Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 09:24
  • Data zakończenia: 1 kwietnia 2025 09:55

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do podłączenia elementów systemu alarmowego używa się kabla

A. YTDY
B. OMY
C. YTKSY
D. UTP
Przewód YTDY jest odpowiedni do łączenia elementów systemu alarmowego ze względu na swoje właściwości. Posiada on podwójne ekranowanie, co zapewnia wysoką odporność na zakłócenia elektromagnetyczne, co jest kluczowe w systemach zabezpieczeń, gdzie jakość sygnału jest kluczowa dla prawidłowego działania. Dzięki zastosowaniu odpowiedniej izolacji przewodów, YTDY skutecznie minimalizuje ryzyko fałszywych alarmów spowodowanych zakłóceniami z innych urządzeń. W praktyce, zastosowanie tego typu przewodów w instalacjach alarmowych pozwala na długodystansowe połączenia, co jest istotne w większych obiektach. Przewody YTDY są również zgodne z normami branżowymi, co czyni je preferowanym wyborem w projektowaniu i wykonawstwie systemów alarmowych. Dzięki zastosowaniu tego typu przewodów, instalacje stają się bardziej niezawodne i efektywne.

Pytanie 2

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. kontroler
B. przetwornik
C. zawór regulacyjny
D. zawór elektromagnetyczny
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 3

Aby zamontować element na szynie DIN, jakie narzędzie powinno zostać zastosowane?

A. cążków bocznych
B. wkrętaka płaskiego
C. klucza płaskiego
D. szczypiec płaskich
Jak wybierzesz niewłaściwe narzędzie do montażu elementów na szynie DIN, to mogą się pojawić różne kłopoty, które rozwalają cały system. Cążki boczne są super w wielu sytuacjach, ale nie nadają się do precyzyjnego dokręcania śrub. Ich budowa nie pozwala na dobre przekazywanie momentu obrotowego, więc może być tak, że śruba nie będzie dokręcona jak należy, a to prowadzi do luźnych połączeń i ryzyka, że wszystko się popsuć. Klucz płaski też nie za bardzo tu pasuje, bo on głównie działa z nakrętkami i śrubami o innym kształcie, a nie z wkrętami, które są na szynach DIN. Szczypce płaskie, mimo że w niektórych sytuacjach mogą się przydać, to jednak nie są do precyzyjnego dokręcania. Ich używanie w tym kontekście może uszkodzić elementy i źle je osadzić. Jak już wybierasz narzędzie, to pamiętaj, że trzeba kierować się rodzajem pracy i standardami, jakie są w branży. Używanie odpowiednich narzędzi, jak wkrętaki płaskie, jest kluczowe, żeby wszystko było zrobione jak należy, co przekłada się na niezawodność instalacji elektrycznych.

Pytanie 4

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
B. Odbiera programy telewizyjne
C. Przekazuje informacje pomiędzy satelitami
D. Nadaje sygnały z satelity
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 5

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
B. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
C. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
D. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
W przypadku podawania zakresów pomiarowych w odpowiedziach, istotne jest dostosowanie ich do specyfiki mierzonych napięć oraz typów prądu. Ustawienie zakresu 200 V AC na wejściu transformatora, chociaż wydaje się być odpowiednie, w rzeczywistości nie uwzględnia potencjalnych wyższych napięć, które mogą występować w instalacjach sieciowych. Zakres 200 V mógłby prowadzić do niepełnych odczytów lub zniekształceń pomiarowych. Ponadto, wybór 20 V AC na wyjściu transformatora zasilającego nie pokrywa się z wymaganym napięciem 18 V, co może wprowadzać w błąd, gdyż pomiar w takim zakresie nie jest dostatecznie precyzyjny dla niskich napięć. W przypadku pomiaru na akumulatorze, stosowanie zakresu 20 V AC jest nieprawidłowe, ponieważ napięcie na akumulatorze jest prądem stałym. Użycie zakresu AC prowadziłoby do błędnych wyników pomiaru, co jest typowym błędem myślowym, polegającym na niezrozumieniu różnicy pomiędzy prądem stałym a zmiennym, a także nieodpowiednim dobraniu zakresu do specyfiki urządzenia. Kluczowe jest, aby mieć świadomość, że prawidłowe pomiary wymagają znajomości zarówno parametrów technicznych urządzeń, jak i zasad działania układów elektrycznych.

Pytanie 6

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. wyłącznie w pionie
B. w pionie oraz poziomie
C. tylko w poziomie
D. najkrótszą trasą
Prowadzenie przewodów tylko w poziomie jest podejściem ograniczającym, które nie odpowiada na potrzeby funkcjonalne budynku. Powoduje to, że nie można w łatwy sposób zrealizować połączeń elektrycznych do punktów, które znajdują się na różnych wysokościach, co w praktyce prowadzi do trudności w użytkowaniu i może wymuszać nieestetyczne i nieefektywne rozwiązania. Z kolei prowadzenie przewodów wyłącznie w pionie, mimo że może być teoretycznie uważane za możliwe w specyficznych warunkach, w rzeczywistości nie uwzględnia odpowiednich wymagań dla rozmieszczenia urządzeń elektrycznych w pomieszczeniach mieszkalnych. Ograniczając instalację do tylko jednego kierunku, można napotkać problemy związane z dostępnością zasilania, co prowadzi do frustracji użytkowników oraz wymusza stosowanie dodatkowych przedłużaczy czy złączek, co z kolei zwiększa ryzyko zwarć. Prowadzenie przewodów najkrótszą drogą, choć teoretycznie może wydawać się logiczne, w praktyce nie zawsze jest optymalne. Niekiedy krótsza droga może prowadzić przewody w sposób, który narusza zasady bezpieczeństwa, a także estetyki wykonania. Właściwe rozplanowanie instalacji wymaga analizy rozmieszczenia mebli, urządzeń i innych elementów wnętrza, co wpływa na funkcjonalność i komfort użytkowania. Dlatego, aby spełnić normy bezpieczeństwa i wygodę użytkowania, warto projektować instalacje uwzględniając zarówno pionowe, jak i poziome prowadzenie przewodów.

Pytanie 7

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Dioda LED
B. Tyrystor
C. Tranzystor bipolarny
D. Warikap
Dioda elektroluminescencyjna, czyli LED, to półprzewodnikowe źródło światła, które świeci dzięki rekombinacji elektronów i dziur. Zazwyczaj ma dwuwarstwową strukturę p-n, przez co nie działa jak tyrystor, który ma cztery warstwy. Wydaje mi się, że niektórym może się pomylić, że dioda może mieć czterowarstwową budowę, a to nieprawda. Z kolei warikap to dioda, która zmienia pojemność w odpowiedzi na napięcie, więc to też nie jest to, czego szukamy w tej sytuacji. A jeśli chodzi o tranzystory bipolarne, to mają trzy warstwy, co sprawia, że są zupełnie inne niż tyrystory. Wiem, że czasem łatwo pomylić różne elementy półprzewodnikowe, ale warto to zrozumieć, żeby nie wprowadzać się w błąd i nie robić błędów przy projektowaniu układów elektronicznych.

Pytanie 8

Jakie jest zastosowanie symetryzatora antenowego?

A. w celu zmiany charakterystyki kierunkowej anteny
B. do przesyłania sygnałów z kilku anten do jednego odbiornika
C. aby zwiększyć zysk energetyczny anteny
D. do dopasowania impedancyjnego anteny i odbiornika
Wybór odpowiedzi, które sugerują, że symetryzator antenowy służy do zwiększenia zysku energetycznego anteny, zmiany kierunkowości anteny lub przesyłania sygnałów z kilku anten do jednego odbiornika, opiera się na nieporozumieniach dotyczących funkcji tych urządzeń. Symetryzator nie zwiększa zysku energetycznego anteny. Zysk energetyczny anteny odnosi się do jej charakterystyki radiowej, która jest związana z porównaniem wydajności anteny do standardowej anteny izotropowej, a nie do samego dopasowania impedancji. Zmiana charakterystyki kierunkowej anteny jest realizowana przez zastosowanie różnych typów anten, takich jak anteny kierunkowe lub omni-kierunkowe, a nie przez symetryzator. Symetryzator nie jest też urządzeniem, które przesyła sygnały z kilku anten. Zamiast tego, w sytuacji wymagającej podłączenia wielu anten, stosuje się urządzenia takie jak przełączniki antenowe lub wzmacniacze rozgałęźne. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli dopasowania impedancyjnego z parametrami wydajnościowymi anteny lub niewłaściwe zrozumienie funkcji urządzeń w systemach komunikacyjnych. Właściwe zrozumienie tych koncepcji jest niezbędne dla efektywnego projektowania i stosowania technologii antenowych.

Pytanie 9

Którego koloru nie powinien mieć przewód fazowy w instalacji zasilającej sprzęt elektroniczny?

A. Szarego
B. Czarnego
C. Niebieskiego
D. Brązowego
Przewód fazowy w instalacji zasilającej urządzenia elektroniczne powinien być oznaczony kolorem innym niż niebieski, ponieważ ten kolor jest zarezerwowany dla przewodu neutralnego zgodnie z normą PN-IEC 60446. W praktyce oznacza to, że przewód fazowy, który może przenosić napięcie, powinien być czarny, brązowy lub szary, co pozwala na jednoznaczną identyfikację przewodów w instalacji oraz na uniknięcie pomyłek podczas prac serwisowych i montażowych. Przykładowo, podczas wykonywania instalacji elektrycznej w budynku mieszkalnym, technicy muszą upewnić się, że stosują właściwe kolory przewodów, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z przepisami. Ponadto, odpowiednie oznaczenie przewodów jest kluczowe w przypadku diagnostyki i konserwacji instalacji, co może zapobiec wypadkom związanym z niewłaściwym podłączeniem przewodów. Wiedza na temat kolorów przewodów jest niezbędna dla elektryków, instalatorów i każdej osoby zajmującej się pracami związanymi z instalacjami elektrycznymi.

Pytanie 10

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. izolowania części czynnych
B. bezpieczników topikowych
C. transformatora separującego
D. wyłączników nadprądowych
Izolowanie części czynnych jest podstawowym środkiem ochrony przed dotykiem bezpośrednim w urządzeniach elektrycznych, co oznacza, że wszystkie elementy, które mogą być pod napięciem, są oddzielone od dostępnych powierzchni, które mogą być dotykane przez użytkowników. Taki sposób ochrony jest kluczowy, ponieważ minimalizuje ryzyko przypadkowego kontaktu z napięciem oraz potencjalne porażenie prądem. Zastosowanie izolacji w praktyce obejmuje np. użycie obudów wykonanych z materiałów dielektrycznych oraz odpowiedniego projektowania urządzeń, które uniemożliwiają dostęp do części czynnych. W kontekście norm, takich jak IEC 61140, izolacja jest podkreślona jako podstawowy aspekt bezpieczeństwa elektrycznego. Warto również dodać, że izolacja ma różne klasyfikacje, co pozwala na dostosowanie stopnia ochrony do specyficznych warunków pracy urządzenia, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
B. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
C. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
D. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci
Uszkodzenie urządzeń elektronicznych zasilanych z niezabezpieczonej sieci energetycznej jest wynikiem przepięć, które mogą wystąpić w takich systemach. Przepięcia mogą być spowodowane różnymi czynnikami, takimi jak wyładowania atmosferyczne, nagłe zmiany w obciążeniu sieci lub awarie w dostawie energii. Przykładowo, gdy piorun uderza w linię energetyczną, może dojść do chwilowego wzrostu napięcia, który przekracza dopuszczalne wartości dla podłączonych urządzeń. Takie przepięcia mogą prowadzić do zniszczenia komponentów elektronicznych, takich jak zasilacze, płyty główne czy inne układy scalone. Aby zminimalizować ryzyko uszkodzeń, zaleca się stosowanie urządzeń zabezpieczających, jak listwy antyprzepięciowe, które absorbują nadmiar energii. Kiedy mówimy o ochronie przed przepięciami, warto również pamiętać o standardach, takich jak IEC 61643, które definiują wymagania dla urządzeń zabezpieczających przed przepięciami (SPD). Wiedza na temat tych zagadnień jest istotna w kontekście projektowania i eksploatacji systemów elektrotechnicznych, aby zagwarantować bezpieczeństwo i długowieczność używanych urządzeń.

Pytanie 13

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa AB
B. Klasa B
C. Klasa C
D. Klasa A
Klasa A, B, i AB to typy wzmacniaczy, które są powszechnie stosowane w przetwarzaniu sygnałów akustycznych, każda z nich ma swoje charakterystyczne zalety i ograniczenia. Wzmacniacze klasy A są znane ze swojej doskonałej linearności i niskiego poziomu zniekształceń, co czyni je idealnymi do aplikacji audio, gdzie jakość dźwięku jest kluczowa. Charakteryzują się tym, że w każdym cyklu pracy tranzystor zawsze przewodzi prąd, co zapewnia ich wysoką jakość dźwięku, ale jednocześnie prowadzi do niskiej efektywności energetycznej. Klasa B to rozwiązanie, które poprawia efektywność, ponieważ tylko jedna połówka sygnału jest wzmacniana, co jednak prowadzi do zniekształceń w punkcie, gdzie obie połówki sygnału się łączą. Klasa AB, z kolei, to kompromis między klasą A i B, oferujący lepszą efektywność niż klasa A, ale przy zachowaniu niskiego poziomu zniekształceń. Wzmacniacze klasy C, mimo że są efektywne w zastosowaniach RF, nie nadają się do wzmacniania sygnałów akustycznych z powodu dużych zniekształceń nieliniowych, które generują. Wybór odpowiedniej klasy wzmacniacza powinien być zawsze uzależniony od specyficznych wymagań danej aplikacji, z uwzględnieniem zarówno jakości dźwięku, jak i efektywności energetycznej.

Pytanie 14

Czujnik kontaktronowy, często wykorzystywany w systemach alarmowych, zmienia swój stan pod wpływem

A. pola elektrycznego
B. pola magnetycznego
C. zmiany natężenia dźwięku
D. zmiany temperatury
W kontekście czujników bezpieczeństwa i sygnalizacji, istotne jest zrozumienie, jak różne typy czujników działają oraz jakie zjawiska fizyczne są przez nie wykorzystywane. Zmiana temperatury jest jedną z podstawowych metod detekcji, znaną z czujników termicznych, jednak nie ma zastosowania w przypadku czujników kontaktronowych, które są stworzone do detekcji pola magnetycznego. Czujniki te nie reagują na zmiany temperatury, co może prowadzić do nieporozumień w ich zastosowaniu. Z kolei pole elektryczne jest mechanizmem, na który reagują inne typy czujników, takie jak kondensatory elektryczne, ale nie dotyczy to kontaktronów. Zrozumienie mechanizmu działania tych urządzeń jest kluczowe, aby uniknąć błędnych interpretacji ich funkcji. Ponadto, zmiana natężenia dźwięku jest zjawiskiem, które jest wykorzystywane w czujnikach akustycznych, a nie magnetycznych. Nieprawidłowe przypisanie działania czujnika do niewłaściwego zjawiska fizycznego może prowadzić do błędów w projektowaniu systemów zabezpieczeń. Dlatego niezwykle ważne jest, aby przy projektowaniu systemów alarmowych i zabezpieczeń znać specyfikację oraz zasadę działania używanych urządzeń, co pozwala na ich odpowiednie umiejscowienie i wykorzystanie w praktyce.

Pytanie 15

Czujnik akustyczny połączony z systemem alarmowym do wykrywania włamań i napadów służy do identyfikacji

A. otwarcia okna
B. stłuczenia szyby
C. dźwięku ulatniającego się gazu
D. modulacji dźwięku
Odpowiedzi sugerujące inne możliwości, takie jak otwarcie okna, dźwięk ulatniającego się gazu, czy modulację dźwięku, wskazują na nieporozumienie dotyczące funkcji czujek akustycznych. Czujki są zaprojektowane do rozpoznawania specyficznych, głośnych dźwięków, takich jak stłuczenie szyby, które wskazuje na potencjalne włamanie. Otwarcie okna generuje dźwięk, ale nie jest on na ogół na tyle wyraźny ani charakterystyczny, aby czujka akustyczna mogła go skutecznie zidentyfikować. W rzeczywistości systemy bezpieczeństwa często stosują różne rodzaje czujek, aby wykrywać różne formy intruzji, gdzie czujki kontaktowe są bardziej odpowiednie do monitorowania otwarcia okien czy drzwi. Natomiast dźwięk ulatniającego się gazu jest detekowany poprzez czujniki gazu, które działają na zupełnie innej zasadzie; ich celem jest wykrycie obecności niebezpiecznych substancji chemicznych w powietrzu. Wreszcie, modulacja dźwięku odnosi się do zmiany parametrów dźwięku, a nie do jego detekcji. Takie niejasności mogą prowadzić do niewłaściwej interpretacji funkcji urządzeń zabezpieczających. Zrozumienie specyfiki działania czujek akustycznych i ich zastosowania jest kluczowe, aby skutecznie zabezpieczyć obiekt przed zagrożeniem.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 750 V AC
B. 100 V DC
C. 200 V AC
D. 500 V DC
Wybór niewłaściwego zakresu pomiarowego może prowadzić do niepoprawnych wyników i uszkodzenia sprzętu. Odpowiedzi takie jak 100 V DC i 500 V DC są całkowicie nieodpowiednie do pomiaru napięcia przemiennego, ponieważ są one przeznaczone do pomiarów napięcia stałego. Napięcie stałe i przemienne mają różne właściwości, a użycie woltomierza ustawionego na DC do pomiarów AC może skutkować brakiem odczytu lub, co gorsza, uszkodzeniem urządzenia. Zakres 750 V AC, mimo że technicznie jest wystarczający, jest zbyt wysoki w porównaniu do oczekiwanego wyniku, co może prowadzić do obniżonej dokładności pomiaru. W pomiarach elektronicznych, optymalny dobór zakresu jest kluczowy dla uzyskania wiarygodnych wyników. Idealnym podejściem jest wybieranie zakresu, który jest blisko mierzonych wartości, ale nie mniejszy niż 20% większy od maksymalnego przewidywanego napięcia. To podejście gwarantuje zarówno bezpieczeństwo, jak i precyzję pomiaru, co jest zgodne z najlepszymi praktykami w branży. Prawidłowy wybór zakresu pomiarowego jest zatem fundamentem skutecznych pomiarów w inżynierii elektrycznej.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakie urządzenie pomiarowe powinno być użyte do analizy sygnału o wysokiej częstotliwości?

A. Multimetr
B. Mostek RLC
C. Waromierz
D. Oscyloskop
Waromierz jest narzędziem stosowanym do pomiaru ciśnienia, a więc nie jest odpowiedni do analizy sygnałów elektrycznych, zwłaszcza tych o wysokiej częstotliwości. Jego zastosowanie w kontekście pomiarów elektrycznych jest całkowicie nieadekwatne, co może prowadzić do błędnych wniosków w projektach inżynieryjnych. Multimetr, chociaż wszechstronny, służy do pomiaru napięcia, prądu i oporu, ale nie ma wystarczającej szybkości reakcji ani przepustowości do skutecznego pomiaru sygnałów o dużych częstotliwościach. Częstość próbkowania multimetrów jest zazwyczaj niewystarczająca do uchwycenia dynamicznych zmian w sygnale, co sprawia, że ich użycie w takich aplikacjach jest ograniczone. Mostek RLC, z kolei, jest narzędziem używanym do analizy obwodów rezonansowych i pasywnych, ale nie jest przeznaczony do pomiarów sygnałów czasowych. Użytkownicy mogą błędnie kojarzyć te urządzenia z pomiarem sygnałów, co wynika z braku zrozumienia specyfiki ich funkcji. Kluczowe zatem jest stosowanie odpowiednich narzędzi, takich jak oscyloskop, które są zaprojektowane do szybkiego i precyzyjnego pomiaru sygnałów o dużych częstotliwościach, co jest istotne w nowoczesnych aplikacjach inżynieryjnych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Kabel UTP służący do połączenia komputera z gniazdem abonenckim nazywa się potocznie

A. łącznik
B. patchcord
C. patch panel
D. pigtail
Wybór innych terminów zamiast patchcordu odzwierciedla powszechne nieporozumienia w terminologii sieciowej. Pigtail to krótki kabel, który najczęściej jest używany do łączenia światłowodów, a jego zastosowanie w kontekście kabli miedzianych jest błędne. Pigtail ma swoje miejsce w instalacjach światłowodowych, gdzie służy do zakończenia włókna światłowodowego w złączach, lecz nie pełni roli łącznika między komputerem a gniazdem abonenckim w sieciach miedzianych. Patch panel to komponent, który grupuje i organizuje kable sieciowe w centralnym punkcie, umożliwiając łatwe zarządzanie połączeniami, ale nie jest to kabel, a raczej element infrastruktury, który wspiera organizację sieci. Łącznik, z kolei, jest terminem ogólnym, który nie odnosi się do konkretnego akcesorium stosowanego w połączeniach sieciowych; w kontekście sieci komputerowych najczęściej mówimy o urządzeniach, takich jak switche czy routery, które zarządzają ruchem danych. Użycie tych terminów w miejsce patchcordu może prowadzić do błędnej interpretacji, a tym samym do nieefektywnego zarządzania siecią oraz problemów z jej konfiguracją i wydajnością. W kontekście budowy sieci warto posługiwać się precyzyjną terminologią, aby unikać zamieszania i zapewnić skuteczne korzystanie z zasobów sieciowych.

Pytanie 25

Jakie oznaczenie skrócone odnosi się do zakresu fal radiowych o częstotliwości mieszczącej się pomiędzy 30 MHz a 300 MHz, w którym swoje audycje nadają stacje radiowe wykorzystujące modulację FM?

A. VHF
B. LF
C. MF
D. UHF
W odpowiedziach, które nie wyszły, widać, że nieco pomyliłeś się z klasyfikacją fal radiowych. LF to skrót od Low Frequency, czyli niskie częstotliwości, i obejmuje zakres od 30 kHz do 300 kHz, co jakby nie pasuje do podanego pytania. Z kolei MF, czyli Medium Frequency, ma zakres od 300 kHz do 3 MHz, co również nie jest tym, czego szukaliśmy. A UHF, oznaczający Ultra High Frequency, to już od 300 MHz do 3 GHz, co głównie używa się w telekomunikacji i telewizji. Często ludzie myślą, że te terminy się pokrywają, ale w praktyce jest inaczej. Każde pasmo ma swoje specyficzne zastosowania, co jest istotne dla inżynierów dźwięku czy ludzi zajmujących się radiem. Dlatego warto zrozumieć te różnice, bo to naprawdę przydaje się w pracy z systemami komunikacji.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Zwrotnicy antenowej
B. Zasilacza komputerowego
C. Czujnika kontaktronowego
D. Symetryzatora antenowego
Zasilacze komputerowe to naprawdę ważne elementy w każdym komputerze, bo to właśnie one dostarczają prąd do wszystkich podzespołów. Ważne, żeby pamiętać o regularnym czyszczeniu elementów chłodzących, takich jak wentylatory i radiatory. Gromadzący się kurz może znacznie ograniczyć ich działanie i prowadzić do przegrzewania zasilacza, co w efekcie może uszkodzić sprzęt. Czyszczenie to nie tylko kwestia wyglądu, ale też bezpieczeństwa i wydajności całego systemu. Z mojego doświadczenia, warto robić to co kilka miesięcy, w zależności od tego, w jakich warunkach pracujemy. Używanie odkurzaczy antystatycznych czy sprężonego powietrza to dobre sposoby na pozbycie się zanieczyszczeń. Troska o zasilacz to klucz do dłuższej żywotności komputera oraz stabilnej pracy.

Pytanie 30

Całkowity koszt materiałów potrzebnych do zamontowania systemu alarmowego w lokum to 2 000 zł. Wydatki na montaż wynoszą 50% wartości materiałów. Zarówno materiały, jak i montaż są obciążone stawką VAT w wysokości 22%. Jaka będzie całkowita kwota wydatków na instalację?

A. 2 000 zł
B. 2 440 zł
C. 3 660 zł
D. 3 000 zł
Wybór innych odpowiedzi może wynikać z błędów w obliczeniach lub niezrozumienia zasad dotyczących kosztów materiałów i robocizny. Na przykład, odpowiedź 2440 zł sugeruje jedynie dodanie podatku VAT do kosztów materiałów, co jest błędne. Koszt wykonania powinien być uwzględniony jako oddzielna kategoria, a jego wielkość wynosi 1000 zł, co czyni tę odpowiedź niekompletną. W przypadku odpowiedzi 3000 zł, pominięto całkowity koszt brutto z uwzględnieniem VAT, co jest kluczowym elementem w obliczeniach. Z kolei opcja 2000 zł wskazuje tylko na koszt materiałów, co jest niewłaściwe, ponieważ nie uwzględnia kosztów robocizny i podatku. W praktyce, ważne jest, aby przy planowaniu budżetu na instalacje uwzględniać wszystkie elementy kosztotwórcze oraz stosować odpowiednie stawki VAT. Ostatecznie, brak zrozumienia zasad naliczania kosztów może prowadzić do poważnych problemów finansowych oraz opóźnień w realizacji projektów. Uczestnicy powinni zatem zwrócić szczególną uwagę na każdy aspekt kalkulacji, aby uniknąć typowych pułapek i osiągnąć efektywność kosztową w swoich projektach.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Oznaczenie YLY 3×6 mm2 odnosi się do przewodu

A. 3-żyłowego, z żyłami aluminiowymi w izolacji polwinitowej oraz powłoce polwinitowej
B. 6-żyłowego, z żyłami miedzianymi w izolacji polietylenowej oraz powłoce polietylenowej
C. 3-żyłowego, z żyłami miedzianymi w izolacji polwinitowej oraz powłoce polwinitowej
D. 6-żyłowego, z żyłami aluminiowymi w izolacji polietylenowej oraz powłoce polietylenowej
Wybór odpowiedzi dotyczącej przewodu 6-żyłowego, zarówno aluminiowego, jak i miedzianego, nie jest zgodny z rzeczywistością techniczną opisanego oznaczenia YLY 3×6 mm². Przewody 6-żyłowe są stosowane w bardziej złożonych zastosowaniach, gdzie konieczne są dodatkowe żyły do zasilania różnych obwodów, co nie znajduje odzwierciedlenia w podanym oznaczeniu. Kluczowym błędem jest mylenie liczby żył oraz wyboru materiału przewodzącego. Oznaczenie '3×6 mm²' wskazuje na przewód z trzema żyłami, a nie sześcioma, co ma istotne znaczenie dla prawidłowego doboru przewodów w instalacjach. Dodatkowo, wybór żył aluminiowych w kontekście przewodów instalacyjnych może nie być najlepszym rozwiązaniem, ze względu na ich gorsze właściwości przewodnictwa w porównaniu do żył miedzianych. W praktyce, przewody aluminiowe wymagają specjalnych złączek oraz większej staranności w instalacji, co często prowadzi do problemów z połączeniami elektrycznymi i zwiększonego ryzyka awarii. Odpowiedzi sugerujące izolację polietylenową również są nietrafne, ponieważ przewody YLY, zgodnie z normami, są standardowo produkowane z izolacją polwinitową, która lepiej sprawdza się w warunkach eksploatacyjnych typowych dla instalacji elektrycznych. Warto podkreślić, że dobór odpowiednich materiałów i typów przewodów ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej systemów elektrycznych.

Pytanie 33

Instrukcja CLR P1.7 wskazuje na

A. wczytanie komórki znajdującej się pod adresem 1.7
B. konfigurację linii 7 w porcie P1
C. wymazanie komórki o adresie 1.7
D. zerowanie linii 7 w porcie P1
W analizie błędnych odpowiedzi na pytanie o rozkaz CLR P1.7, warto zwrócić uwagę na koncepcje, które prowadzą do nieporozumień. Sformułowanie "załadowanie komórki o adresie 1.7" sugeruje, że rozkaz ten ma na celu przeniesienie danych z pamięci do rejestru, co jest niezgodne z jego funkcją. Rozkaz CLR nie wykonuje operacji ładowania, lecz zerowania konkretnego bitu, co jest fundamentalnie różne od operacji załadunku. Podobnie odpowiedź dotycząca "ustawienia linii 7 w porcie P1" implikuje, że CLR ma na celu ustawienie bitu na stan wysoki, co jest również błędne, gdyż CLR działa odwrotnie. Z kolei odpowiedź sugerująca "skasowanie komórki o adresie 1.7" może wprowadzać w błąd, ponieważ kasowanie odnosi się do usuwania danych w pamięci, co nie ma zastosowania w kontekście rozkazów dotyczących portów I/O. Typowym błędem jest mylenie operacji manipulujących bitami w rejestrach z operacjami pamięciowymi. W kontekście programowania mikrokontrolerów, zrozumienie różnicy pomiędzy ładowaniem, ustawianiem, kasowaniem i zerowaniem bitów jest kluczowe dla prawidłowego działania aplikacji. Właściwe interpretowanie rozkazów i ich zastosowanie w praktyce stanowi istotny krok w kierunku wydajnego projektowania systemów wbudowanych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
B. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
C. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
D. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
Wymiana kamery monitoringu wymaga precyzyjnego podejścia i znajomości właściwej kolejności działań. Nieprawidłowe podejście do tej procedury może prowadzić do poważnych problemów, takich jak uszkodzenie kamery, rejestratora czy nawet całego systemu monitoringu. Na przykład, odłączenie przewodu sygnałowego przed odłączeniem zasilania stwarza ryzyko uszkodzenia zarówno złącza sygnałowego, jak i wewnętrznych komponentów kamery, co może skutkować koniecznością wymiany całego urządzenia. Takie działanie jest sprzeczne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi, które nakazują najpierw rozłączyć zasilanie. Dodatkowo, demontowanie kamery przed odłączeniem sygnału i zasilania narusza podstawowe zasady ochrony sprzętu. W przypadku podłączania nowej kamery, najpierw należy założyć przewód sygnałowy, a potem dostarczyć zasilanie, co jest istotne dla prawidłowego rozruchu i synchronizacji z systemem. W każdym przypadku kluczowe jest trzymanie się ustalonych procedur, aby uniknąć niepotrzebnych komplikacji i zapewnić funkcjonalność systemu monitoringu.

Pytanie 37

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. zwiększenie prędkości silnika
B. zmniejszenie prędkości silnika
C. wzrost prądu lasera
D. spadek prądu lasera
Zarówno zmniejszenie prądu lasera, jak i zmniejszenie obrotów silnika są konsekwencjami błędnych założeń dotyczących pracy odtwarzacza CD. Zmniejszenie prądu lasera nie jest objawem zużycia głowicy, lecz raczej może wskazywać na poprawne funkcjonowanie. Wysoka jakość odczytu danych przy niskim prądzie lasera jest pożądana, ponieważ zapobiega to przegrzewaniu się komponentów. W przypadku silnika, obroty jego nie powinny być zmniejszane w kontekście zużycia lasera, ponieważ są one z nim ściśle związane. Zwiększenie obrotów silnika jest zazwyczaj oznaką próby odczytu danych z płyty w trudniejszych warunkach, na przykład, gdy płyta jest porysowana lub brudna. W takiej sytuacji, silnik jest w stanie dostarczyć więcej energii, aby skompensować trudności w odczycie. Zmniejszenie obrotów silnika mogłoby spowodować, że napęd nie będzie w stanie poprawnie odczytać danych, co prowadziłoby do błędów. Często przyczyną takich nieporozumień jest brak wiedzy na temat mechanizmów działania urządzeń optycznych. Warto zrozumieć, że prawidłowe działanie układów optycznych, w tym głowicy laserowej i silnika, jest kluczowe dla utrzymania jakości odczytu, co z kolei jest kluczowe w kontekście długotrwałego użytkowania odtwarzacza CD.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Firma zajmująca się konserwacją oraz serwisowaniem instalacji domofonowych nalicza administratorowi budynku rocznie sumę 1 800 zł. Jaką kwotą miesięcznie trzeba obciążyć każdego z 30 mieszkańców?

A. 10 zł
B. 15 zł
C. 3 zł
D. 5 zł
Aby wyliczyć, jaką kwotą miesięcznie należy obciążyć każdego z 30 lokatorów, najpierw należy obliczyć roczny koszt konserwacji i serwisowania instalacji domofonowej, który wynosi 1800 zł. Następnie dzielimy ten koszt przez liczbę miesięcy w roku, czyli 12, co daje nam 150 zł miesięcznie na całą wspólnotę. Aby określić kwotę przypadającą na jednego lokatora, dzielimy miesięczny koszt za całą budowę przez liczbę lokatorów: 150 zł / 30 lokatorów = 5 zł na lokatora. Jest to przykład zastosowania podstawowych zasad rachunkowości w kontekście zarządzania nieruchomościami. Obliczenia tego typu są niezbędne w zarządzaniu wspólnotami mieszkaniowymi oraz w określaniu kosztów eksploatacji, co jest zgodne z dobrymi praktykami branżowymi. Przykłady takich obliczeń można znaleźć w dokumentacji finansowej wspólnot oraz projektach budżetowych, gdzie precyzja w planowaniu wydatków ma kluczowe znaczenie dla prawidłowego funkcjonowania całej wspólnoty.

Pytanie 40

Brak koloru żółtego w telewizorze może być spowodowany uszkodzeniami w torze kolorystycznym

A. zielonego i niebieskiego
B. niebieskiego i czerwonego
C. czerwonego lub zielonego
D. zielonego lub niebieskiego
Dobra robota z odpowiedzią! Kolor żółty w systemie RGB uzyskuje się, łącząc mocne światło czerwone i zielone. Jeśli w torze koloru coś szwankuje, na przykład w torze czerwonym albo zielonym, to telewizor będzie miał problem z wyświetleniem żółtego. A z tymi telewizorami LCD i LED to jest tak, że każdy piksel ma subpiksele z tych trzech kolorów - czerwonego, zielonego i niebieskiego, które razem tworzą całą paletę kolorów. Standardy jak sRGB mówią, jak kolory powinny wyglądać, a ich prawidłowe wyświetlenie jest mega istotne dla jakości obrazu. Więc jak nie widzisz koloru żółtego, warto sprawdzić te tory kolorystyczne, żeby znaleźć, co może być uszkodzone. To jest zgodne z najlepszymi praktykami, które stosujemy w serwisie sprzętu wideo.