy prąd wzbudzenia
D. sprawność alternatora
Zrozumienie oznaczeń alternatora jest kluczowe dla właściwej interpretacji jego specyfikacji. Wiele osób może błędnie zinterpretować zapis 14V, 90A, myląc jego znaczenie z innymi parametrami. Przykładowo, nieodpowiednie zrozumienie mocy alternatora może prowadzić do założenia, że 90A odnosi się do minimalnego natężenia prądu na akumulatorze. W rzeczywistości alternator służy do dostarczania prądu, a jego wydajność jest mierzona w kategoriach maksymalnej wartości prądu, jaką może wygenerować. Innym częstym błędem jest przekonanie, że 14V odzwierciedla minimalne możliwości wytwórcze prądu. Napięcie 14V to typowe napięcie robocze dla alternatorów w pojazdach, ale nie oznacza to, że jest to dolna granica wydajności; to raczej wartość optymalna dla ładowania akumulatora. Ponadto, mylenie prądu wzbudzenia z całkowitą wydajnością alternatora prowadzi do nieporozumień dotyczących jego funkcji. Prąd wzbudzenia jest niezbędny do wytworzenia pola magnetycznego w alternatorze, ale nie jest bezpośrednio związany z jego maksymalną mocą. Dlatego ważne jest, aby zrozumieć, że każdy z tych parametrów ma swoje specyficzne znaczenie i nie powinno się ich mylić. Prawidłowe zrozumienie tych pojęć pozwala na lepsze dobieranie komponentów oraz ich efektywne wykorzystanie, co jest kluczowe dla zapewnienia niezawodności systemu elektrycznego w pojeździe.

Pytanie 27

Urządzenie służące do analizy silnika, przy użyciu metody określania ciśnienia sprężania, funkcjonuje na podstawie zmiany odczytów w zależności od wartości

A. ciśnienia w cylindrze
B. podciśnienia w cylindrze
C. kąta wyprzedzenia zapłonu
D. kąta zwarcia styków przerywacza
Odpowiedź wskazująca na ciśnienie w cylindrze jako kluczowy parametr diagnostyczny jest prawidłowa, ponieważ diagnostyka silnika opiera się na pomiarze ciśnienia sprężania jako jednego z najważniejszych wskaźników stanu silnika. Wartości te pozwalają na ocenę kondycji uszczelnień, pierścieni tłokowych oraz ogólnej sprawności cylindrów. W praktyce, mierniki ciśnienia sprężania są wykorzystywane podczas rutynowych przeglądów i diagnostyki silników spalinowych, co jest zgodne z zaleceniami producentów. Na przykład, jeśli ciśnienie w cylindrze jest niższe niż wartości nominalne, może to sugerować problemy z uszczelnieniami zaworów lub uszkodzeniem pierścieni tłokowych. W standardach branżowych takich jak ISO 9001 oraz w praktykach takie jak analiza trendów ciśnienia sprężania, technicy mogą oceniać nie tylko bieżący stan silnika, ale także przewidywać przyszłe awarie. Właściwe zrozumienie pomiaru ciśnienia sprężania jest istotne dla zachowania efektywności i wydajności silnika, co przekłada się na ekonomię paliwową oraz redukcję emisji spalin.

Pytanie 28

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. lepkości elektrolitu
B. masy elektrolitu
C. objętości elektrolitu
D. gęstości elektrolitu
Gęstość elektrolitu jest kluczowym wskaźnikiem stanu naładowania akumulatora, ponieważ zmienia się w zależności od stężenia kwasu siarkowego w roztworze. W miarę naładowania akumulatora gęstość elektrolitu wzrasta, co można zmierzyć za pomocą areometru. Przykładem praktycznego zastosowania tej metody jest regularne sprawdzanie stanu naładowania w akumulatorach kwasowo-ołowiowych, które są powszechnie stosowane w pojazdach. Zgodnie z normami branżowymi, takich jak SAE J537, pomiar gęstości elektrolitu powinien być przeprowadzany, aby zapewnić odpowiednią konserwację i zapobiec uszkodzeniom akumulatora. Wartości gęstości elektrolitu mogą również różnić się w zależności od temperatury, dlatego istotne jest, aby pomiary były wykonywane w warunkach znormalizowanej temperatury, co pozwala na dokładniejszą ocenę stanu naładowania. Znajomość i umiejętność interpretacji gęstości elektrolitu są niezbędne dla każdej osoby zajmującej się obsługą techniczną akumulatorów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. zbyt duże zanieczyszczenie filtra oleju
B. zużycie czopów wału korbowego
C. uszkodzenie uszczelki pod głowicą
D. awaria pompy olejowej
Nadmierne zabrudzenie filtra oleju może prowadzić do spadku ciśnienia oleju w silniku, co objawia się problemami z smarowaniem, ale nie jest przyczyną wzrostu jego poziomu. Filtr oleju ma za zadanie zatrzymywać zanieczyszczenia, a jego zanieczyszczenie skutkuje wyłącznie obniżeniem efektywności smarowania. Zużycie czopów wału korbowego wpływa na luz i może powodować wycieki oleju, ale nie ma bezpośredniego wpływu na wzrost poziomu oleju. W przypadku uszkodzenia pompy olejowej, mogłoby to prowadzić do obniżenia ciśnienia oleju, co także nie jest związane z jego wzrostem. W praktyce, problemy z podzespołami silnika mogą być mylnie interpretowane ze względu na niewystarczającą wiedzę na temat ich funkcji. Aby uniknąć takich błędów myślowych, ważne jest zrozumienie, że różne usterki silnika mają różne objawy, a ich diagnozowanie wymaga znajomości mechaniki i zastosowania odpowiednich narzędzi diagnostycznych. Standardy branżowe sugerują stosowanie systematycznych procedur diagnostycznych w celu prawidłowego zidentyfikowania przyczyny problemów, co jest kluczowe dla zapewnienia bezawaryjnej pracy silników.

Pytanie 31

Do zestawu elementów układu kierowniczego nie należy

A. przekładnia ślimakowa
B. drążek kierowniczy
C. drążek reakcyjny
D. końcówka drążka kierowniczego
Drążek reakcyjny nie wchodzi w skład układu kierowniczego, ponieważ jest to element, który nie jest używany w standardowych systemach kierowniczych samochodów. W przeciwieństwie do przekładni ślimakowej, która przekształca ruch obrotowy na ruch liniowy i jest kluczowym elementem w układach kierowniczych, drążek kierowniczy oraz końcówka drążka kierowniczego, które przewodzą ruch z kierownicy do kół, mają bezpośredni wpływ na sterowność pojazdu. Przykładowo, drążki kierownicze są wykorzystywane w różnych typach pojazdów, w tym w samochodach osobowych i ciężarowych, gdzie ich właściwe działanie jest niezbędne dla bezpieczeństwa i komfortu jazdy. Zrozumienie, które elementy składają się na układ kierowniczy, jest kluczowe dla diagnostyki usterek oraz przeprowadzania odpowiednich napraw, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 32

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Olej silnikowy
B. Płyn do spryskiwaczy
C. Płyn do hamulców
D. Płyn chłodzący do silnika
Odpowiedź, że płyn eksploatacyjny oznaczany symbolem 10W/40 to olej silnikowy, jest poprawna. Symbol 10W/40 odnosi się do klasy lepkości oleju silnikowego, podlegającej normom SAE (Society of Automotive Engineers). Liczba '10W' wskazuje na lepkość oleju w niskich temperaturach (W oznacza 'winter'), co oznacza, że olej zachowuje odpowiednią płynność w zimnych warunkach, co jest kluczowe przy uruchamianiu silnika w niskich temperaturach. Druga liczba '40' odnosi się do lepkości w wysokich temperaturach, co czyni olej odpowiednim do użycia w wyższych temperaturach roboczych silnika. Dzięki tym właściwościom, olej 10W/40 zapewnia odpowiednią ochronę silnika, zmniejsza tarcie i zużycie komponentów, a także minimalizuje ryzyko przegrzania. Jest to jeden z najczęściej stosowanych rodzajów olejów silnikowych, szczególnie w pojazdach osobowych oraz dostawczych, co wynika z ich uniwersalności i efektywności w szerokim zakresie warunków eksploatacyjnych.

Pytanie 33

Jednorodne, nadmierne zużycie centralnej części bieżnika opony, występujące wzdłuż całego obwodu, jest spowodowane?

A. zbyt małym ciśnieniem w oponie
B. zbyt dużym ciśnieniem w oponie
C. nieprawidłowym ustawieniem zbieżności kół
D. niewyważeniem koła
Niewłaściwe ciśnienie w oponach jest często źródłem mylnych przekonań dotyczących ich wpływu na zużycie bieżnika. Niewyważenie koła rzeczywiście wpływa na stabilność pojazdu, ale nie prowadzi bezpośrednio do zużycia centralnej części bieżnika. Zamiast tego, niewyważone koła mogą powodować drgania, które wpływają na komfort jazdy, ale nie są bezpośrednią przyczyną nierównomiernego zużycia. Kolejnym błędnym założeniem jest przekonanie, że zbyt małe ciśnienie w oponach prowadzi do tego samego efektu. W rzeczywistości, zbyt niskie ciśnienie powoduje zużycie bieżnika na bokach opony, co jest spowodowane tym, że opona nie utrzymuje odpowiedniego kształtu. Ustawienie zbieżności kół również jest ważnym aspektem, ponieważ niewłaściwe ustawienie może prowadzić do nierównomiernego zużycia, ale nie w centralnej części bieżnika. Warto zauważyć, że każdy z tych czynników wymaga regularnych kontroli w ramach standardów użytkowania pojazdów, a ich zrozumienie jest kluczowe dla zapewnienia bezpieczeństwa i efektywności jazdy.

Pytanie 34

Podczas pracy z elektryczną szlifierką ręczną konieczne jest noszenie

A. okularów ochronnych
B. rękawic ochronnych
C. fartucha ochronnego
D. obuwia roboczego
Użycie okularów ochronnych podczas pracy ze szlifierką ręczną z napędem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa oczu. Prace szlifierskie generują wiele niebezpiecznych odpadów, takich jak pył, iskry oraz drobne cząstki materiału, które mogą łatwo trafić do oczu pracownika. Okulary ochronne są zaprojektowane tak, aby skutecznie chronić przed tymi zagrożeniami. Przykłady zastosowania obejmują zarówno prace w przemyśle, jak i w warsztatach hobbystycznych, gdzie użytkownicy często nie zdają sobie sprawy z ryzyka spowodowanego niewłaściwym zabezpieczeniem oczu. Zgodnie z normą PN-EN 166:2002, która dotyczy środków ochrony indywidualnej oczu, okulary muszą być odpowiednio oznaczone i dopasowane do warunków pracy. Warto zwrócić uwagę na to, aby wybierać modele z odpowiednimi filtrami, które chronią przed promieniowaniem UV, gdyż długotrwałe narażenie na takie promieniowanie może prowadzić do poważnych uszkodzeń wzroku. Bezpieczeństwo powinno być zawsze priorytetem, dlatego noszenie okularów ochronnych jest nie tylko dobrym nawykiem, ale i obowiązkiem.

Pytanie 35

Jakim urządzeniem dokonuje się pomiaru temperatury zamarzania cieczy chłodzącej?

A. refraktometrem
B. pirometrem
C. wakuometrem
D. multimetrem
Pomiar temperatury krzepnięcia cieczy chłodzącej za pomocą refraktometru jest powszechnie stosowaną metodą w przemyśle oraz laboratoriach. Refraktometr mierzy współczynnik załamania światła cieczy, który zmienia się w zależności od jej temperatury oraz stężenia rozpuszczonych substancji. W momencie krzepnięcia temperatury cieczy zmieniają się drastycznie, co wpływa na jej właściwości optyczne. Dlatego refraktometr jest w stanie dokładnie określić punkt krzepnięcia. Przykładem zastosowania tej metody jest kontrola jakości płynów chłodzących w układach chłodzenia silników, gdzie dokładne pomiary temperatury krzepnięcia pozwalają na zapobieganie uszkodzeniom w niskotemperaturowych warunkach pracy. Warto również zauważyć, że refraktometr, zgodnie z normami ASTM D1218, powinien być kalibrowany w celu osiągnięcia wysokiej dokładności pomiarów, co jest kluczowe w zapewnieniu niezawodności systemów chłodzenia.

Pytanie 36

Olej oznaczony jako PAG jest wykorzystywany do smarowania części

A. w systemie kierowniczym
B. skrzyni biegów
C. w systemie klimatyzacji
D. mostu napędowego
Olej oznaczony jako PAG (Polyalkylene Glycol) jest stworzony specjalnie do smarowania części w klimatyzacji. Pełni naprawdę ważną rolę w tym, żeby system chłodzenia działał jak najlepiej. Te oleje mają świetne właściwości smarne i są dobrze dopasowane do czynników chłodniczych, takich jak R134a czy R1234yf. Użycie oleju PAG w klimatyzacji pomaga w odpowiednim smarowaniu sprężarek, co przekłada się na ich długowieczność i skuteczniejsze działanie. W praktyce, olej PAG jest używany w wielu miejscach, nie tylko w zwykłych samochodach, ale też w różnych systemach klimatyzacyjnych. Tam, gdzie smarowanie jest kluczowe, żeby zminimalizować tarcie i zużycie. Standardy przemysłowe, jak SAE J2064, pokazują, jak ważne jest dobranie odpowiedniego oleju, żeby uniknąć późniejszych problemów z wydajnością i niezawodnością klimatyzacji.

Pytanie 37

Regulator odśrodkowy oraz regulator podciśnieniowy stanowią składniki systemu

A. zapłonowego
B. rozrządu
C. zasilania z wtryskiem jednopunktowym
D. zasilania z wtryskiem wielopunktowym
Pojęcia związane z regulatorem odśrodkowym i podciśnieniowym są często mylone z innymi systemami w silnikach spalinowych, co może prowadzić do nieporozumień w zakresie ich zastosowania. W przypadku układu zasilania z wtryskiem jednopunktowym, który charakteryzuje się prostą konstrukcją, nie stosuje się osobnych regulatorów odśrodkowych ani podciśnieniowych. Wtrysk jednopunktowy wykorzystuje zazwyczaj jeden wtryskiwacz, co ogranicza potrzebę zaawansowanej regulacji zapłonu. Podobnie, układ rozrządu, odpowiedzialny za synchronizację ruchu zaworów, nie ma bezpośredniego związku z funkcjonowaniem regulatorów zapłonu. Takie pomylenie wynika często z niepełnego zrozumienia, jakie elementy odpowiadają za różne procesy w silniku. Układ zapłonowy jest odrębnym systemem, który niezależnie reguluje moment zapłonu w odpowiedzi na różne parametry pracy silnika. W przypadku układu zapłonowego, zarówno regulator odśrodkowy, jak i podciśnieniowy, są integralnymi częściami, które zapewniają optymalną pracę silnika w różnych warunkach. Wtryskiwanie paliwa, niezależnie od tego, czy jest jednopunktowe, czy wielopunktowe, również nie wpływa na działanie regulatorów zapłonu, ponieważ ich główną funkcją jest zapewnienie odpowiedniego momentu zapłonu, a nie kontrola procesu wtrysku. To zrozumienie różnic między tymi systemami jest kluczowe dla efektywnej diagnostyki i naprawy silników spalinowych. Wiedza o tym, jakie elementy są odpowiedzialne za konkretne funkcje w silniku, pozwala uniknąć nieporozumień oraz poprawia jakość wykonywanych napraw i usług serwisowych.

Pytanie 38

W celu przeprowadzenia pomiaru zadymienia spalin samochodu nie powinno się

A. podłączać analizatora spalin
B. przymocowywać sond do końca rury wydechowej
C. kontrolować szczelność układu wydechowego
D. podgrzewać silnika do temperatury 80°C
Każda z analizowanych odpowiedzi w kontekście wykonania pomiaru zadymienia spalin niesie ze sobą ważne aspekty techniczne, które są kluczowe dla prawidłowego procesu oceny emisji spalin. Mocowanie sondy w końcówce rury wydechowej to nie tylko важny krok, ale wręcz niezbędny do uzyskania precyzyjnych danych o zadymieniu. Niewłaściwe umiejscowienie sondy może prowadzić do zafałszowania wyników, co w praktyce oznacza, że pomiar może nie oddać rzeczywistego stanu emisji pojazdu. Szczelność układu wydechowego jest równie istotną kwestią, ponieważ jakiekolwiek nieszczelności mogą prowadzić do wycieku spalin, co z kolei skutkuje błędami w ocenie ich jakości. Natomiast rozgrzanie silnika do temperatury 80°C jest praktyką, która ma na celu stabilizację parametrów jego pracy. W przypadku pomiarów emisji spalin, temperatura ma wpływ na procesy spalania oraz na skład chemiczny spalin. Wiele osób może myśleć, że podłączenie analizatora spalin jest kluczowe w każdym pomiarze, jednak w kontekście pomiaru zadymienia spalin nie jest to wymagane. Skupienie się na zadymieniu wymaga innego podejścia, które często pomija bezpośrednie wykorzystanie analizatorów. Warto zwrócić uwagę na to, że pomiar zadymienia spalin jest istotnym elementem oceny jakości pracy silnika, a nieprawidłowe podejścia mogą prowadzić do mylnych wniosków oraz nieefektywnego działania układów wydechowych, co może skutkować naruszeniem norm ochrony środowiska.

Pytanie 39

Do jakich pomiarów stosuje się wakuometry?

A. ciśnienia atmosferycznego
B. podciśnienia w układzie dolotowym
C. wydajności pompy paliwowej
D. ciśnienia paliwa
Wakuometry są instrumentami służącymi do pomiaru ciśnienia, a ich głównym zastosowaniem jest pomiar podciśnienia w układzie dolotowym silników spalinowych. Podciśnienie w tym kontekście jest kluczowym parametrem, ponieważ wpływa na proces mieszania paliwa z powietrzem oraz na eficjencję pracy silnika. Przykładowo, prawidłowe ustawienie podciśnienia zapewnia optymalne warunki do spalania, co przekłada się na lepszą wydajność i oszczędność paliwa. W branży motoryzacyjnej, wakuometry są często wykorzystywane do diagnostyki układów dolotowych i mogą pomóc zidentyfikować problemy, takie jak nieszczelności w systemie dolotowym czy niewłaściwe ustawienia gaźnika. Standardy przemysłowe sugerują użycie wakuometrów w regularnych przeglądach technicznych, co zapewnia utrzymanie silników w dobrej kondycji. W związku z tym, umiejętność interpretacji wyników pomiarów wakuometrycznych jest kluczowa dla mechaników i techników samochodowych.

Pytanie 40

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. suwmiarki modułowej
B. głębokomościomierza
C. średnicówki czujnikowej
D. mikrometru
Suwmiarka modułowa, mikrometr oraz głębokościomierz mają swoje zastosowanie w różnych obszarach pomiarów, jednak nie są optymalnymi narzędziami do pomiaru zużycia gładzi cylindrów. Suwmiarka modułowa, chociaż jest wszechstronnym narzędziem, dostarcza pomiary o niższej precyzji w porównaniu do średnicówki czujnikowej. Jej zakres pomiarowy jest często ograniczony, co może prowadzić do niedokładnych wyników, szczególnie przy pomiarach cylindrów, które wymagają dużej precyzji. Mikrometr, choć jest bardziej precyzyjny niż suwmiarka, jest narzędziem przeznaczonym głównie do pomiaru grubości lub średnicy małych obiektów, takich jak pręty czy blachy, a jego zastosowanie do pomiarów cylindrów może być ograniczone ze względu na konstrukcję narzędzia. Głębokościomierz natomiast służy do pomiaru głębokości otworów, co nie ma zastosowania w kontekście pomiaru gładzi cylindrów. Wybór niewłaściwego narzędzia pomiarowego może prowadzić do błędów w produkcji i montażu, co z kolei wpływa na ogólną jakość wyrobów. Kluczowe jest zrozumienie, że odpowiedni dobór narzędzi pomiarowych ma ogromne znaczenie w procesach produkcji i kontrolowania jakości, a stosowanie bardziej precyzyjnych narzędzi, takich jak średnicówka czujnikowa, jest kluczowe dla uzyskania wiarygodnych wyników.