Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 22 maja 2025 08:56
  • Data zakończenia: 22 maja 2025 09:20

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Stworzenie symulowanego środowiska komputerowego, które jest przeciwieństwem środowiska materialnego, określa się mianem

A. modernizacją.
B. wirtualizacją.
C. aktualizacją.
D. ustawieniem.
Wirtualizacja to proces tworzenia symulowanego środowiska komputerowego, które działa w odseparowanej przestrzeni niż rzeczywiste zasoby fizyczne. Przykładem wirtualizacji jest korzystanie z maszyn wirtualnych, które pozwalają na uruchamianie różnych systemów operacyjnych na jednej fizycznej maszynie. Dzięki wirtualizacji administratorzy mogą efektywnie zarządzać zasobami, zmniejszać koszty operacyjne oraz zwiększać elastyczność i skalowalność infrastruktury IT. W praktyce, wirtualizacja umożliwia tworzenie środowisk testowych, które nie wpływają na działanie produkcyjnych aplikacji, a także pozwala na łatwe przeprowadzanie kopii zapasowych i przywracanie systemów. Ponadto, standardy takie jak VMware vSphere, Microsoft Hyper-V oraz KVM (Kernel-based Virtual Machine) są przykładami dobrych praktyk w zakresie wirtualizacji, które pozwalają na efektywne i bezpieczne zarządzanie wirtualnymi zasobami.

Pytanie 2

Wskaż, który z podanych adresów stanowi adres rozgłoszeniowy sieci?

A. 10.0.255.127/24
B. 10.0.255.127/23
C. 10.255.255.127/25
D. 10.0.255.127/22
Analiza adresów 10.0.255.127/23, 10.0.255.127/24 oraz 10.0.255.127/22 ujawnia typowe błędy związane z identyfikacją adresów rozgłoszeniowych. W przypadku adresu 10.0.255.127/23, sieć obejmuje adresy od 10.0.254.0 do 10.0.255.255, a adres rozgłoszeniowy przypada na 10.0.255.255. W takim wypadku, adres 10.0.255.127 nie jest adresem rozgłoszeniowym i nie może być użyty do rozsyłania pakietów do wszystkich hostów w tej sieci. Podobnie, dla adresu 10.0.255.127/24, maska podsieci określa, że sieć obejmuje adresy od 10.0.255.0 do 10.0.255.255, z adresem rozgłoszeniowym na 10.0.255.255. W tym przypadku, 10.0.255.127 to po prostu adres hosta, a nie adres rozgłoszeniowy. Wreszcie, przy analizie 10.0.255.127/22, sieć rozciąga się na adresy od 10.0.252.0 do 10.0.255.255, gdzie adres rozgłoszeniowy to również 10.0.255.255. Kluczowym błędem myślowym jest mylenie adresu hosta z adresem rozgłoszeniowym. Właściwe zrozumienie koncepcji rozgłoszeń w sieci IP, w tym maski podsieci i ich wpływu na zakresy adresów, jest niezbędne dla efektywnego projektowania i zarządzania sieciami. Dlatego tak ważne jest posługiwanie się narzędziami i schematami przy obliczeniach adresów IP, aby uniknąć nieporozumień w praktycznych zastosowaniach sieciowych.

Pytanie 3

Aby uzyskać sześć podsieci z sieci o adresie 192.168.0.0/24, co należy zrobić?

A. zwiększyć długość maski o 2 bity
B. zmniejszyć długość maski o 2 bity
C. zmniejszyć długość maski o 3 bity
D. zwiększyć długość maski o 3 bity
Aby wydzielić sześć podsieci z sieci o adresie 192.168.0.0/24, konieczne jest zwiększenie długości maski o 3 bity. Maska /24 oznacza, że pierwsze 24 bity adresu IP są wykorzystywane do identyfikacji sieci, a pozostałe 8 bitów do identyfikacji hostów. W celu uzyskania sześciu podsieci, musimy za pomocą dodatkowych bitów zarezerwować odpowiednią ilość adresów. W przypadku podziału sieci na podsieci, stosujemy formułę 2^n >= liczba wymaganych podsieci, gdzie n to liczba bitów, które dodajemy do maski. Zatem, 2^3 = 8, co zaspokaja potrzebę sześciu podsieci. Przy zwiększeniu długości maski o 3 bity, uzyskujemy maskę /27, co pozwala na otrzymanie 8 podsieci, z których każda ma 30 dostępnych adresów hostów. Przykładowe podsieci, które powstają w tym wypadku, to: 192.168.0.0/27, 192.168.0.32/27, 192.168.0.64/27, itd. Dobrą praktyką w projektowaniu sieci jest planowanie adresacji IP z wyprzedzeniem, aby dostosować ją do przyszłych potrzeb, co w tym przypadku zostało uwzględnione.

Pytanie 4

Maksymalny promień zgięcia przy montażu kabla U/UTP kategorii 5E powinien wynosić

A. osiem średnic kabla
B. sześć średnic kabla
C. dwie średnice kabla
D. cztery średnice kabla
Wybór odpowiedzi osiem średnic kabla jako minimalnego promienia zgięcia opiera się na kluczowych zasadach dotyczących instalacji kabli. Odpowiedzi takie jak cztery, dwie czy sześć średnic są błędne, ponieważ ignorują fundamentalne zasady dotyczące ochrony kabli przed uszkodzeniami mechanicznymi. Zgięcie kabla w mniejszych promieniach prowadzi do ryzyka naruszenia struktury przewodów, co może skutkować degradacją jakości sygnału i zwiększonymi stratami. Często spotykanym błędem w myśleniu jest przekonanie, że oszczędzanie miejsca lub przyspieszanie instalacji można osiągnąć poprzez zginanie kabli w mniejszych promieniach. Tego rodzaju praktyki mogą być nie tylko niezgodne z zaleceniami producentów kabli, ale również prowadzić do długofalowych problemów z wydajnością sieci. Standardy takie jak TIA/EIA-568-B oraz ISO/IEC 11801 jasno określają minimalne wymagania dotyczące promieni zgięcia, które są niezbędne do zapewnienia niezawodności i długowieczności systemów kablowych. Dlatego kluczowe jest, aby zawsze przestrzegać tych norm, aby uniknąć problemów z instalacją i utrzymaniem kabli, które mogą prowadzić do kosztownych napraw lub wymiany sprzętu.

Pytanie 5

Ile punktów przyłączeniowych (2 x RJ45), według wymogów normy PN-EN 50167, powinno być w biurze o powierzchni 49 m2?

A. 9
B. 4
C. 5
D. 1
Wybór innej liczby punktów abonenckich niż 5 może prowadzić do licznych problemów związanych z infrastrukturą sieciową w biurze. Odpowiedzi takie jak 9, 4, czy 1 nie uwzględniają wymagań normy PN-EN 50167 oraz realnych potrzeb biura. W przypadku odpowiedzi 9, nadmiar punktów abonenckich może prowadzić do nieefektywnego wykorzystania zasobów, zwiększając koszty bez rzeczywistej wartości dodanej. W przeciwieństwie do tego, wybór 4 punktów abonenckich może być niewystarczający dla biura o powierzchni 49 m², co prowadzi do sytuacji, w której pracownicy muszą dzielić dostęp do sieci, co może generować problemy z prędkością i jakością połączeń. Z kolei odpowiedź 1 punkt abonencki jest ekstremalnie niewystarczająca, co może skutkować poważnymi ograniczeniami w pracy, gdzie wielu pracowników korzysta z zasobów sieciowych jednocześnie. Typowym błędem myślowym jest próba uproszczenia analizy punktów abonenckich do liczby stanowisk roboczych bez uwzględnienia norm oraz specyfiki pracy w danym biurze. W rzeczywistości, kluczowe jest nie tylko zapewnienie liczby punktów zgodnej z normą, ale również ich odpowiednie rozmieszczenie, aby zaspokoić potrzeby różnych użytkowników oraz sprzętu w biurze. Dlatego też, poprawne zaplanowanie infrastruktury telekomunikacyjnej jest niezbędne dla zapewnienia efektywności i komfortu pracy w biurze.

Pytanie 6

Podaj zakres adresów IP przyporządkowany do klasy A, który jest przeznaczony do użytku prywatnego w sieciach komputerowych?

A. 127.0.0.0-127.255.255.255
B. 192.168.0.0-192.168.255.255
C. 172.16.0.0-172.31.255.255
D. 10.0.0.0-10.255.255.255
Adresy IP klasy A, które są przeznaczone do adresacji prywatnej, obejmują zakres od 10.0.0.0 do 10.255.255.255. Klasa A to jedna z klas adresowych zdefiniowanych w standardzie IPv4, który dzieli adresy IP na różne klasy w zależności od ich pierwszych bitów. Adresy z tej klasy mogą być używane w dużych sieciach korporacyjnych, ponieważ oferują ogromną przestrzeń adresową. W praktyce, adresy prywatne, takie jak te z zakresu 10.0.0.0/8, są często wykorzystywane w sieciach lokalnych (LAN), co pozwala na oszczędność publicznych adresów IP. Takie podejście jest zgodne z zaleceniami IETF (Internet Engineering Task Force) w dokumentach RFC 1918, które definiują prywatne adresy IP. Umożliwia to organizacjom wdrażanie rozwiązań z zakresu NAT (Network Address Translation), co dodatkowo zwiększa bezpieczeństwo i elastyczność adresacji sieciowej. Wykorzystanie tego zakresu pozwala na jednoczesne korzystanie z wielu adresów IP w różnych oddziałach tej samej firmy bez konfliktów, co jest kluczowe w rozwoju i zarządzaniu złożonymi infrastrukturami IT.

Pytanie 7

Aby zrealizować ręczną konfigurację interfejsu sieciowego w systemie LINUX, należy wykorzystać komendę

A. route add
B. eth0
C. ifconfig
D. ipconfig
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to klasyczne polecenie używane w systemach Linux do konfigurowania i zarządzania interfejsami sieciowymi. Umożliwia ono nie tylko wyświetlenie szczegółowych informacji o aktualnych ustawieniach interfejsów, takich jak adres IP, maska podsieci czy stan interfejsu, ale także pozwala na zmianę tych ustawień. Przykładem użycia może być wydanie polecenia 'ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up', które ustawia adres IP dla interfejsu eth0. Pomimo że 'ifconfig' był standardowym narzędziem przez wiele lat, od czasu wprowadzenia narzędzia 'ip' w pakiecie iproute2, zaleca się używanie polecenia 'ip' do zarządzania interfejsami sieciowymi. Niemniej jednak, 'ifconfig' pozostaje w użyciu w wielu systemach oraz w starszych instrukcjach i dokumentacjach, co czyni go istotnym elementem wiedzy o administracji sieciami w systemach Linux.

Pytanie 8

Jakie medium transmisyjne w sieciach LAN wskazane jest do używania w obiektach historycznych?

A. Kabel typu "skrętka"
B. Fale radiowe
C. Kabel koncentryczny
D. Światłowód
Fale radiowe są zalecanym medium transmisyjnym w zabytkowych budynkach ze względu na ich zdolność do omijania przeszkód fizycznych, takich jak grube mury czy elementy architektoniczne, które mogą utrudniać tradycyjnym kablom dostęp do miejsc, gdzie potrzebna jest infrastruktura sieciowa. Wykorzystanie technologii Wi-Fi, które działa na falach radiowych, jest praktycznym rozwiązaniem, ponieważ nie wymaga dużych modyfikacji budowlanych, co jest kluczowe w kontekście zachowania integralności zabytków. Dodatkowo, fale radiowe oferują elastyczność w instalacji, umożliwiając łatwą adaptację w miarę zmieniających się potrzeb użytkowników. Stosowanie systemów bezprzewodowych w takich lokalizacjach jest zgodne ze standardami branżowymi, które promują minimalne zakłócenia w strukturze obiektu. Przykładem zastosowania mogą być hotele w zabytkowych budynkach, gdzie bezprzewodowy dostęp do Internetu umożliwia gościom korzystanie z sieci bez ingerencji w zabytkowe elementy wystroju.

Pytanie 9

ARP (Adress Resolution Protocol) to protokół, którego zadaniem jest przekształcenie adresu IP na

A. nazwę domenową
B. nazwę urządzenia
C. adres sprzętowy
D. adres poczty elektronicznej
ARP (Address Resolution Protocol) jest kluczowym protokołem w komunikacji sieciowej, który umożliwia odwzorowanie adresu IP na adres sprzętowy (MAC). Gdy komputer chce wysłać dane do innego urządzenia w sieci lokalnej, musi znać jego adres MAC. Protokół ARP działa na poziomie warstwy 2 modeli OSI, co oznacza, że jest odpowiedzialny za komunikację w obrębie lokalnych sieci Ethernet. Proces rozpoczyna się od wysłania przez komputer zapytania ARP w formie broadcastu, aby dowiedzieć się, kto posiada dany adres IP. Odpowiedź na to zapytanie zawiera adres MAC docelowego urządzenia. Dzięki ARP, protokół IP może skutecznie współdziałać z warstwą sprzętową, co jest niezbędne dla prawidłowego funkcjonowania sieci TCP/IP. Przykładem zastosowania ARP jest sytuacja, gdy użytkownik przegląda zasoby w sieci, a jego komputer musi wysłać pakiet do serwera, którego adres IP został wcześniej ustalony, ale adres MAC jest mu nieznany. Poprawne działanie ARP zapewnia, że dane dotrą do właściwego odbiorcy.

Pytanie 10

Narzędzie iptables w systemie Linux jest używane do

A. ustawienia zapory sieciowej
B. ustawienia karty sieciowej
C. ustawienia zdalnego dostępu do serwera
D. ustawienia serwera pocztowego
Konfiguracja karty sieciowej nie jest związana z iptables. To narzędzie służy do zarządzania zaporą sieciową, a kwestie dotyczące konfiguracji karty sieciowej realizowane są za pomocą innych narzędzi, takich jak ifconfig lub ip. Te narzędzia umożliwiają administratorom ustawienie adresów IP, maski podsieci, czy bramy domyślnej, co jest fundamentalne dla poprawnego działania sieci, ale nie ma związku z kontrolą ruchu sieciowego. W przypadku serwera pocztowego, administracja takim serwerem wymaga innego podejścia, korzystającego z aplikacji takich jak Postfix czy Sendmail, które odpowiadają za obsługę protokołów pocztowych, a nie za zarządzanie ruchem sieciowym. Ponadto, konfiguracja zdalnego dostępu do serwera jest realizowana z użyciem protokołów takich jak SSH czy VPN, które nie są bezpośrednio związane z iptables. Często występuje mylne przekonanie, że iptables jest uniwersalnym narzędziem do zarządzania wszelkimi aspektami sieci, podczas gdy jego rzeczywistym zadaniem jest zabezpieczanie i kontrolowanie ruchu przychodzącego i wychodzącego. Zrozumienie tej różnicy jest kluczowe dla efektywnego zarządzania systemem i zapewnienia jego bezpieczeństwa.

Pytanie 11

Do jakiej warstwy modelu ISO/OSI odnosi się segmentacja danych, komunikacja w trybie połączeniowym z użyciem protokołu TCP oraz komunikacja w trybie bezpołączeniowym z zastosowaniem protokołu UDP?

A. Sieciowej
B. Fizycznej
C. Transportowej
D. Łącza danych
Odpowiedź wskazująca na warstwę transportową modelu ISO/OSI jest prawidłowa, ponieważ to właśnie na tym poziomie odbywa się segmentowanie danych oraz zarządzanie komunikacją pomiędzy aplikacjami na różnych urządzeniach. Warstwa transportowa, według standardu ISO/OSI, odpowiada za zapewnienie właściwej komunikacji niezależnie od rodzaju transportu – zarówno w trybie połączeniowym, jak w przypadku protokołu TCP, jak i w trybie bezpołączeniowym przy użyciu protokołu UDP. TCP zapewnia niezawodność przesyłania danych, co jest kluczowe w aplikacjach wymagających pełnej integralności, takich jak przesyłanie plików czy HTTP. Z kolei UDP, działający bez nawiązywania połączenia, jest wykorzystywany w scenariuszach, gdzie szybkość jest istotniejsza niż niezawodność, jak w przypadku strumieniowania wideo lub gier online. W praktyce, zrozumienie różnicy pomiędzy tymi protokołami jest kluczowe dla projektowania systemów sieciowych, co stanowi fundament skutecznej architektury komunikacyjnej.

Pytanie 12

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. kabel S-FTP kategorii 5e lub światłowód
B. światłowód jednomodowy lub kabel U-UTP kategorii 5e
C. światłowód jednomodowy lub fale radiowe 2,4 GHz
D. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
Zastosowanie światłowodu jednomodowego lub fal radiowych 2,4 GHz nie jest najlepszym rozwiązaniem w kontekście budynku produkcyjnego, w którym występują silne zakłócenia elektromagnetyczne. Światłowód jednomodowy, mimo że jest odporny na zakłócenia elektromagnetyczne, jest w praktyce droższy i bardziej skomplikowany w instalacji. Dodatkowo, w przypadku fal radiowych 2,4 GHz, istnieje wiele ograniczeń związanych z zakłóceniami i interferencjami, szczególnie w gęsto zaludnionych obszarach przemysłowych, gdzie wiele urządzeń może współdzielić to samo pasmo. Wybór kabla U-UTP kategorii 6 również nie jest optymalny, ponieważ nie oferuje wystarczającego ekranowania, aby efektywnie chronić przed zakłóceniami elektromagnetycznymi. Kable te są bardziej podatne na zakłócenia, co może prowadzić do spadku wydajności oraz zwiększenia liczby błędów w przesyłanych danych. W praktyce, niewłaściwy dobór medium transmisyjnego w środowisku produkcyjnym może prowadzić do znacznych problemów z niezawodnością i stabilnością systemów komunikacyjnych. Dlatego kluczowe jest, aby stosować kable o odpowiednich właściwościach ekranowania i wykonania, takie jak S-FTP, które są zgodne z wymaganiami standardów branżowych oraz zapewniają efektywną transmisję danych w trudnych warunkach.

Pytanie 13

Jak nazywa się adres nieokreślony w protokole IPv6?

A. ::1/128
B. 2001::/64
C. FE80::/64
D. ::/128
Adres nieokreślony w protokole IPv6, zapisany jako ::/128, jest używany w sytuacjach, gdy adres nie może być określony lub jest nieznany. Jest to ważny element specyfikacji IPv6, ponieważ pozwala na odróżnienie urządzeń, które nie mają przypisanego konkretnego adresu. Przykładowo, gdy urządzenie próbuje komunikować się z innymi w sieci, ale jeszcze nie otrzymało adresu, może użyć adresu nieokreślonego do wysłania wiadomości. Użycie tego adresu jest kluczowe w kontekście protokołu DHCPv6, gdzie urządzenia mogą wysyłać zapytania o adres IP, korzystając z adresu ::/128 jako źródła. Dodatkowo, adres nieokreślony jest często stosowany w kontekście tworzenia aplikacji sieciowych, które muszą być elastyczne w kontekście przydzielania adresów. Standardy dotyczące IPv6, takie jak RFC 4291, wyraźnie definiują rolę oraz znaczenie adresów nieokreślonych, co czyni je niezbędnym elementem każdej nowoczesnej infrastruktury sieciowej.

Pytanie 14

Rekord typu MX w serwerze DNS

A. przechowuje alias dla nazwy domeny
B. mapuje nazwę domeny na adres IP
C. mapuje nazwę domenową na serwer pocztowy
D. przechowuje nazwę serwera
Niepoprawne odpowiedzi sugerują różne błędne zrozumienia funkcji, jakie pełnią rekordy DNS. Na przykład, stwierdzenie, że rekord MX przechowuje alias nazwy domenowej, jest mylące, ponieważ aliasowanie jest funkcją rekordów CNAME (Canonical Name), które wskazują na inną nazwę domeny. Rekord MX nie zajmuje się aliasowaniem, lecz jasno i precyzyjnie wskazuje na serwer pocztowy, który ma obsługiwać przychodzące wiadomości. Inna nieprawidłowa koncepcja dotyczy twierdzenia, że rekord MX mapuje nazwę domenową na adres IP. Rekordy DNS, które pełnią tę funkcję, nazywane są rekordami A (Address) lub AAAA (dla adresów IPv6). Rekordy MX nie zawierają adresu IP, lecz wskazują na nazwę hosta, która może być powiązana z adresem IP, ale to oddzielny proces. Zrozumienie tych różnic jest kluczowe dla poprawnej konfiguracji usług internetowych i pocztowych. Często pojawia się też nieporozumienie dotyczące tego, co oznacza przechowywanie nazwy serwera. Rekordy typu A lub AAAA odpowiadają za mapowanie nazw domenowych do konkretnych adresów IP, a nie rekordy MX. Dlatego ważne jest, aby w kontekście konfiguracji DNS zrozumieć, jaki typ rekordu jest odpowiedni do danego zadania, co może zapobiec wielu problemom związanym z dostarczaniem e-maili i poprawnym działaniem domeny.

Pytanie 15

Standard Transport Layer Security (TLS) stanowi rozwinięcie protokołu

A. Network Terminal Protocol (telnet)
B. Security Shell (SSH)
C. Secure Socket Layer (SSL)
D. Session Initiation Protocol (SIP)
Standard Transport Layer Security (TLS) jest protokołem kryptograficznym, który zapewnia bezpieczeństwo komunikacji w sieci. TLS jest rozwinięciem protokołu Secure Socket Layer (SSL) i został zaprojektowany, aby zwiększyć wydajność oraz bezpieczeństwo transmisji danych. Podstawowym celem TLS jest zapewnienie poufności, integralności oraz autoryzacji danych przesyłanych pomiędzy klientem a serwerem. Praktyczne zastosowanie TLS znajduje się w wielu aspektach codziennego korzystania z internetu, w tym w zabezpieczaniu połączeń HTTPS, co chroni wrażliwe dane, takie jak hasła, numery kart kredytowych czy inne informacje osobiste. Standardy branżowe, takie jak RFC 5246, określają zasady i protokoły stosowane w TLS, co czyni go kluczowym elementem nowoczesnej architektury internetowej. Warto również zauważyć, że TLS stale ewoluuje, a jego najnowsze wersje, takie jak TLS 1.3, oferują jeszcze lepsze zabezpieczenia oraz wydajność w porównaniu do poprzednich wersji. Z tego powodu, znajomość i stosowanie protokołu TLS jest niezbędne dla każdego, kto zajmuje się bezpieczeństwem danych w sieci.

Pytanie 16

Jaki port jest używany przez protokół FTP (File Transfer Protocol) do przesyłania danych?

A. 53
B. 20
C. 69
D. 25
Port 20 jest standardowo wykorzystywany przez protokół FTP do transmisji danych. Protokół FTP działa w trybie klient-serwer i składa się z dwóch głównych portów: 21, który służy do nawiązywania połączenia i zarządzania kontrolą, oraz 20, który jest używany do przesyłania danych. W praktyce oznacza to, że po nawiązaniu połączenia na porcie 21, konkretne dane (pliki) są przesyłane przez port 20. W przypadku transferów aktywnych, serwer FTP nawiązuje połączenie zwrotne z klientem na porcie, który ten ostatni udostępnia. Dobrą praktyką w administracji siecią jest znajomość tych portów, aby móc odpowiednio konfigurować zapory sieciowe i monitorować ruch. Warto również pamiętać, że FTP, mimo swojej popularności, ma swoje ograniczenia w zakresie bezpieczeństwa, dlatego obecnie zaleca się korzystanie z protokołu SFTP lub FTPS, które zapewniają szyfrowanie danych podczas transferu, aby chronić je przed nieautoryzowanym dostępem.

Pytanie 17

Administrator zauważył wzmożony ruch w sieci lokalnej i podejrzewa incydent bezpieczeństwa. Które narzędzie może pomóc w identyfikacji tego problemu?

A. Program Wireshark
B. Aplikacja McAfee
C. Komenda ipconfig
D. Komenda tracert
Program Wireshark to zaawansowane narzędzie do analizy ruchu sieciowego, które umożliwia szczegółowe monitorowanie i diagnostykę problemów w sieci lokalnej. Jego główną zaletą jest możliwość przechwytywania pakietów danych przesyłanych przez sieć, co pozwala administratorom na dokładną analizę protokołów oraz identyfikację nieprawidłowości, takich jak nadmierny ruch. Wireshark pozwala na filtrowanie ruchu według różnych kryteriów, co umożliwia skupienie się na podejrzanych aktywnościach. Przykładowo, można zidentyfikować nieautoryzowane połączenia lub anomalie w komunikacji. Dzięki wizualizacji danych, administratorzy mogą szybko dostrzegać wzorce ruchu, które mogą wskazywać na włamanie. W branży IT, korzystanie z narzędzi takich jak Wireshark jest zgodne z dobrymi praktykami w zakresie zarządzania bezpieczeństwem sieci, umożliwiając proaktywne wykrywanie zagrożeń oraz usprawnianie działania sieci.

Pytanie 18

Jaka jest maksymalna liczba adresów sieciowych dostępnych w adresacji IP klasy A?

A. 254 adresy
B. 128 adresów
C. 32 adresy
D. 64 adresy
Adresacja IP klasy A jest jedną z głównych klas adresów w protokole IP, który służy do identyfikacji urządzeń w sieci komputerowej. W klasie A pierwsze bity adresu wynoszą '0', co pozwala na maksymalne stworzenie 2^7 (czyli 128) adresów sieciowych. Każdy adres w tej klasie może mieć do 16,777,216 (2^24) unikalnych adresów hostów, co czyni klasę A odpowiednią do dużych sieci. Przykładem zastosowania adresacji klasy A są duże organizacje, takie jak korporacje międzynarodowe, które potrzebują ogromnej liczby adresów IP do obsługi wielu urządzeń i serwerów. W praktyce, standardy takie jak RFC 791 definiują zasady dotyczące przydzielania adresów, co przyczynia się do efektywnego zarządzania przestrzenią adresową w Internecie. Wiedza o strukturze adresów IP jest kluczowa dla administratorów sieci oraz specjalistów IT, gdyż pozwala na odpowiednie planowanie i projektywanie architektury sieci. Zrozumienie klasy A i jej możliwości jest podstawą w projektowaniu skalowalnych i wydajnych systemów sieciowych.

Pytanie 19

Zarządzanie uprawnieniami oraz zdolnościami użytkowników i komputerów w sieci z systemem Windows serwerowym zapewniają

A. listy dostępu
B. zasady grupy
C. zasady zabezpieczeń
D. ustawienia przydziałów
Zasady grupy to mechanizm stosowany w systemach operacyjnych Windows, który umożliwia centralne zarządzanie uprawnieniami i dostępem do zasobów sieciowych. Dzięki zasadom grupy administratorzy mogą definiować, które ustawienia dotyczące bezpieczeństwa, konfiguracji systemów i dostępów do aplikacji oraz zasobów mają być stosowane w obrębie całej organizacji. Przykładem zastosowania zasad grupy jest możliwość wymuszenia polityki haseł, która określa minimalną długość haseł oraz wymagania dotyczące ich złożoności. W praktyce, zasady grupy mogą być przypisywane do jednostek organizacyjnych, co pozwala na elastyczne i dostosowane do potrzeb zarządzanie uprawnieniami. Wspierają one również dobre praktyki branżowe, takie jak zasada najmniejszych uprawnień, co oznacza, że użytkownicy oraz komputery mają dostęp tylko do tych zasobów, które są niezbędne do wykonywania ich zadań. Efektywne wykorzystanie zasad grupy przyczynia się do zwiększenia bezpieczeństwa sieci oraz uproszczenia zarządzania tymi ustawieniami.

Pytanie 20

Sieć o adresie IP 172.16.224.0/20 została podzielona na cztery podsieci z maską 22-bitową. Który z poniższych adresów nie należy do żadnej z tych podsieci?

A. 172.16.236.0
B. 172.16.228.0
C. 172.16.232.0
D. 172.16.240.0
Wybór adresów 172.16.228.0, 172.16.232.0 oraz 172.16.236.0 może wynikać z mylnego zrozumienia podziału sieci oraz sposobu przydzielania adresów w podsieciach. Adres 172.16.228.0 jest pierwszym adresem drugiej podsieci, co oznacza, że jest to adres sieci, a nie adres hosta. Adres 172.16.232.0 jest pierwszym adresem trzeciej podsieci, również pełniąc tę samą funkcję. Podobnie, adres 172.16.236.0 jest początkiem czwartej podsieci. Te adresy są zatem w pełni poprawne, ponieważ mieszczą się w granicach odpowiednich podsieci stworzonych z pierwotnej sieci 172.16.224.0/20. Często popełnianym błędem w analizie takich zadań jest nieprawidłowe obliczenie zakresów adresów podsieci i mylenie adresów sieciowych z adresami dostępnymi dla hostów. Aby poprawnie zrozumieć, jakie adresy należą do danej podsieci, kluczowe jest zrozumienie koncepcji maski podsieci i jak ona dzieli dostępne adresy. Użycie narzędzi do analizy adresacji, takich jak kalkulatory podsieci, może znacznie ułatwić identyfikację prawidłowych adresów i pomóc uniknąć błędów w przyszłości. Przykładem może być sytuacja, w której administrator sieci planuje przydział adresów do nowych urządzeń – zrozumienie podziału na podsieci jest niezbędne, aby uniknąć konfliktów adresów i zapewnić efektywną komunikację w sieci.

Pytanie 21

Którego z elementów dokumentacji lokalnej sieci komputerowej nie uwzględnia dokumentacja powykonawcza?

A. Kosztorysu wstępnego
B. Opisu systemu okablowania
C. Wyników pomiarów oraz testów
D. Norm i wytycznych technicznych
Dokumentacja powykonawcza lokalnej sieci komputerowej ma na celu przedstawienie rzeczywistych parametrów oraz stanu zrealizowanej instalacji, które mogą różnić się od planowanych. Kosztorys wstępny nie jest częścią tej dokumentacji, ponieważ dotyczy on fazy projektowej i szacowania kosztów, a nie rzeczywistego stanu inwestycji. W dokumentacji powykonawczej znajdują się wyniki pomiarów i testów, które potwierdzają zgodność z normami oraz wymaganiami technicznymi. Opis okablowania również jest ważnym elementem, gdyż dostarcza szczegółowych informacji o użytych komponentach i ich rozmieszczeniu. Normy i zalecenia techniczne są istotne, aby zapewnić, że instalacja została wykonana zgodnie z obowiązującymi standardami, co gwarantuje jej efektywność i bezpieczeństwo. Przykładem zastosowania dokumentacji powykonawczej może być przygotowanie raportu dla klienta, wskazującego na zgodność instalacji z projektem, co jest istotne przy odbiorze technicznym.

Pytanie 22

Jak nazywa się RDN elementu w Active Directory, którego pełna nazwa DN to O=pl,DC=firma,OU=pracownik,CN=jkowalski?

A. firma
B. jkowalski
C. pracownik
D. pl
Odpowiedź 'jkowalski' jest prawidłowa, ponieważ jest to nazwa RDN (Relative Distinguished Name) dla danego obiektu w Active Directory. W kontekście Active Directory, RDN to część DN (Distinguished Name), która jednoznacznie identyfikuje obiekt w danej jednostce organizacyjnej. W przypadku DN O=pl,DC=firma,OU=pracownik,CN=jkowalski, 'jkowalski' jest nazwą użytkownika, co czyni go RDN obiektu. Praktycznym zastosowaniem tej wiedzy jest umiejętność zarządzania obiektami w Active Directory, co jest kluczowe w administracji systemami informatycznymi. Zrozumienie struktury DN i RDN pozwala na efektywne wyszukiwanie i modyfikowanie obiektów w Active Directory, co jest istotne w kontekście bezpieczeństwa oraz zarządzania dostępem. Zgodnie z najlepszymi praktykami, administratorzy powinni jasno rozumieć różnicę pomiędzy DN a RDN, aby uniknąć nieporozumień w operacjach na obiektach. Znajomość tych pojęć jest kluczowa w codziennej pracy z Active Directory i w realizacji polityki bezpieczeństwa.

Pytanie 23

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. znaczących strat sygnału podczas transmisji.
B. wysokich kosztów elementów pośredniczących w transmisji.
C. niskiej wydajności.
D. niski poziom odporności na zakłócenia elektromagnetyczne.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 24

Czy po zainstalowaniu roli Hyper-V na serwerze Windows można

A. upraszczanie i automatyzowanie zarządzania kluczami licencji zbiorczych
B. centralne zarządzanie oraz wsparcie dla rozproszonych aplikacji biznesowych
C. tworzenie maszyn wirtualnych oraz ich zasobów i zarządzanie nimi
D. szybkie zdalne wdrażanie systemów operacyjnych Windows na komputerach w sieci
Odpowiedź wskazuje na kluczową funkcjonalność Hyper-V, która polega na tworzeniu i zarządzaniu maszynami wirtualnymi (VM). Hyper-V to wirtualizacyjna platforma oferowana przez Microsoft, która pozwala na uruchamianie wielu instancji systemów operacyjnych na tym samym fizycznym serwerze. Użytkownicy mogą tworzyć maszyny wirtualne z różnymi konfiguracjami sprzętowymi, co umożliwia testowanie aplikacji, uruchamianie serwerów plików, baz danych czy aplikacji webowych w izolowanym środowisku. Przykładem zastosowania może być wykorzystanie Hyper-V do symulacji środowiska produkcyjnego w celu przeprowadzenia testów przed wdrożeniem nowych rozwiązań. Dodatkowo, wirtualizacja za pomocą Hyper-V pozwala na lepsze wykorzystanie zasobów fizycznych, zmniejszenie kosztów operacyjnych i zapewnienie elastyczności w zarządzaniu infrastrukturą IT. W kontekście dobrych praktyk branżowych, używanie Hyper-V jest zgodne z podejściem do wirtualizacji zasobów, które zwiększa skalowalność i redukuje czas przestojów serwerów.

Pytanie 25

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Konwerter mediów
B. Ruter ADSL
C. Przełącznik warstwy 3
D. Punkt dostępu
Ruter ADSL jest urządzeniem, które łączy lokalną sieć komputerową z Internetem dostarczanym przez operatora telekomunikacyjnego. Działa on na zasadzie modulacji sygnału ADSL, co pozwala na jednoczesne przesyłanie danych przez linię telefoniczną, bez zakłócania połączeń głosowych. Ruter ADSL pełni funkcję bramy do sieci, umożliwiając podłączenie wielu urządzeń w sieci lokalnej do jednego połączenia internetowego. Zazwyczaj wyposażony jest w porty LAN, przez które można podłączyć komputery, drukarki oraz inne urządzenia. Przykładem zastosowania może być domowa sieć, gdzie ruter ADSL łączy się z modemem telefonicznym, a następnie rozdziela sygnał na różne urządzenia w sieci. Dodatkowo, rutery ADSL często zawierają funkcje zarządzania jakością usług (QoS) oraz zabezpieczenia, takie jak firewall, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. Warto również zauważyć, że rutery ADSL są standardowym rozwiązaniem w przypadku lokalnych sieci, które korzystają z technologii xDSL i są szeroko stosowane w domach oraz małych biurach.

Pytanie 26

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca zdalne połączenie z urządzeniem
B. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
C. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
D. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 27

Jakie ograniczenie funkcjonalne występuje w wersji Standard systemu Windows Server 2019?

A. Brak interfejsu graficznego
B. Licencjonowanie na maksymalnie 50 urządzeń
C. Wirtualizacja maksymalnie dla dwóch instancji
D. Obsługuje najwyżej dwa procesory
Nieprawidłowe odpowiedzi wskazują na powszechne nieporozumienia dotyczące możliwości i ograniczeń Windows Server 2019 w wersji Standard. Na przykład, licencjonowanie na maksymalnie 50 urządzeń nie jest prawdziwe, ponieważ wersja Standard pozwala na licencjonowanie serwerów w oparciu o liczbę rdzeni procesora, a nie na określoną liczbę urządzeń. Ograniczenie do dwóch procesorów jest również mylące; w rzeczywistości edycja Standard wspiera maksymalnie dwa procesory fizyczne, ale liczba rdzeni, które mogą być wykorzystane na każdym z procesorów, nie jest ograniczona, co może prowadzić do nieprawidłowych wniosków o całkowitej mocy obliczeniowej. Co więcej, twierdzenie dotyczące braku środowiska graficznego jest błędne, ponieważ Windows Server 2019 może być zainstalowany z interfejsem graficznym, chociaż istnieje opcja instalacji w trybie core, który ogranicza interfejs graficzny i zwiększa bezpieczeństwo. To podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania serwerami, ale nie oznacza, że graficzny interfejs nie jest dostępny. Właściwe zrozumienie architektury Windows Server 2019 i jej edycji jest niezbędne do prawidłowego planowania i wdrażania rozwiązań serwerowych, a także do uniknięcia błędów związanych z licencjonowaniem i konfiguracją.

Pytanie 28

Najefektywniejszym sposobem na zabezpieczenie prywatnej sieci Wi-Fi jest

A. zmiana nazwy SSID
B. zmiana adresu MAC routera
C. stosowanie szyfrowania WPA-PSK
D. stosowanie szyfrowania WEP
Stosowanie szyfrowania WPA-PSK (Wi-Fi Protected Access Pre-Shared Key) jest najskuteczniejszą metodą zabezpieczenia domowej sieci Wi-Fi, ponieważ zapewnia silne szyfrowanie danych przesyłanych między urządzeniami a routerem. WPA-PSK wykorzystuje algorytmy szyfrowania TKIP (Temporal Key Integrity Protocol) lub AES (Advanced Encryption Standard), co znacznie podnosi bezpieczeństwo w porównaniu do przestarzałych metod, takich jak WEP. Aby wprowadzić WPA-PSK, użytkownik musi ustawić hasło, które będzie używane do autoryzacji urządzeń w sieci. Praktyczne zastosowanie tej metody polega na regularnej zmianie hasła, co dodatkowo zwiększa bezpieczeństwo. Warto także pamiętać o aktualizacji oprogramowania routera, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. W przypadku domowych sieci Wi-Fi, zastosowanie WPA-PSK jest standardem, który powinien być przestrzegany, aby chronić prywatność i integralność przesyłanych danych.

Pytanie 29

Jakie urządzenie pozwala na stworzenie grupy komputerów, które są do niego podłączone i operują w sieci z identycznym adresem IPv4, w taki sposób, aby komunikacja między komputerami miała miejsce jedynie w obrębie tej grupy?

A. Punkt dostępu
B. Konwerter mediów
C. Przełącznik zarządzalny
D. Ruter z WiFi
Punkt dostępu to urządzenie, które umożliwia bezprzewodowy dostęp do sieci LAN, ale nie posiada funkcji segmentacji ruchu w taki sposób, aby ograniczać komunikację pomiędzy urządzeniami do konkretnej grupy. Punkt dostępu działa jako most, łącząc urządzenia bezprzewodowe z siecią przewodową, ale nie jest w stanie kontrolować ruchu danych w obrębie różnych użytkowników. W sytuacji, gdy wiele urządzeń jest podłączonych do jednego punktu dostępu, mogą one swobodnie komunikować się ze sobą oraz z innymi urządzeniami w sieci, co nie spełnia wymagań izolacji ruchu. Ruter z WiFi, z kolei, jest bardziej zaawansowanym urządzeniem, które umożliwia nie tylko dostęp do sieci, ale także routing pomiędzy różnymi sieciami. Jego główną funkcją jest kierowanie ruchu oraz zarządzanie adresacją IP, ale nie jest to tożsame z wydzieleniem grupy komputerów w ramach tej samej sieci. Konwerter mediów jest urządzeniem, które zmienia format sygnału (np. z miedzianego na światłowodowy), ale nie ma funkcji zarządzania ruchem w sieci ani wydzielania grup komputerów. Typowe błędy myślowe w przypadku tych odpowiedzi wynikają z nieporozumienia dotyczącego funkcji i zastosowań tych urządzeń; użytkownicy mogą mylić ich podstawowe role, co prowadzi do fałszywych wniosków na temat ich możliwości w kontekście zarządzania siecią.

Pytanie 30

Simple Mail Transfer Protocol to protokół odpowiedzialny za

A. zarządzanie grupami multicastowymi w sieciach opartych na protokole IP
B. synchronizację czasu pomiędzy komputerami
C. przekazywanie poczty elektronicznej w Internecie
D. obsługę odległego terminala w architekturze klient-serwer
Simple Mail Transfer Protocol (SMTP) to standardowy protokół komunikacyjny wykorzystywany do przesyłania poczty elektronicznej w Internecie. Został opracowany w latach 80. XX wieku i od tego czasu stał się jednym z kluczowych elementów infrastruktury komunikacyjnej w sieci. Protokół ten działa na zasadzie klient-serwer, gdzie klient (np. program pocztowy) wysyła wiadomości do serwera pocztowego, który następnie przekazuje je do odpowiednich serwerów odbiorców. Jednym z głównych zastosowań SMTP jest umożliwienie przesyłania wiadomości między różnymi domenami. W praktyce, większość systemów e-mailowych, takich jak Gmail czy Outlook, korzysta z SMTP do obsługi wysyłania wiadomości e-mail. Protokół ten również obsługuje różne metody autoryzacji, co zwiększa bezpieczeństwo przesyłania wiadomości. Warto również zauważyć, że SMTP współpracuje z innymi protokołami, takimi jak IMAP czy POP3, które są używane do odbierania e-maili. Zrozumienie SMTP jest niezbędne dla osób zajmujących się administracją systemami e-mailowymi oraz dla specjalistów IT, którzy chcą zapewnić efektywną komunikację w organizacjach.

Pytanie 31

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić kanał radiowy
B. zmienić sposób szyfrowania z WEP na WPA
C. zmienić hasło
D. skonfigurować filtrowanie adresów MAC
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 32

Który z poniższych dokumentów nie wchodzi w skład dokumentacji powykonawczej lokalnej sieci komputerowej?

A. Plan rozmieszczenia sieci LAN
B. Dokumentacja materiałowa
C. Dokumentacja techniczna kluczowych elementów systemu
D. Lista użytych nazw użytkowników oraz haseł
Wykaz zastosowanych nazw użytkowników i haseł nie należy do dokumentacji powykonawczej lokalnej sieci komputerowej, ponieważ nie jest to dokument techniczny ani planistyczny, a raczej informacja dotycząca bezpieczeństwa. Dokumentacja powykonawcza ma na celu przedstawienie szczegółowych informacji o zrealizowanej infrastrukturze sieciowej, obejmując takie dokumenty jak specyfikacja techniczna głównych elementów systemu, która zawiera opis zastosowanych urządzeń, ich parametrów oraz sposobu integracji w sieci. Specyfikacja materiałowa dostarcza informacji o użytych komponentach, co jest istotne dla przyszłych napraw czy modernizacji. Schemat sieci LAN ilustruje fizyczną lub logiczną strukturę sieci, co ułatwia zrozumienie jej działania oraz ewentualne rozwiązywanie problemów. Wykaz użytkowników i haseł może być traktowany jako poufna informacja, której ujawnienie w dokumentacji powykonawczej mogłoby narazić sieć na nieautoryzowany dostęp. Dlatego takie dane powinny być przechowywane w bezpiecznych miejscach, zgodnie z zasadami ochrony informacji i standardami bezpieczeństwa sieciowego, takimi jak ISO/IEC 27001.

Pytanie 33

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. adresu MAC karty sieciowej komputera
B. znacznika ramki Ethernet 802.1Q
C. nazwa komputera w sieci lokalnej
D. numeru portu przełącznika
W przypadku analizy przynależności komputera do konkretnej sieci wirtualnej, ważne jest zrozumienie, że różne metody identyfikacji urządzeń w sieci działają na różnych poziomach. Adres MAC, przypisany do karty sieciowej komputera, jest unikalnym identyfikatorem, który pozwala na ustalenie, do jakiego portu przełącznika jest podłączone dane urządzenie. Przełączniki sieciowe wykorzystują ten adres do podejmowania decyzji o przekazywaniu pakietów, co jest podstawą działania VLAN. Dlatego adres MAC jest kluczowy dla przypisania do konkretnej sieci wirtualnej. Również numer portu przełącznika odgrywa istotną rolę w tej kwestii, ponieważ wiele przełączników umożliwia przypisanie portów do różnych VLAN-ów, co jeszcze bardziej ukierunkowuje ruch sieciowy. Z kolei znacznik ramki Ethernet 802.1Q jest standardem branżowym, który umożliwia wielość VLAN w jednym fizycznym połączeniu, co dodatkowo wzmacnia organizację ruchu. Jednak niepoprawne jest myślenie, że nazwa komputera, która jest bardziej przyjazna dla użytkowników, może mieć jakikolwiek wpływ na przypisanie do konkretnej VLAN. To prowadzi do nieporozumień w zarządzaniu siecią oraz może skutkować trudnościami w rozwiązywaniu problemów związanych z dostępem do zasobów sieciowych. W praktyce, błędna identyfikacja znaczenia nazwy komputera w kontekście VLAN-ów może wpływać na efektywność administracji siecią, ponieważ nie bierze pod uwagę technicznych aspektów, które decydują o rzeczywistej przynależności urządzenia do danej sieci wirtualnej.

Pytanie 34

Jakie narzędzie wirtualizacji stanowi część systemów operacyjnych Windows?

A. ESXI
B. VMWARE
C. HYPER-V
D. QEMU
HYPER-V to natywne narzędzie wirtualizacji opracowane przez firmę Microsoft, które jest integralną częścią systemów operacyjnych Windows Server oraz Windows 10 i nowszych. Umożliwia tworzenie i zarządzanie maszynami wirtualnymi, co jest kluczowe w kontekście nowoczesnych środowisk IT, gdzie efektywność i elastyczność są na wagę złota. HYPER-V obsługuje wiele funkcji, takich jak dynamiczne przydzielanie pamięci, co pozwala na automatyczne dostosowywanie zasobów w zależności od potrzeb uruchomionych maszyn. Dodatkowo, HYPER-V wspiera różne systemy operacyjne gości, co zwiększa jego wszechstronność. Przykładowe zastosowanie HYPER-V obejmuje testowanie aplikacji w izolowanym środowisku, uruchamianie złożonych środowisk serwerowych w ramach jednego hosta, a także disaster recovery dzięki klonowaniu maszyn wirtualnych. W ramach branżowych standardów, HYPER-V spełnia wymagania dotyczące bezpieczeństwa oraz zgodności z technologiami wirtualizacji, takimi jak VDI (Virtual Desktop Infrastructure).

Pytanie 35

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 300 zł
B. 100 zł
C. 200 zł
D. 250 zł
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.

Pytanie 36

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. CSA T527
B. TIA/EIA-568-B-2
C. TIA/EIA-568-B-1
D. EIA/TIA 607
Norma TIA/EIA-568-B-2 definiuje wymogi dotyczące kabli i komponentów dla systemów sieciowych, w tym dla komponentów kategorii 5e. Specyfikacja ta objmuje m.in. parametry transmisyjne, takie jak tłumienie, diafonia i impedancja, które są kluczowe dla zapewnienia odpowiedniej wydajności sieci. Zastosowanie tej normy jest szczególnie ważne w kontekście instalacji sieci lokalnych (LAN), gdzie kable kategorii 5e są szeroko stosowane do przesyłania danych z prędkością do 1 Gbps na odległości do 100 metrów. Zrozumienie i przestrzeganie normy TIA/EIA-568-B-2 jest niezbędne dla projektantów i instalatorów systemów telekomunikacyjnych, ponieważ zapewnia nie tylko zgodność z wymogami branżowymi, ale także optymalizuje wydajność i niezawodność sieci. Przykładem praktycznego zastosowania tej normy jest planowanie infrastruktury w biurach, gdzie wymagane są szybkie i stabilne połączenia, co można osiągnąć dzięki zastosowaniu wysokiej jakości kabli spełniających normy TIA/EIA-568-B-2.

Pytanie 37

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN50173
B. PN-EN 55022
C. PN-EN 50174
D. PN-EN 50310
Norma PN-EN 50174 opisuje zasady projektowania i instalacji okablowania strukturalnego, które są kluczowe dla zapewnienia efektywności i niezawodności systemów telekomunikacyjnych. Ta norma obejmuje zarówno aspekty techniczne, jak i praktyczne wytyczne dotyczące instalacji kabli, ich rozmieszczenia oraz ochrony przed zakłóceniami. W kontekście budynków biurowych, zastosowanie PN-EN 50174 pozwala na zminimalizowanie strat sygnału oraz zwiększenie żywotności instalacji poprzez zastosowanie odpowiednich metod układania kabli. Na przykład, w przypadku instalacji w dużych biurowcach, stosowanie zgodnych z normą metod zarządzania kablami i ich trasowaniem pozwala na łatwiejsze późniejsze modyfikacje oraz serwisowanie. Dodatkowo, norma ta zwraca uwagę na aspekty bezpieczeństwa, co jest kluczowe w kontekście przepisów budowlanych oraz ochrony środowiska. Warto również wspomnieć, że PN-EN 50174 jest często stosowana w połączeniu z innymi normami, takimi jak PN-EN 50173, która dotyczy systemów okablowania strukturalnego w budynkach, co zapewnia kompleksowe podejście do tematu.

Pytanie 38

Jakie polecenie służy do analizy statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych rodziny Windows?

A. netstat
B. route
C. ping
D. tracert
Polecenie 'netstat' jest podstawowym narzędziem w systemach Windows, które umożliwia użytkownikom sprawdzenie statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych. Dzięki 'netstat' można uzyskać informacje o aktywnych połączeniach TCP, korzystających z portów, a także o stanie tych połączeń. Przykładowo, użycie polecenia 'netstat -a' wyświetli wszystkie aktywne połączenia oraz porty nasłuchujące, co jest szczególnie przydatne w diagnostyce problemów z siecią czy w analizie bezpieczeństwa. Ponadto, 'netstat' potrafi zidentyfikować, które programy są odpowiedzialne za otwarte połączenia, co pozwala na lepszą kontrolę nad bezpieczeństwem systemu. Narzędzie to jest zgodne ze standardami administracji sieci, a jego zastosowanie w codziennej pracy może znacznie usprawnić zarządzanie infrastrukturą sieciową. Warto także wspomnieć, że 'netstat' jest wszechstronnym narzędziem, które znajduje zastosowanie w różnych systemach operacyjnych, co czyni je uniwersalnym rozwiązaniem dla specjalistów zajmujących się sieciami.

Pytanie 39

Komputer w sieci lokalnej ma adres IP 172.16.0.0/18. Jaka jest maska sieci wyrażona w postaci dziesiętnej?

A. 255.255.192.0
B. 255.255.255.192
C. 255.255.128.0
D. 255.255.255.128
Poprawna odpowiedź to 255.255.192.0, co odpowiada masce /18. W tej masce pierwsze 18 bitów adresu IP jest zarezerwowanych dla identyfikacji sieci, co oznacza, że w tej sieci mogą znajdować się adresy IP od 172.16.0.1 do 172.16.63.254. Zgodnie z protokołem IPv4, aby obliczyć maskę w postaci dziesiętnej, musimy przeliczyć 18 bitów maski na odpowiednie wartości w czterech oktetach. Po pierwszych 16 bitach (255.255) pozostaje 2 bity, co daje 2^2 = 4 różne podsieci, a ich maksymalna liczba hostów wynosi 2^14 - 2 = 16382 (odjęcie dwóch zarezerwowanych adresów). W praktyce, znajomość maski sieciowej oraz adresowania IP jest kluczowa, aby efektywnie zaplanować i zarządzać infrastrukturą sieciową. Przykładowo, organizacja wykorzystująca adresację 172.16.0.0/18 może podzielić swoją sieć na mniejsze podsieci, co ułatwi zarządzanie ruchem oraz zwiększy bezpieczeństwo.

Pytanie 40

Protokół SNMP (Simple Network Management Protocol) służy do

A. konfiguracji urządzeń sieciowych oraz zbierania danych na ich temat
B. odbierania wiadomości e-mail
C. przydzielania adresów IP oraz adresu bramy i serwera DNS
D. szyfrowania połączeń terminalowych z zdalnymi komputerami
Protokół SNMP, czyli Simple Network Management Protocol, to naprawdę ważne narzędzie, jeśli chodzi o zarządzanie i monitorowanie urządzeń w sieci. Dzięki niemu, administratorzy mogą zbierać wszystkie ważne info o stanie czy wydajności różnych urządzeń, jak routery czy serwery. Ma to ogromne znaczenie, żeby sieć działała sprawnie. Na przykład, SNMP może pomóc w monitorowaniu obciążenia procesora lub pamięci. A to z kolei pozwala szybko zlokalizować problemy i podjąć odpowiednie działania. SNMP działa na zasadzie klient-serwer, gdzie agent na urządzeniu zbiera dane i przesyła je do systemu. To wszystko sprawia, że wiele procesów, jak aktualizacja konfiguracji, można zautomatyzować. Protokół ten jest zgodny z normami IETF, co również wspiera dobre praktyki w zarządzaniu sieciami oraz sprawia, że różne urządzenia od różnych producentów mogą ze sobą współpracować. To czyni SNMP naprawdę kluczowym elementem w nowoczesnych infrastrukturach IT w firmach.