Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 19 maja 2025 18:22
  • Data zakończenia: 19 maja 2025 18:38

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do zasilania jednofazowej jednostki zewnętrznej pompy ciepła typu split powinno się użyć przewodu

A. dwużyłowego
B. czterożyłowego
C. trzyżyłowego
D. pięciożyłowego
Jednofazowa jednostka zewnętrzna pompy ciepła typu split wymaga do swojego zasilania przewodu trzyżyłowego, ponieważ taki przewód zapewnia nie tylko zasilanie, ale również odpowiednie uziemienie. W skład przewodu trzyżyłowego wchodzą trzy żyły: jedna fazowa, jedna neutralna oraz jedna ochronna (uziemiająca). Uziemienie jest kluczowe dla bezpieczeństwa użytkowników oraz ochrony urządzenia przed uszkodzeniami spowodowanymi przepięciami czy awariami. Przewody trzyżyłowe są powszechnie stosowane w instalacjach elektrycznych zasilających urządzenia o większej mocy. W praktyce, zastosowanie przewodu trzyżyłowego w instalacji zasilającej pompę ciepła jest zgodne z normami oraz przepisami, co zapewnia zgodność z wymaganiami bezpieczeństwa. Dobrą praktyką jest również regularne sprawdzanie stanu przewodów oraz ich odpowiednie zabezpieczenie, aby zminimalizować ryzyko uszkodzeń. Warto również pamiętać, że instalacja elektryczna powinna być wykonana przez wykwalifikowanego specjalistę, co jest kluczowe dla zachowania bezpieczeństwa i wydajności systemu.

Pytanie 2

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. chłodzenia pasywnego
B. urlopowego
C. monowalentnego
D. grzewczego
Ustawienie trybu urlopowego na sterowniku solarnym jest kluczowe w sytuacji, gdy użytkownicy budynku jednorodzinnego są nieobecni przez dłuższy czas. Tryb urlopowy ma na celu minimalizację strat energetycznych oraz ochronę systemu przed ewentualnymi uszkodzeniami. W tym trybie system solarny ogranicza pracę pomp i innych komponentów, co pozwala zaoszczędzić energię, a jednocześnie chronić instalację przed przegrzaniem, gdy odbiór ciepła z zasobnika jest niewystarczający. Przykładem zastosowania trybu urlopowego może być sytuacja, gdy właściciele domu wyjeżdżają na wakacje; w tym czasie, aby uniknąć przegrzania lub zamarznięcia instalacji, ustawienie trybu urlopowego zapewnia, że system działa w trybie oszczędzania energii. Dobrą praktyką jest zapoznać się z instrukcją obsługi urządzenia oraz regularnie kontrolować, czy tryby pracy są odpowiednio ustawione w zależności od aktualnej sytuacji. W kontekście standardów, wiele producentów rekomenduje użycie trybu urlopowego, aby efektywnie zarządzać energią i minimalizować ryzyko awarii.

Pytanie 3

Aby pompy ciepła funkcjonujące w systemie ogrzewania mogły przez cały okres eksploatacji skutecznie pełnić swoje zadania, konieczne jest zapewnienie regularnych przeglądów technicznych, które powinny być realizowane przynajmniej raz

A. w roku przed rozpoczęciem sezonu grzewczego
B. na pięć lat po zakończeniu sezonu grzewczego
C. w roku po zakończeniu sezonu grzewczego
D. na pięć lat przed rozpoczęciem sezonu grzewczego
Odpowiedź „w roku przed sezonem grzewczym” jest prawidłowa, ponieważ regularne przeglądy techniczne pomp ciepła są kluczowe dla ich niezawodności i efektywności. Przeglądy powinny być przeprowadzane przed rozpoczęciem sezonu grzewczego, aby zidentyfikować ewentualne usterki i zapewnić optymalne działanie urządzenia. Dobrym przykładem zastosowania tej praktyki jest wykonanie przeglądu całego systemu, w tym sprawdzenie stanu wymiennika ciepła, układu chłodniczego oraz poziomu czynnika chłodniczego. Ponadto, zgodnie z normą PN-EN 14511, producent pomp ciepła zaleca regularne przeglądy w celu oceny efektywności energetycznej oraz zmniejszenia ryzyka awarii. Przegląd można również połączyć z konserwacją, co pozwala na przedłużenie żywotności urządzenia oraz redukcję kosztów eksploatacyjnych. Regularne działania serwisowe przed sezonem grzewczym pozwalają na wczesne wykrycie problemów, co jest niezbędne do zapewnienia komfortu cieplnego w budynku.

Pytanie 4

W systemie grzewczym jednowalentnym występuje

A. pompa ciepła oraz kocioł gazowy
B. pompa ciepła oraz kocioł olejowy
C. pompa ciepła, kocioł gazowy oraz grzałka elektryczna
D. wyłącznie pompa ciepła
W monowalentnym systemie grzewczym zastosowanie ma tylko jedno źródło ciepła, którym w tym przypadku jest pompa ciepła. Pompy ciepła są nowoczesnym rozwiązaniem, które efektywnie przekształca energię z otoczenia, taką jak powietrze, woda czy grunt, na energię cieplną. Użycie tylko pompy ciepła w systemie grzewczym pozwala na uzyskanie wysokiej efektywności energetycznej, co jest zgodne z aktualnymi standardami dotyczącymi ochrony środowiska. Przykładem zastosowania pompy ciepła jako jedynego źródła ciepła mogą być budynki pasywne, które dzięki odpowiedniej izolacji i zastosowaniu technologii OZE (odnawialnych źródeł energii) mogą być efektywnie ogrzewane wyłącznie przy pomocy pompy ciepła. Takie rozwiązania przyczyniają się do obniżenia emisji CO2 oraz kosztów eksploatacyjnych, co jest kluczowe w kontekście zrównoważonego rozwoju. W dobrych praktykach branżowych zaleca się ocenę potencjału zastosowania pomp ciepła w danym budynku oraz dostosowanie systemu grzewczego do specyfikacji budowlanej i potrzeb użytkowników.

Pytanie 5

Aby w zbiorniku buforowym umożliwić dostarczanie na różnych poziomach czynnika o określonej temperaturze, trzeba zainstalować

A. regulator przepływu
B. stratyfikator
C. odpowietrznik
D. zespół pompowy
Stratyfikator jest urządzeniem wykorzystywanym w zbiornikach buforowych, które pozwala na efektywne zarządzanie różnymi poziomami temperatury czynnika. Działa on na zasadzie oddzielania warstw cieczy o różnych temperaturach, co umożliwia ich jednoczesne przechowywanie i pobieranie. Dzięki zastosowaniu stratyfikatora możliwe jest uzyskanie lepszej efektywności energetycznej, a także minimalizacja strat ciepła. W praktyce, stratyfikatory są stosowane w systemach ogrzewania i chłodzenia, gdzie kluczowe jest dostarczanie czynnika o odpowiedniej temperaturze do różnych odbiorników. Na przykład, w systemach ogrzewania budynków, stratyfikator pozwala na pobieranie ciepłej wody na górze zbiornika, podczas gdy zimniejsza woda pozostaje w dolnej warstwie. Takie podejście jest zgodne z dobrymi praktykami inżynieryjnymi, które promują efektywność energetyczną i optymalizację procesów technologicznych, co przekłada się na oszczędności kosztów eksploatacyjnych.

Pytanie 6

Grupę pompową w systemie solarnym należy zainstalować na rurze

A. powrotnym
B. zasilającym
C. instalacji podłogowej
D. zbiornika wzbiorczego
Montaż grupy pompowej w niewłaściwych miejscach, takich jak przewód zasilający, naczynie wzbiorcze czy instalacja podłogowa, prowadzi do istotnych nieprawidłowości w funkcjonowaniu systemu solarnego. Umiejscowienie pompy na przewodzie zasilającym może powodować, że pompa będzie tłoczyć gorący czynnik grzewczy bezpośrednio do kolektorów, co jest nieefektywne z punktu widzenia termodynamiki. Ponadto, takie umiejscowienie może zwiększyć ryzyko wystąpienia kawitacji, co następuje, gdy ciśnienie spada poniżej ciśnienia parowania i powietrze tworzy pęcherzyki, które mogą uszkodzić pompę oraz inne elementy instalacji. Z kolei montaż grupy pompowej na naczyniu wzbiorczym wiąże się z nieodpowiednim zarządzaniem ciśnieniem w instalacji, co jest kluczowe dla zapewnienia jej bezpieczeństwa i efektywności. Naczynie wzbiorcze pełni rolę kompensacyjną dla zmian objętości cieczy w systemie, a nie miejsca na montaż elementów aktywnych. Instalacje podłogowe mają z kolei swoją specyfikę i wymagają odrębnych rozwiązań hydraulicznych, które są dostosowane do niskotemperaturowego źródła ciepła. Niewłaściwe podejście do montażu grupy pompowej może prowadzić do obniżenia efektywności całego systemu, zwiększenia kosztów eksploatacyjnych oraz skrócenia jego żywotności.

Pytanie 7

Anemometr jest urządzeniem wykorzystywanym do pomiarów

A. prędkości przepływu powietrza
B. natężenia dźwięku
C. natężenia oświetlenia
D. wilgotności powietrza
Anemometr to urządzenie pomiarowe, które służy do określenia prędkości przepływu powietrza. Działa na zasadzie pomiaru siły, z jaką powietrze oddziałuje na wirnik lub łopatki, co pozwala na dokładną kalkulację prędkości wiatru. Istnieje wiele typów anemometrów, w tym anemometry wirnikowe, ultradźwiękowe oraz termiczne, które znajdują zastosowanie w różnych branżach, takich jak meteorologia, inżynieria lądowa i budownictwo. Na przykład, w meteorologii anemometry są kluczowe do monitorowania warunków pogodowych, co jest istotne dla prognozowania i odczytów klimatycznych. W kontekście budownictwa, anemometry są wykorzystywane do oceny wentylacji w budynkach, co jest zgodne z normami dotyczącymi efektywności energetycznej i komfortu użytkowników. Używanie anemometrów zgodnie z obowiązującymi standardami, takimi jak normy ISO 7240-20, zapewnia dokładność i niezawodność pomiarów, co jest niezbędne w profesjonaliźmie branżowym.

Pytanie 8

Do prac związanych z konserwacją układu solarnego nie wlicza się

A. sprawdzenia stanu izolacji rur w obiegu solarnym.
B. zweryfikowania i ewentualnego uzupełnienia czynnika w obiegu solarnym.
C. wymiany czynnika grzewczego w obiegu solarnym.
D. czyszczenia zbiornika.
Czynności konserwacji obiegu solarnego obejmują różnorodne działania, mające na celu zapewnienie ciągłości i efektywności działania całego systemu. Kontrola stanu izolacji rur obiegu solarnego jest kluczowa, ponieważ dobrze izolowane rury minimalizują straty ciepła, co bezpośrednio wpływa na efektywność energetyczną systemu. Niezbędne jest regularne sprawdzanie izolacji, aby uniknąć niepotrzebnych strat energii, które mogą prowadzić do wyższych kosztów eksploatacji. Sprawdzenie i ewentualne uzupełnienie czynnika w obiegu solarnym to również istotny element konserwacji. Czynnik roboczy w obiegu solarnym musi być utrzymywany na odpowiednim poziomie, aby zapewnić efektywne przekazywanie ciepła z kolektorów do zasobnika. Niedobór czynnika może prowadzić do obniżenia wydajności, a w skrajnych przypadkach do uszkodzenia układu. Wymiana czynnika grzewczego, choć mniej typowa, może być również konieczna w przypadku degradacji lub zanieczyszczenia czynnika, co wpływa na właściwe funkcjonowanie systemu. Błędem jest myślenie, że te działania są zbędne lub nie mają wpływu na efektywność całego systemu solarnego. Ignorowanie ich może prowadzić do kosztownych awarii oraz zmniejszenia efektywności energetycznej instalacji.

Pytanie 9

Zgodnie z danymi zawartymi w przedstawionej w tabeli suma długości 2 obiegów w instalacji z pompą ciepła DHP-C wielkości 8 nie może przekraczać

Maksymalne długości obiegu
DHP-H,
DHP-C,
DHP-L
Obliczona, maksymalna długość obiegów w m
Wielkość1 obieg2 obiegi3 obiegi4 obiegi
6< 390< 2 x 425
8< 300< 2 x 325
10< 270< 2 x 395
12< 190< 2 x 350
16< 70< 2 x 175< 3 x 1834 x 197

A. 700 m
B. 630 m
C. 690 m
D. 650 m
Wybór odpowiedzi 650 m jako maksymalnej długości dwóch obiegów dla pompy ciepła DHP-C o wielkości 8 jest poprawny. Dane w tabeli jasno określają, iż dla tej konkretnej wielkości pompy, długość obiegów nie powinna przekraczać 650 metrów, aby zapewnić efektywność i prawidłowe działanie systemu grzewczego. Przekroczenie tej długości może prowadzić do spadku efektywności energetycznej oraz zwiększenia zużycia energii, co jest niekorzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. W praktyce, odpowiednia długość obiegów ma kluczowe znaczenie dla optymalizacji pracy pompy ciepła, co potwierdzają normy oraz zalecenia branżowe, takie jak te zawarte w dokumentacji producentów i standardach instalacyjnych. Na przykład, zbyt długie obiegi mogą skutkować większym oporem hydraulicznych, co wpływa na obniżenie wydajności systemu i może prowadzić do jego uszkodzenia. Utrzymanie odpowiedniej długości obiegów jest zatem kluczowe dla długotrwałego działania instalacji grzewczej.

Pytanie 10

Zestaw paneli słonecznych składa się z panelu fotowoltaicznego, regulatora ładowania oraz dwóch akumulatorów połączonych równolegle, każdy o napięciu 12 V. Jakie urządzenie należy zastosować, aby dostosować ten zestaw do zasilania odbiornika prądu zmiennego 230V/50Hz?

A. Prostownik jednopołówkowy 230V
B. Inwerter 24V DC / 230V AC
C. Inwerter 12V DC / 230V AC
D. Prostownik dwupołówkowy 230V
Inwerter 12V DC / 230V AC jest odpowiednim urządzeniem do zasilania odbiornika prądu zmiennego z zestawu fotowoltaicznego, który operuje na napięciu stałym 12 V. W zestawie znajduje się panel fotowoltaiczny, regulator ładowania oraz dwa akumulatory połączone równolegle, co oznacza, że cała instalacja pracuje na napięciu 12 V. Inwerter konwertuje napięcie stałe (DC) z akumulatorów na napięcie zmienne (AC) o standardowej wartości 230 V, co pozwala na zasilanie typowych domowych urządzeń elektrycznych. Przykłady zastosowania obejmują zasilanie sprzętu AGD, oświetlenia czy urządzeń elektronicznych w miejscach, gdzie dostęp do sieci energetycznej jest ograniczony lub niemożliwy. Zastosowanie inwertera 12 V DC / 230 V AC jest zgodne z normami i dobrymi praktykami branżowymi, gdzie dobór odpowiedniego inwertera jest kluczowy dla efektywności oraz bezpieczeństwa całej instalacji elektrycznej. Warto również przyjrzeć się parametrom technicznym inwertera, takim jak moc wyjściowa oraz wydajność, aby zapewnić, że spełni on wymagania zasilania wszystkich podłączonych urządzeń.

Pytanie 11

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na zasilaniu, 10 cm pod najwyższą częścią kotła
B. Na powrocie, 10 cm pod najwyższą częścią kotła
C. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
D. Na powrocie, 10 cm ponad najwyższą częścią kotła
Zamontowanie zabezpieczenia przed niskim poziomem wody w niewłaściwych miejscach, takich jak na powrocie 10 cm powyżej lub poniżej najwyższej części kotła, może prowadzić do poważnych problemów operacyjnych. Przede wszystkim zabezpieczenie umieszczone na powrocie nie będzie skutecznie monitorować poziomu wody, co jest kluczowe w systemach z automatycznym podajnikiem paliwa. Powrót to miejsce, gdzie woda wraca z obiegu grzewczego, i takie umiejscowienie nie gwarantuje, że kotłownia zawsze będzie miała odpowiednią ilość wody. Z tego powodu, może dojść do sytuacji, w której kocioł, mimo że na powrocie jest woda, działa na sucho, ponieważ pompa nie jest w stanie dostarczyć jej wystarczającej ilości z zasilania. Ponadto, umiejscowienie zabezpieczenia na zasilaniu, 10 cm poniżej najwyższej części kotła, również stwarza ryzyko, gdyż kocioł może działać w sytuacji, gdy poziom wody spadnie poniżej bezpiecznego marginesu. W takich przypadkach, woda w kotle nie jest wystarczająco chłodzona, co prowadzi do przegrzewania się urządzenia i potencjalnych uszkodzeń. Dlatego ważne jest, aby stosować się do zaleceń producentów i norm branżowych, które jasno wskazują, że zabezpieczenie powinno być montowane na zasilaniu, aby efektywnie kontrolować poziom wody i zapewnić optymalną pracę całego systemu grzewczego.

Pytanie 12

Jakie elementy powinny być użyte do zamontowania panelu fotowoltaicznego na dachu o nachyleniu?

A. profil wielorowkowy oraz kotwy krokwiowe
B. śruby rzymskie
C. stelaż z trójkątnych ram
D. profil wielorowkowy oraz kołki rozporowe
Wybór profilu wielorowkowego i kotw krokwiowych do montażu paneli fotowoltaicznych na dachu spadzistym jest uzasadniony ich właściwościami technicznymi oraz zastosowaniem w praktyce. Profile wielorowkowe, charakteryzujące się dużą nośnością oraz możliwością dostosowania do różnych kątów nachylenia dachu, umożliwiają stabilne mocowanie paneli. Kotwy krokwiowe, z kolei, zapewniają solidne połączenie z konstrukcją dachu, co minimalizuje ryzyko uszkodzeń w wyniku działania wiatru czy obciążeń związanych z opadami. W zgodzie z normami PN-EN 1991-1-4 dotyczącymi obciążeń wiatrem, zastosowanie tych elementów jest nie tylko skuteczne, ale i bezpieczne. Praktyczne przykłady zastosowania obejmują zarówno instalacje na dachach o niewielkim kącie nachylenia, jak i bardziej stromych powierzchniach, co czyni ten zestaw mocujący uniwersalnym i efektywnym rozwiązaniem w branży OZE.

Pytanie 13

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. jedynie mechaniczną
B. wyłącznie energię cieplną
C. elektryczną i cieplną
D. tylko energię elektryczną
Kogenerator, znany również jako jednostka skojarzonej produkcji energii (CHP), jest urządzeniem, które jednocześnie produkuje energię elektryczną oraz cieplną podczas procesu spalania paliw, takich jak biogaz. Biogaz, będący odnawialnym źródłem energii, jest wykorzystywany w kogeneratorach ze względu na swoją niską emisję szkodliwych substancji oraz możliwość efektywnego przetwarzania odpadów organicznych. Kogeneratory działają na zasadzie wykorzystania ciepła odpadowego, które normalnie byłoby tracone w tradycyjnych systemach produkcji energii. Dzięki temu, uzyskują one wyższą efektywność energetyczną, często przekraczającą 80%. Przykładem zastosowania kogeneratorów jest wykorzystanie w zakładach przemysłowych, które potrzebują zarówno prądu, jak i ciepła do procesów produkcyjnych. Tego rodzaju systemy przyczyniają się do obniżenia kosztów energetycznych oraz zmniejszenia śladu węglowego, co jest zgodne z trendami zrównoważonego rozwoju i najlepszymi praktykami w zarządzaniu energią.

Pytanie 14

Powietrzna pompa ciepła uzyskuje najwyższą efektywność

A. w ujemnych temperaturach
B. bez względu na temperaturę zewnętrzną
C. przy temperaturze 0°C
D. w dodatnich temperaturach
Powietrzne pompy ciepła działają na zasadzie przesyłania ciepła z jednego miejsca do drugiego, wykorzystując różnice temperatur. W dodatnich temperaturach zewnętrznych sprawność tych urządzeń osiąga optymalne wartości, ponieważ różnica temperatur między źródłem ciepła, a miejscem, do którego ciepło jest transportowane, jest stosunkowo niewielka. Dzięki temu pompy ciepła mogą pracować bardziej efektywnie, co przekłada się na niższe zużycie energii elektrycznej i niższe koszty eksploatacji. Na przykład, w instalacjach grzewczych, stosujących powietrzne pompy ciepła w sezonie wiosennym lub jesiennym, można zauważyć znaczną oszczędność kosztów ogrzewania. Dobrą praktyką jest także regularne serwisowanie urządzeń oraz dbanie o ich odpowiednie ustawienia, co pozwala utrzymać wysoką sprawność przez długi czas. Warto także zwrócić uwagę na dobór odpowiedniej pompy ciepła do specyfiki danego budynku, co może wpłynąć na dalszą optymalizację jej pracy.

Pytanie 15

Kotły z paleniskiem są odpowiednie do spalania materiałów charakteryzujących się wysoką zawartością żużla?

A. korytkowym
B. narzutowym
C. przednim
D. rusztowym
Kotły z paleniskiem rusztowym są najczęściej stosowane do spalania materiałów o wysokiej zawartości żużla, ponieważ ich konstrukcja umożliwia efektywne odprowadzanie popiołów oraz żużla powstającego podczas procesu spalania. Palenisko rusztowe charakteryzuje się dużą powierzchnią grzewczą, co pozwala na równomierne spalanie paliwa. Dzięki różnym typom rusztów, takim jak ruszty stałe czy ruchome, możliwe jest dostosowanie procesu spalania do specyficznych właściwości paliwa, co zwiększa efektywność energetyczną kotła. Przykładem zastosowania kotłów rusztowych mogą być elektrociepłownie, które wykorzystują węgiel o dużej zawartości popiołu. Dodatkowo, zgodnie z normami emisji, kotły te są zaprojektowane w taki sposób, aby minimalizować emisję zanieczyszczeń, co jest istotnym aspektem w kontekście ochrony środowiska. Warto także zauważyć, że wiele nowoczesnych kotłów rusztowych jest wyposażonych w systemy automatycznego podawania paliwa, co zwiększa komfort eksploatacji oraz efektywność procesu spalania.

Pytanie 16

Czerpnia oraz wyrzutnia to składniki instalacji

A. wentylacji
B. geotermalnej
C. gruntowej pompy ciepła
D. hydroelektrowni
Czerpnia i wyrzutnia to kluczowe elementy systemu wentylacji, które odpowiadają za wymianę powietrza w budynkach. Czerpnia, jako element pobierający świeże powietrze z otoczenia, pozwala na dostarczenie do wnętrza budynku powietrza, które jest niezbędne do utrzymania odpowiedniej jakości atmosfery wewnętrznej. W praktyce czerpnie często umieszcza się w lokalizacjach, gdzie powietrze jest mniej zanieczyszczone, co przekłada się na lepsze parametry jakościowe. Wyrzutnia natomiast odpowiada za odprowadzanie zużytego powietrza na zewnątrz, co jest kluczowe dla utrzymania poboru świeżego powietrza oraz zapobiegania gromadzeniu się zanieczyszczeń wewnątrz budynku. Standardy branżowe, takie jak PN-EN 13779, podkreślają znaczenie właściwego projektowania i rozmieszczenia tych elementów, aby zapewnić efektywność energetyczną oraz komfort użytkowników. W praktyce, przy projektowaniu systemów wentylacyjnych, istotne jest również uwzględnienie lokalnych przepisów budowlanych oraz zasady ekologicznego podejścia, co może obejmować wykorzystanie naturalnych źródeł wentylacji.

Pytanie 17

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. anemometr
B. kątomierz
C. dalmierz
D. suwmiarka
Suwmiarka to narzędzie pomiarowe, które pozwala na precyzyjne mierzenie zarówno zewnętrznych, jak i wewnętrznych średnic różnych obiektów, takich jak rury, zawory czy kształtki. W praktyce, suwmiarka wykorzystywana jest w wielu branżach, w tym w mechanice, budownictwie oraz inżynierii, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości wykonywanych prac. Suwmiarki mogą być analogowe lub cyfrowe, co umożliwia łatwe odczytywanie wyników. Dobre praktyki zalecają użycie suwmiarek z funkcją zerowania oraz z dokładnością pomiaru wynoszącą co najmniej 0,02 mm, co jest szczególnie istotne w precyzyjnych zastosowaniach. Ponadto, obsługa suwmiarek jest dosyć intuicyjna, co czyni je narzędziem dostępnym dla szerokiego kręgu użytkowników, nawet tych początkujących w dziedzinie pomiarów. Dlatego suwmierz jest uważany za niezbędne narzędzie w każdym warsztacie czy laboratorium, gdzie wymagane są dokładne pomiary liniowe.

Pytanie 18

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy obiegiem solarnym a obiegiem wody zimnej
B. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
C. pomiędzy wodą zimną a obiegiem wody ciepłej
D. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
Mieszacz wody użytkowej w instalacji solarnej jest kluczowym elementem, który zapewnia optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Jego prawidłowe umiejscowienie pomiędzy obiegiem wody zimnej a obiegiem wody ciepłej pozwala na efektywne zarządzanie temperaturą wody dostarczanej do odbiorników, takich jak krany czy urządzenia sanitarno-grzewcze. Mieszacz umożliwia regulację proporcji wody zimnej i ciepłej, co jest niezbędne do uzyskania komfortu użytkowania oraz ochrony instalacji przed przegrzewaniem. Przykładowo, w sytuacji, gdy temperatura wody z kolektorów jest zbyt wysoka, mieszacz może wprowadzać zimną wodę, obniżając tym samym temperaturę mieszanki. Zgodnie z dobrymi praktykami branżowymi, takie rozwiązanie minimalizuje ryzyko uszkodzenia urządzeń oraz poprawia ich żywotność. Ponadto, zastosowanie mieszacza przyczynia się do efektywności energetycznej całego systemu solarnego, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 19

W skład systemu solarnego przeznaczonego do produkcji ciepłej wody użytkowej z zastosowaniem energii słonecznej wchodzą:

A. kolektor płaski, pompa solarna, stacja solarna z grupą pompową, mikroprocesorowy system sterowania systemem solarnym, naczynie przeponowe, zestaw przyłączeniowy hydrauliczny, zestaw montażowy, zasobnik
B. kolektor próżniowy, inwerter sieciowy, konstrukcja montażowa na dach, konektor, przewód solarny
C. kolektor fotowoltaiczny, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
D. kolektor rurowy, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe
Wybór kolektora płaskiego, pompy solarnej, stacji solarnej z grupą pompową, mikroprocesorowego systemu sterowania systemem solarnym, naczynia przeponowego, zestawu przyłączeniowego hydraulicznego, zestawu montażowego oraz zasobnika jako elementów systemu solarnego do wytwarzania ciepłej wody użytkowej jest trafny. Kolektor płaski skutecznie absorbuje promieniowanie słoneczne, przekształcając je w ciepło, które następnie przekazywane jest do czynnika roboczego, zazwyczaj wody, krążącego w układzie. Pompa solarna jest kluczowym komponentem, który umożliwia cyrkulację tego czynnika, a stacja solarna z grupą pompową integruje wszystkie te elementy, zapewniając efektywne przekazywanie ciepła. Mikroprocesorowy system sterowania pozwala na optymalne zarządzanie pracą systemu, co przekłada się na oszczędności energii oraz zwiększenie efektywności. Naczynie przeponowe zabezpiecza system przed nadciśnieniem, a zestaw przyłączeniowy hydrauliczny oraz montażowy zapewniają prawidłowe połączenia i stabilność całej instalacji. Taki zestaw komponentów spełnia standardy jakości i efektywności, gwarantując trwałość i niezawodność w długoterminowym użytkowaniu.

Pytanie 20

Jakim kolorem jest wyłącznie oznaczony przewód ochronny PE?

A. niebieski
B. brązowy
C. żółto-zielony
D. czerwony
Przewód ochronny PE (Protective Earth) jest oznaczony kolorem żółto-zielonym zgodnie z międzynarodowymi normami, takimi jak IEC 60446 oraz PN-EN 60446. Oznaczenie to ma na celu jednoznaczne rozróżnienie przewodów ochronnych od przewodów zasilających oraz innych przewodów w instalacjach elektrycznych. Przewód PE pełni kluczową funkcję w zapewnieniu bezpieczeństwa użytkowników urządzeń elektrycznych poprzez odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem. Użycie koloru żółto-zielonego jest standaryzowane na całym świecie, co ułatwia rozpoznawanie przewodów ochronnych, niezależnie od kraju. W praktyce, przewody PE są stosowane w instalacjach domowych i przemysłowych, w tym w urządzeniach takich jak gniazdka, maszyny przemysłowe, a także w instalacjach fotowoltaicznych. Dzięki jednoznacznemu oznaczeniu, technicy i elektrycy mogą szybko zidentyfikować przewody ochronne, co jest kluczowe dla bezpieczeństwa podczas prac serwisowych.

Pytanie 21

Wartość robót przewidywana przez inwestora jest ustalana w kosztorysie

A. powykonawczym
B. ofertowym
C. inwestorskim
D. zamiennym
Odpowiedź 'inwestorskim' jest prawidłowa, ponieważ koszty robót inwestycyjnych są szczegółowo analizowane i przewidywane w kosztorysie inwestorskim. Kosztorys inwestorski to dokument, który określa przewidywane koszty realizacji projektu budowlanego, biorąc pod uwagę wszystkie niezbędne wydatki związane z jego realizacją. W ramach tego kosztorysu uwzględnia się koszty materiałów, robocizny, transportu oraz innych wydatków związanych z realizacją projektu. Dobrym przykładem może być sytuacja, w której inwestor planuje budowę nowego obiektu budowlanego. Przygotowując kosztorys inwestorski, dokładnie analizuje wszystkie etapy inwestycji, co pozwala na efektywne zarządzanie budżetem oraz minimalizowanie ryzyka wystąpienia nieprzewidzianych wydatków. Kosztorys inwestorski jest zgodny z normami i dobrymi praktykami branżowymi, co zwiększa jego wiarygodność jako narzędzia do planowania finansowego w procesie inwestycyjnym.

Pytanie 22

Czym charakteryzują się kolektory CPC?

A. mają dodatkowe zwierciadła skupiające promieniowanie
B. zawierają kanały do ogrzewania powietrza
C. posiadają podwójny absorber
D. są wyposażone w dodatkową izolację cieplną
Kolektory CPC (Compound Parabolic Concentrators) wykorzystują dodatkowe zwierciadła, które skupiają promieniowanie słoneczne na absorberach, co zwiększa efektywność konwersji energii słonecznej na ciepło. Dzięki zastosowaniu zwierciadeł, kolektory te mogą zbierać promieniowanie z szerszego kąta padania, co jest szczególnie korzystne w zmiennych warunkach atmosferycznych. Przykładem zastosowania kolektorów CPC jest ich użycie w instalacjach solarnych do podgrzewania wody użytkowej w budynkach mieszkalnych oraz w przemysłowych systemach grzewczych. W praktyce, zastosowanie tych kolektorów pozwala na zwiększenie wydajności energetycznej systemu grzewczego, co ma istotne znaczenie w kontekście zrównoważonego rozwoju i redukcji emisji CO2. Zgodnie z normami branżowymi, kolektory CPC są często wykorzystywane w połączeniu z innymi technologiami odnawialnymi, co sprzyja synergii i optymalizacji wydajności energetycznej.

Pytanie 23

Pompę obiegową należy zainstalować na rurze

A. cyrkulacyjnej
B. zimnej wody użytkowej
C. ciepłej wody użytkowej
D. bypassowej
Zainstalowanie pompy obiegowej na przewodach innych niż cyrkulacyjne może prowadzić do wielu problemów. Montaż na przewodzie ciepłej wody użytkowej, na przykład, powoduje, że woda nie jest w stanie cyrkulować w sposób ciągły, co skutkuje utratą komfortu i zwiększeniem kosztów eksploatacyjnych. W systemach ciepłej wody użytkowej, gdzie nie ma odpowiedniego obiegu, woda nagrzewa się w zbiorniku, ale nie jest przetransportowywana efektywnie do punktów poboru, co prowadzi do opóźnień w dostępie do gorącej wody oraz niepotrzebnych strat energii. Bypassowy przewód, z kolei, służy do obejścia pompy, a nie do jej montażu. W przypadku jego użycia, pompa nie byłaby w stanie efektywnie zasilać systemu, ponieważ bypass kieruje część wody z dala od obiegu, co obniża wydajność całego układu. Zainstalowanie pompy na zimnej wodzie użytkowej jest również nieodpowiednie, ponieważ nie ma potrzeby cyrkulacji zimnej wody, co wprowadza potencjalne ryzyko w postaci zjawiska kondensacji oraz nieprzyjemnego zapachu. Często błędem jest także mylenie funkcji pomp w różnych systemach, co może prowadzić do złych decyzji projektowych, wpływających na efektywność energetyczną oraz komfort użytkowania instalacji.

Pytanie 24

Inspekcję techniczną systemu solarnego należy wykonywać co

A. jeden rok
B. dwa lata
C. pół roku
D. trzy lata
Przegląd techniczny instalacji solarnej powinien być przeprowadzany co najmniej raz w roku, co jest zgodne z zaleceniami wielu organizacji zajmujących się energią odnawialną oraz regulacjami prawnymi w wielu krajach. Regularne przeglądy pozwalają na wczesne wykrywanie usterek, co może znacznie zwiększyć efektywność systemu oraz wydłużyć jego żywotność. Przykładowo, w przypadku systemów fotowoltaicznych, przegląd obejmuje nie tylko inspekcję fizyczną paneli, ale także sprawdzenie stanu inwertera oraz monitorowanie wydajności systemu. W ciągu roku, na podstawie wyników przeglądów, można podjąć działania naprawcze, które mogą obejmować czyszczenie paneli, wymianę uszkodzonych elementów czy aktualizację oprogramowania inwertera. Taki cykl przeglądów jest zgodny z najlepszymi praktykami branżowymi, które sugerują, że systemy energii odnawialnej powinny być regularnie konserwowane w celu zapewnienia ich optymalnej wydajności oraz zgodności z normami bezpieczeństwa.

Pytanie 25

Podstawą do stworzenia kosztorysu szczegółowego są

A. katalogi producentów
B. wytyczne organizacji budowy
C. harmonogramy robót
D. katalogi nakładów rzeczowych
Katalogi nakładów rzeczowych stanowią fundamentalne źródło informacji w procesie opracowywania kosztorysów szczegółowych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów, robocizny oraz innych nakładów związanych z realizacją projektu budowlanego. Dzięki tym katalogom wykonawcy mogą precyzyjnie ocenić, jakie zasoby będą potrzebne do realizacji zadania oraz jakie będą ich koszty. Na przykład, w przypadku budowy budynku mieszkalnego, katalogi te pozwalają na oszacowanie ilości i kosztów materiałów budowlanych, takich jak cegły, cement czy stal. W praktyce, korzystając z obowiązujących standardów kosztorysowania, takich jak KNR (Katalogi Nakładów Rzeczowych), wykonawcy mogą dokonać analizy kosztów na etapie planowania, co jest kluczowe dla efektywnego zarządzania budżetem projektu. Zastosowanie katalogów nakładów rzeczowych poprawia dokładność kosztorysów, co z kolei wpływa na lepsze zarządzanie ryzykiem finansowym związanym z realizacją inwestycji.

Pytanie 26

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. polietylenu o średniej gęstości
B. polietylenu o niskiej gęstości
C. homopolimeru polietylenu
D. polietylenu o wysokiej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, materiału powszechnie stosowanego w różnych dziedzinach przemysłu, w tym w budownictwie i infrastrukturze. Polietylen wysokiej gęstości charakteryzuje się dużą wytrzymałością, odpornością na działanie chemikaliów oraz niską absorpcją wody, co czyni go idealnym materiałem do produkcji rur do transportu wody, gazu oraz w instalacjach kanalizacyjnych. Dodatkowo, PE-HD jest materiałem ekologicznym, ponieważ można go poddawać recyklingowi, co jest zgodne z globalnymi trendami w kierunku zrównoważonego rozwoju. Rury wykonane z polietylenu wysokiej gęstości są często stosowane w systemach nawadniania, wodociągach oraz w systemach odprowadzania ścieków. Zgodnie z normami, takimi jak PN-EN 12201, rury PE-HD muszą spełniać określone wymagania dotyczące jakości, co zapewnia ich trwałość i niezawodność w użytkowaniu.

Pytanie 27

Jaki kolor izolacji powinien mieć przewód neutralny?

A. brązowego
B. czarnego lub czerwonego
C. niebieskiego
D. żółto - zielonego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ według Polskich Norm (PN) oraz przepisów dotyczących instalacji elektrycznych, przewód neutralny musi być oznaczony kolorem niebieskim. Ta norma ma na celu zapewnienie jednoznaczności w identyfikacji przewodów elektrycznych, co jest niezbędne w celu bezpieczeństwa oraz prawidłowego funkcjonowania instalacji. Użycie koloru niebieskiego dla przewodów neutralnych jest standardem przyjętym w wielu krajach, co ułatwia współpracę i rozumienie projektów elektroutwardzonych na poziomie międzynarodowym. Przykładowo, w instalacjach domowych przewód neutralny prowadzi prąd z powrotem do źródła zasilania, a jego poprawne oznaczenie jest kluczowe, aby uniknąć pomyłek, które mogą prowadzić do niebezpiecznych wypadków elektrycznych. Przewody ochronne, oznaczane kolorem żółto-zielonym, mają zupełnie inną funkcję - mają na celu zabezpieczenie przed porażeniem elektrycznym, co podkreśla znaczenie znajomości tych standardów w praktyce.

Pytanie 28

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 20 Hz
B. 80 Hz
C. 70 Hz
D. 50 Hz
Odpowiedź 50 Hz jest prawidłowa, ponieważ w Polsce, jak i w większości krajów europejskich, standardowa częstotliwość napięcia w sieci elektroenergetycznej wynosi właśnie 50 Hz. Taka częstotliwość została przyjęta jako norma w celu zapewnienia stabilności i kompatybilności systemów energetycznych. Współpraca generatorów prądu z systemem energetycznym opiera się na synchronizacji ich częstotliwości z siecią. Przykładowo, elektrownie wodne, które korzystają z turbin wodnych, muszą dostarczać energię o odpowiedniej częstotliwości, aby mogły zostać włączone do krajowej sieci. Zastosowanie generatorów o mocy 100 kW w Polsce, które muszą pracować w harmonii z innymi źródłami energii, jak elektrownie wiatrowe czy słoneczne, również potwierdza konieczność utrzymania tej standardowej częstotliwości. Takie podejście zwiększa efektywność całego systemu elektroenergetycznego oraz minimalizuje ryzyko awarii związanych z zaburzeniem synchronizacji.

Pytanie 29

W Polsce płaskie kolektory słoneczne powinny być umieszczane na dachu budynku, skierowane w stronę

A. południową
B. wschodnią
C. północną
D. zachodnią
Kolektory słoneczne płaskie powinny być zorientowane na południe, aby maksymalizować ilość otrzymywanego promieniowania słonecznego przez cały dzień. Dzięki takiej orientacji, kolektory są w stanie wykorzystać maksymalne nasłonecznienie, zwłaszcza w godzinach szczytowych, kiedy słońce znajduje się najwyżej na niebie. W Polsce, ze względu na nasze położenie geograficzne, orientacja południowa jest kluczowa dla uzyskania optymalnej efektywności energetycznej. Przykładowo, instalacje w orientacji południowej mogą zwiększyć wydajność kolektorów o 15-30% w porównaniu do innych kierunków. Dobre praktyki wskazują, że przy projektowaniu systemów solarnych należy także uwzględniać kąt nachylenia kolektorów, który powinien wynosić od 30 do 45 stopni, co dodatkowo wspiera efektywność zbierania energii. W związku z tym, podejmowanie decyzji o lokalizacji i orientacji kolektorów powinno być oparte na analizach nasłonecznienia oraz lokalnych warunkach klimatycznych, co przyczynia się do maksymalizacji zysków energetycznych.

Pytanie 30

Całkowity koszt materiałów do zainstalowania systemu pompy ciepła wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Wiedząc, że koszt robocizny wynosi 20 % wartości materiałów, oblicz całkowitą wartość inwestycji?

A. 86 800 zł
B. 70 900 zł
C. 74 400 zł
D. 83 300 zł
Wybór błędnych odpowiedzi może wynikać z nieprecyzyjnego zrozumienia zasad liczenia kosztów inwestycji. Często osoby rozwiązujące takie zadania mylnie obliczają koszty robocizny lub sprzętu, co prowadzi do błędnych wyników. Na przykład, jeśli ktoś zignoruje koszt robocizny w całości lub przyjmie złą wartość procentową, całkowity koszt inwestycji zostanie zaniżony. W niektórych przypadkach, respondent może błędnie ocenić koszt sprzętu, co również wpłynie na końcowy wynik. Dobrą praktyką jest zawsze dokładnie weryfikować wszystkie wartości oraz stosować wzory, które jasno określają, jak obliczać koszty związane z danym projektem. Ważne jest również, aby na etapie planowania inwestycji uwzględnić nie tylko bezpośrednie koszty materiałów i robocizny, ale również ewentualne dodatkowe wydatki związane z montażem oraz przyszłym użytkowaniem systemu. Takie podejście nie tylko pozwoli na dokładniejsze oszacowanie całkowitych kosztów, ale także zapewni, że inwestycja będzie bardziej przewidywalna i mniej podatna na nieprzewidziane wydatki w trakcie realizacji projektów budowlanych.

Pytanie 31

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 6 barów
B. 2 bary
C. 9 barów
D. 1 bar
Nastawa zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła powinna wynosić 6 barów, co odpowiada standardom dla tego typu systemów. Pompy ciepła są projektowane do pracy w określonym zakresie ciśnienia, a 6 barów stanowi odpowiednią wartość zabezpieczającą przed nadmiernym wzrostem ciśnienia, co może prowadzić do uszkodzenia instalacji. W praktyce, zawór bezpieczeństwa powinien otworzyć się, gdy ciśnienie wewnętrzne przekroczy ustaloną wartość, a 6 barów jest powszechnie przyjętą normą dla większości systemów grzewczych. Przykład zastosowania to instalacje ogrzewania podłogowego, gdzie nadmiar ciśnienia może zniszczyć rury. Wybór odpowiedniej nastawy zaworu bezpieczeństwa jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności systemu. Zgodnie z normami PN-EN 12828 oraz PN-EN 12831, należy regularnie kontrolować i konserwować te urządzenia, aby zapewnić ich prawidłowe działanie, co przekłada się na efektywność energetyczną oraz długowieczność instalacji grzewczej.

Pytanie 32

Z kolektora słonecznego o powierzchni 3 m² oraz efektywności przekazywania energii cieplnej wynoszącej 80% przy nasłonecznieniu 1000 W/m² można uzyskać moc równą

A. 800 W
B. 1600 W
C. 3000 W
D. 2400 W
Kolektor słoneczny o powierzchni 3 m² i sprawności 80% przy nasłonecznieniu 1000 W/m² rzeczywiście może generować moc 2400 W. Aby zrozumieć ten proces, warto przyjrzeć się, jak obliczamy moc, którą kolektor jest w stanie przekazać. Mnożymy powierzchnię kolektora przez natężenie promieniowania słonecznego oraz sprawność urządzenia. W tym przypadku obliczenia wyglądają następująco: 3 m² x 1000 W/m² = 3000 W, a następnie uwzględniając sprawność 80%, otrzymujemy 3000 W x 0,8 = 2400 W. W kontekście praktycznym, moc uzyskana z kolektora słonecznego może być wykorzystywana do podgrzewania wody w systemach grzewczych, co jest ekologicznym rozwiązaniem redukującym emisję CO2. Warto również zauważyć, że efektywność kolektorów słonecznych została potwierdzona w standardach branżowych, takich jak Solar Keymark, co dodatkowo podkreśla ich wiarygodność i wydajność w zastosowaniach komercyjnych i przemysłowych.

Pytanie 33

Jak należy łączyć rury miedziane w instalacjach solarnych?

A. lutowanie twarde
B. sklejenie
C. zgrzewanie polifuzyjne
D. zgrzewanie elektrooporowe
Lutowanie twarde to jedna z najczęściej używanych metod do łączenia rur miedzianych w systemach solarnych. Dlaczego? Bo jest naprawdę mocne i wytrzymuje wysokie temperatury, co w przypadku solarów jest mega ważne. W skrócie, chodzi o to, że materiał lutowniczy się topi i wnika w szczelinę między rurami, przez co połączenie jest trwałe i szczelne. Poza tym lutowanie twarde dobrze przewodzi ciepło, co na pewno wpływa na wydajność całego systemu. W praktyce można je spotkać nie tylko w solarach, ale też w chłodnictwie, klimatyzacji czy wodociągach. Co ciekawe, rzecz ta jest zgodna z europejskimi normami, więc można śmiało polecać ten sposób łączenia. No i pamiętaj, żeby zawsze robić to w odpowiednich warunkach, korzystając z dobrych narzędzi i materiałów, wtedy połączenia będą trwalsze i bardziej niezawodne.

Pytanie 34

Czym jest mostek termiczny?

A. przepustem w przegrodzie budowlanej, którym prowadzi się rury do dolnego źródła ciepła
B. częścią przegrody budowlanej, w której instalowane jest ogrzewanie ścienne
C. elementem przegrody budowlanej, przez który dochodzi do utraty ciepła
D. otworem w przegrodzie budowlanej, który prowadzi rury do kolektora
Mostek termiczny jest istotnym elementem w konstrukcji przegrody budowlanej, który prowadzi do niepożądanej utraty ciepła. W praktyce oznacza to, że w miejscach, gdzie materiał budowlany ma różne właściwości termiczne, może dojść do powstania mostków, które obniżają efektywność energetyczną budynku. Na przykład, mostki termiczne często występują w miejscach, gdzie materiale budowlanym przechodzą rury, w narożnikach lub na styku różnych materiałów. Zgodnie z normami budowlanymi, takich jak PN-EN ISO 10077, projektanci muszą identyfikować te miejsca i stosować odpowiednie materiały izolacyjne, aby zminimalizować straty ciepła. W praktyce, zastosowanie zaawansowanych technik budowlanych, takich jak termografia, pozwala na lokalizację mostków termicznych, co z kolei umożliwia ich usunięcie lub zredukowanie. Właściwe zarządzanie mostkami termicznymi jest kluczowe dla osiągnięcia wysokiej efektywności energetycznej obiektów budowlanych oraz spełnienia wymogów dotyczących oszczędzania energii.

Pytanie 35

Współczynnik efektywności COP pompy ciepła o parametrach podanych w tabeli przy podgrzewaniu wody do temperatury 40°C przy temperaturze otoczenia 3°C wynosi

Parametry pompy
ParametrJednostka miaryWartość
Moc cieplna*kW12,5
Moc elektryczna doprowadzona do sprężarki*kW2,5
Pobór prądu*A6,5
Moc cieplna**kW15,5
Moc elektryczna doprowadzona do sprężarki**kW3,5
Pobór prądu*A6,7
* temp. otoczenia 3°C, temp. wody 40°C
** temp. otoczenia 8°C, temp. wody 50°C

A. 0,2
B. 5,0
C. 12,5
D. 4,4
Współczynnik efektywności COP, czyli ten nasz Coefficient of Performance, to naprawdę ważna sprawa, jeśli chodzi o pompy ciepła. Mówiąc prosto, pokazuje, ile ciepła pompa potrafi dostarczyć w porównaniu do energii elektrycznej, którą zużywa. Gdy mamy temperaturę na zewnątrz 3°C, a woda jest podgrzewana do 40°C, to COP wynosi 5,0. To oznacza, że pompa jakby pięciokrotnie więcej ciepła wydobywa niż sama zużywa energii. Fajnie, co? Takich wyników można się spodziewać, bo pompy ciepła działają tak, że korzystają z energii cieplnej, która jest w otoczeniu. W praktyce, pompy ciepła z takim wysokim COP są mega efektywne – zarówno dla naszej planety, jak i dla portfela. W nowoczesnych systemach grzewczych to wręcz must-have. Zgodnie z normami branżowymi, takimi jak EN 14511, projektuje się takie pompy, żeby maksymalizować COP. Dzięki temu zużycie energii jest mniejsze, a emisja CO2 też spada. Dlatego dobrze jest wybierać pompy ciepła z myślą o COP, bo to klucz do komfortu użytkowników.

Pytanie 36

Jaką wartość należy wpisać w pozycji przedmiarowej dla dolnego przewodu źródła ciepła, który na mapie w skali 1:1000 ma długość 2 cm?

A. 2 m
B. 200 m
C. 20 m
D. 0,2 m
Odpowiedź 20 m jest prawidłowa, ponieważ w skali 1:1000 każdy 1 cm na mapie odpowiada 10 m w rzeczywistości. Zatem, mając długość 2 cm na mapie, należy pomnożyć tę wartość przez 10, co daje 20 m. Tego typu przeliczenia są kluczowe w projektowaniu instalacji grzewczych i wodno-kanalizacyjnych, gdzie precyzyjne odwzorowanie długości jest niezbędne dla obliczeń technicznych oraz do zapewnienia efektywności systemów. W praktyce, użytkownicy muszą zwracać uwagę na skalę rysunków technicznych, aby poprawnie interpretować rozmiary i wymiary instalacji. Ponadto, zgodnie z normami branżowymi, takie przeliczenia są standardową praktyką w zakresie przygotowywania dokumentacji projektowej, co wpływa na jakość i dokładność realizacji inwestycji budowlanych.

Pytanie 37

Kluczową wartością niezbędną do przygotowania przedmiaru robót instalacji solarnej jest średnie zapotrzebowanie na wodę użytkową w trakcie

A. doby
B. tygodnia
C. roku
D. miesiąca
Średnie zapotrzebowanie na wodę użytkową w ciągu doby jest kluczową wielkością przy projektowaniu instalacji solarnych, ponieważ pozwala na określenie wymagań dotyczących pojemności zbiorników oraz mocy systemu kolektorów słonecznych. Ustalając średnią dobową konsumpcję, inżynierowie mogą precyzyjnie oszacować, ile energii będzie potrzebne do podgrzania wody, co przekłada się na efektywność systemu. Przykładowo, rodzina czteroosobowa może zużywać około 200 litrów wody na dobę. Taki parametr pozwala na dobór odpowiedniej wielkości kolektora słonecznego, który zaspokoi te potrzeby. W standardach projektowania instalacji solarnych, takich jak PN-EN 12976, podkreślana jest konieczność analizy dobowego zapotrzebowania, co wpływa na optymalizację kosztów oraz wydajności systemu. Praktycznie, dobranie odpowiednich parametrów do obliczeń może znacząco zmniejszyć koszty eksploatacyjne oraz zwiększyć komfort użytkowników, co jest niezwykle istotne w kontekście inwestycji w odnawialne źródła energii.

Pytanie 38

W jaki sposób definiuje się współczynnik COP?

A. wydajność chłodniczą, wyrażoną w procentach lub jako wartość bezwymiarowa
B. stosunek ilości ciepła generowanego przez pompę ciepła do ilości zużytej energii elektrycznej
C. moc chłodniczą, którą pompa ciepła osiąga w najbardziej trudnych warunkach
D. ciepło parowania w danej temperaturze oraz przy odpowiednim ciśnieniu
Współczynnik COP (Coefficient of Performance) to kluczowy wskaźnik efektywności pompy ciepła, który określa, jak skutecznie urządzenie przekształca energię elektryczną w ciepło. Odpowiedź wskazująca na stosunek ilości ciepła wytwarzanego przez pompę ciepła do ilości pobranej energii elektrycznej jest poprawna, ponieważ dokładnie odzwierciedla zasadę funkcjonowania tego urządzenia. W praktyce, wysokie wartości COP są pożądane, ponieważ oznaczają większą efektywność energetyczną, co prowadzi do mniejszych kosztów eksploatacji oraz mniejszego wpływu na środowisko. Przykładowo, pompa ciepła o współczynniku COP równym 4 potrafi wygenerować 4 jednostki ciepła przy zużyciu 1 jednostki energii elektrycznej. Takie wskaźniki są istotne w kontekście norm i regulacji związanych z efektywnością energetyczną, takich jak dyrektywy Unii Europejskiej dotyczące energooszczędności, które promują stosowanie rozwiązań o wysokiej efektywności. Zrozumienie COP pozwala na optymalizację użytkowania pomp ciepła oraz lepsze planowanie systemów ogrzewania i chłodzenia w budynkach.

Pytanie 39

Z jakich materiałów produkowane są łopaty wirników dużych turbin wiatrowych?

A. Z aluminium
B. Ze stali
C. Z miedzi elektrolitycznej
D. Z włókna szklanego
Łopaty wirników dużych turbin wiatrowych są najczęściej wykonane z włókna szklanego, co wynika z jego korzystnych właściwości mechanicznych. Włókno szklane charakteryzuje się wysoką wytrzymałością na rozciąganie oraz niską gęstością, co przekłada się na lekkość konstrukcji. To istotne, ponieważ zmniejsza obciążenie strukturalne turbiny i pozwala na efektywniejsze wykorzystanie energii wiatru. Dodatkowo, materiał ten jest odporny na korozję i działanie niekorzystnych warunków atmosferycznych, co zapewnia długotrwałą żywotność łopat. W praktyce, zastosowanie włókna szklanego w budowie turbin wiatrowych jest zgodne z zaleceniami branżowymi, które promują wykorzystanie materiałów kompozytowych w celu zwiększenia efektywności energetycznej. To podejście jest również zgodne z nowoczesnymi trendami w inżynierii, które stawiają na zrównoważony rozwój i efektywność energetyczną.

Pytanie 40

Aby podłączyć wylot zimnego powietrza z parownika monoblokowej pompy ciepła typu powietrze-woda o współczynniku COP = 3,5, która podgrzewa wodę o mocy 7 kW, należy zastosować

A. rury PVC o średnicy 125 mm
B. rury miedzianej o średnicy 25 mm
C. rury stalowej o średnicy 125 mm
D. rury PVC o średnicy 20 mm
Rura PVC o średnicy 125 mm to całkiem dobry wybór do podłączenia wylotu zimnego powietrza z parownika w monoblokowej pompie ciepła powietrze-woda. Gdy projektujemy systemy HVAC, ważne, żeby materiały, które używamy, były zgodne z wymaganiami dotyczącymi przepływu powietrza i odporności na różne warunki atmosferyczne, a rura PVC właśnie takie właściwości ma. Średnica 125 mm powinna zapewnić odpowiedni przepływ powietrza, co jest kluczowe dla efektywności pompy ciepła, szczególnie gdy ma ona współczynnik COP na poziomie 3,5 i moc 7 kW. Warto pamiętać, żeby przy doborze materiałów do instalacji HVAC sprawdzić normy branżowe, jak PN-EN 1452, które precyzują wymagania dla rur w systemach hydraulicznych. Rury PVC są naprawdę niezawodne, łatwe do zamontowania i dobrze znoszą korozję. Przykładem ich zastosowania mogą być instalacje wentylacyjne czy klimatyzacyjne, gdzie odpowiedni przepływ powietrza przekłada się na komfort użytkowników i efektywność energetyczną całego systemu.