Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 20 maja 2025 18:51
  • Data zakończenia: 20 maja 2025 18:59

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie są wymagania dotyczące przechowywania karbidu?

A. W ciśnieniowych stalowych butlach
B. W stalowych pojemnikach
C. W foliowych workach
D. W luzie w suchym pomieszczeniu magazynowym
Przechowywanie karbidu w pojemnikach z blachy stalowej jest zalecane ze względu na jego właściwości chemiczne oraz ryzyko związane z jego reagowaniem z wilgocią. Karbid, zwany także węglikiem wapnia, reaguje z wodą, produkując acetylen, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchów. Pojemniki stalowe zapewniają szczelność oraz odporność na działanie chemiczne, co minimalizuje ryzyko kontaminacji wilgocią. W praktyce, stosowanie pojemników stalowych jako standardowego rozwiązania w magazynach przemysłowych lub laboratoriach jest powszechną praktyką. Warto również zwrócić uwagę na odpowiednie oznakowanie tych pojemników, aby zminimalizować ryzyko błędnego użycia. Dodatkowo, przestrzeganie norm bezpieczeństwa takich jak normy OSHA lub ANSI w zakresie przechowywania substancji chemicznych podkreśla znaczenie stosowania odpowiednich pojemników, co nie tylko zwiększa bezpieczeństwo, ale również ułatwia zarządzanie ryzykiem w środowisku pracy.

Pytanie 2

Jakie cechy materiału transportowanego mają wpływ na działanie przenośnika ślimakowego?

A. Struktura krystaliczna oraz pylistość
B. Gęstość nasypowa oraz radioaktywność
C. Temperatura oraz toksyczność
D. Wilgotność oraz granulacja
Wilgotność i granulacja to naprawdę ważne rzeczy, jeśli chodzi o transport materiałów przenośnikami ślimakowymi. Wilgotność może wpłynąć na to, jak lepki staje się materiał i jak łatwo ulega aglomeracji, co z kolei ma bezpośredni wpływ na to, jak wydajnie pracuje przenośnik. Na przykład, w przypadku sypkich materiałów jak zboża, zbyt duża wilgotność może sprawić, że się zlepiają i to skutecznie utrudnia ich przesuwanie. No i z drugiej strony, jak wilgotności jest za mało, to pojawia się pylenie i straty materiału. Granulacja, czyli wielkość i kształt cząstek materiału, też jest kluczowa, bo decyduje o tym, jak przenośnik działa – musi być między przepływem a wydajnością dobry balans. Projektując przenośniki, trzeba brać pod uwagę te parametry, żeby uniknąć zatorów i zapewnić, że wszystko działa jak należy. W branży budowlanej i przemysłowej standardy ISO dotyczące transportu sypkich materiałów uwzględniają te aspekty, co jest ważne dla zaprojektowania naprawdę efektywnych przenośników.

Pytanie 3

W 20-tonowej mieszaninie trójskładnikowej znajduje się 5 ton składnika A, 12 ton składnika B oraz reszta to składnik C. Jaka jest procentowa zawartość (m/m) składnika C w tej mieszaninie?

A. 30%
B. 15%
C. 6%
D. 3%
Aby obliczyć zawartość procentową składnika C w mieszance, musimy najpierw ustalić, ile ton tego składnika znajduje się w 20-tonowej mieszance. Mamy 5 ton składnika A i 12 ton składnika B, co razem daje 17 ton. Składnik C zatem ma masę 20 ton - 17 ton = 3 tony. Zawartość procentowa obliczana jest według wzoru: (masa składnika / masa całej mieszaniny) x 100%. W tym przypadku: (3 tony / 20 ton) x 100% = 15%. Zrozumienie tej metody jest kluczowe w wielu dziedzinach przemysłu, takich jak chemia, farmacja czy produkcja, gdzie precyzyjne obliczenia składników mają kluczowe znaczenie dla jakości i bezpieczeństwa produktów. W praktyce, obliczenie procentowego udziału składników pozwala na optymalizację procesów produkcyjnych oraz kontrolę jakości, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 4

Na podstawie fragmentu instrukcji obsługi pompy wirowej określ, w jakim momencie należy zalać pompę.
Fragment instrukcji uruchamiania pompy Przed rozpoczęciem pracy pompy wirowej należy skontrolować poziom oleju smarującego i, w razie potrzeby, go uzupełnić. Następnie należy włączyć obieg wody chłodzącej oraz upewnić się, że wał obraca się w odpowiednim kierunku, który jest wskazany strzałką na obudowie silnika. Należy otworzyć zasuwę na ssaniu pompy i zalać pompę (produkt napełnia korpus pompy i wypływa przez kurek odpowietrzający). Po zalaniu należy uruchomić silnik i stopniowo otwierać zawór na rurociągu tłoczącym, obserwując manometr wskazujący ciśnienie na tym rurociągu.

A. Po skontrolowaniu stanu środka smarnego
B. Bezpośrednio po uruchomieniu silnika
C. Natychmiast po sprawdzeniu kierunku obrotu wału
D. Po otwarciu zaworu na rurociągu tłoczącym
Wszystkie pozostałe odpowiedzi zawierają błędne założenia dotyczące procedury uruchamiania pompy wirowej. Zalanie pompy natychmiast po uruchomieniu silnika jest nieodpowiednie, ponieważ brak wcześniejszego zalania pompy może prowadzić do jej uszkodzenia. Silnik uruchomiony bez wody może przegrzać się, co skutkuje poważnymi uszkodzeniami. Odpowiedź sugerująca, że zalanie następuje po otwarciu zaworu na rurociągu tłoczącym jest również błędna, ponieważ najpierw należy zalać pompę, aby uniknąć pracy na sucho, co również prowadzi do awarii. Ponadto, sugerowanie, że należy to zrobić po sprawdzeniu zużycia środka smarnego, jest nieodpowiednie, gdyż poziom smarowania nie powinien wpływać na proces zalewania pompy. Smarowanie jest istotne, ale nie powinno być czynnikiem decydującym w kontekście natychmiastowego działania. Kluczowe jest, aby najpierw upewnić się, że system jest w pełni operacyjny i że wał obraca się w odpowiednim kierunku, zanim przejdziemy do dalszych kroków, takich jak otwieranie zaworów czy uruchamianie obiegu. W praktyce, ignorowanie tych kroków może prowadzić do awarii sprzętu oraz zwiększenia kosztów naprawy, co podkreśla znaczenie starannego przestrzegania instrukcji obsługi urządzeń hydraulicznych.

Pytanie 5

Który rodzaj urządzenia spośród przedstawionych w tabeli należy zastosować do chłodzenia gazu poreakcyjnego w procesie syntezy amoniaku prowadzonym w temperaturze 400÷500°C?

Rodzaj urządzeniaRodzaj układu
(czynnik chłodzący – czynnik chłodzony)
Zakres pracy
[°C]
Wymiennik płaszczowo-rurowyciecz – gaz10÷150
ciecz – ciecz10÷100
para grzejna – ciecz100÷200
Wymiennik typu „rura w rurze"gaz – ciecz70÷500
ciecz – ciecz0÷500
Chłodnica ociekowawoda – gaz100÷700
ciecz – ciecz10÷100
para grzejna – ciecz100÷200
Wymiennik płytowygaz – woda10÷90
ciecz – ciecz0÷500

A. Chłodnicę ociekową.
B. Wymiennik płaszczowo-rurowy.
C. Wymiennik typu "rura w rurze".
D. Wymiennik płytowy.
Chłodnica ociekowa to idealne urządzenie do chłodzenia gazu poreakcyjnego w procesie syntezy amoniaku, zwłaszcza w temperaturach 400÷500°C. Jej zdolność do pracy w zakresie temperatury od 100 do 700°C, w układzie woda-gaz, czyni ją wyjątkowo elastyczną i wydajną. W praktyce, chłodnice ociekowe są powszechnie stosowane w przemyśle chemicznym, gdzie kontrola temperatury jest kluczowa dla efektywności procesów reakcyjnych. Przy zastosowaniu tej chłodnicy, możliwe jest osiągnięcie wysokiej efektywności wymiany ciepła, co przyczynia się do poprawy wydajności procesu syntezy amoniaku. Ponadto, standardy branżowe, takie jak ASME oraz API, zalecają stosowanie chłodnic ociekowych w procesach wymagających intensywnego chłodzenia, co potwierdza ich wysoką jakość i niezawodność. Warto dodać, że odpowiednia technologia chłodzenia ma kluczowe znaczenie dla zachowania bezpieczeństwa operacyjnego oraz minimalizacji ryzyka awarii.

Pytanie 6

Jakie kroki należy podjąć, aby przygotować młyn kulowy do serwisowania?

A. Odłączyć zasilanie i przemyć wnętrze wodą pod ciśnieniem, obracając bęben ręcznie
B. Otworzyć bęben, napełnić wodą z detergentem oraz włączyć urządzenie na 5 minut
C. Otworzyć bęben i włączyć urządzenie na maksymalne obroty przez 15 minut
D. Odłączyć zasilanie, usunąć elementy rozdrabniające z bębna oraz pozbyć się resztek materiału rozdrabnianego
Poprawna odpowiedź dotyczy kluczowych kroków w procesie przygotowania młyna kulowego do konserwacji. Odłączenie zasilania to fundamentalny krok, który ma na celu zapewnienie bezpieczeństwa operatora oraz uniknięcie przypadkowego uruchomienia maszyny podczas prac konserwacyjnych. Opróżnienie bębna z elementów rozdrabniających oraz resztek materiału jest niezbędne do prawidłowego przeprowadzenia konserwacji, ponieważ wszelkie pozostałości mogłyby zanieczyścić proces czyszczenia oraz wpłynąć negatywnie na sprawność młyna. Zgodnie z najlepszymi praktykami branżowymi, przed przeprowadzeniem jakichkolwiek działań konserwacyjnych, należy również zidentyfikować i usunąć potencjalnie niebezpieczne materiały. Po wykonaniu tych kroków można przystąpić do dokładnego czyszczenia wnętrza młyna, co jest kluczowe dla jego dalszego prawidłowego funkcjonowania. Regularna konserwacja, zgodnie z wytycznymi producenta, przyczynia się do zwiększenia żywotności urządzenia oraz minimalizowania ryzyka awarii.

Pytanie 7

Rozcieńczanie kwasu siarkowego (do 65%) należy wykonywać w zbiorniku wykonanym z blachy

A. z magnezu
B. ze stali węglowej
C. ze stali nierdzewnej
D. z ołowiu
Odpowiedź 'z ołowiu' jest prawidłowa, ponieważ ołów charakteryzuje się wysoką odpornością na działanie kwasów, w tym kwasu siarkowego. W zastosowaniach przemysłowych, gdzie kwas siarkowy o stężeniu do 65% jest używany, istotne jest, aby materiał zbiornika był odporny na korozję chemiczną. Ołów, ze względu na swoje właściwości, jest często wykorzystywany w konstrukcji zbiorników do przechowywania i transportu substancji chemicznych. W praktyce, zbiorniki ołowiane znajdują zastosowanie w laboratoriach chemicznych oraz w zakładach przemysłowych zajmujących się produkcją chemikaliów. Warto również zauważyć, że stosowanie ołowiu w takich aplikacjach jest zgodne z normami przemysłowymi, które określają wymagania dotyczące materiałów stosowanych w kontakcie z substancjami agresywnymi. Przy projektowaniu instalacji chemicznych należy zawsze uwzględnić zalecenia dotyczące wybierania odpowiednich materiałów, aby zapewnić bezpieczeństwo i niezawodność operacji.

Pytanie 8

Jakie czynności trzeba wykonać przed oddaniem brygadzie remontowej ciągu technologicznego do produkcji tlenku etylenu?

A. Opróżnić reaktor z dowthermu i katalizatora, przedmuchać reaktor oraz absorbery acetylenem, wyrównać temperaturę instalacji do temperatury otoczenia
B. Oziębić instalację do temperatury −70°C w celu wykroplenia pozostałości produktu, przedmuchać instalację etylenem, uzupełnić zapasy katalizatora, opróżnić reaktor z dowthermu
C. Usunąć resztki produktu z instalacji, wygrzać resztki do temperatury 500°C, a następnie zamknąć i zaplombować króćce umożliwiające usunięcie katalizatora
D. Opróżnić instalację z pozostałości substratów i produktu, wyrównać temperaturę instalacji do temperatury otoczenia, usunąć i zabezpieczyć katalizator, przedmuchać instalację azotem
Opróżnienie instalacji z pozostałości substratów i produktów oraz wyrównanie temperatury do temperatury otoczenia to kluczowe kroki przed uruchomieniem procesu produkcji tlenku etylenu. Tlenek etylenu jest substancją łatwopalną i toksyczną, a wszelkie pozostałości mogą prowadzić do niebezpiecznych sytuacji, takich jak eksplozje czy niekontrolowane reakcje chemiczne. Usunięcie i zabezpieczenie katalizatora jest również istotne, ponieważ niewłaściwe jego przechowywanie może prowadzić do degradacji lub niepożądanych reakcji. Przedmuchiwanie instalacji azotem ma na celu zapewnienie, że nie ma w niej tlenu, co absolutnie eliminuję ryzyko zapłonu. Przykładowo, w przemyśle chemicznym przed uruchomieniem instalacji często stosuje się procedury, które obejmują sprawdzenie szczelności, analizę gazów pozostałych w instalacji oraz wizualną inspekcję komponentów. Wszystko to jest zgodne z normami bezpieczeństwa, takimi jak NFPA 70E i ISO 45001, które nakładają obowiązek dbałości o bezpieczeństwo pracy w strefach zagrożonych wybuchem.

Pytanie 9

Aby przetransportować żwir na wysokość około 20 m, należy zastosować przenośnik

A. zgarniakowy
B. kubełkowy
C. ślimakowy
D. taśmowy
Przenośniki kubełkowe są idealnym rozwiązaniem do transportu materiałów sypkich, takich jak żwir, na dużą wysokość, w tym przypadku około 20 metrów. Zasada działania przenośników kubełkowych opiera się na wykorzystaniu kubełków zamocowanych na taśmie, które napełniają się materiałem na dole przenośnika i są następnie podnoszone w górę przez system taśmowy. Dzięki swojej konstrukcji, przenośniki te są w stanie efektywnie transportować materiały, minimalizując straty i zapobiegając ich uszkodzeniu. W branży budowlanej oraz górniczej przenośniki kubełkowe są powszechnie stosowane nie tylko do transportu żwiru, ale także piasku czy kamieni. Warto zaznaczyć, że ich wydajność i elastyczność w zastosowaniach sprawiają, że są preferowanym wyborem w zakładach zajmujących się przetwarzaniem surowców, gdzie konieczne jest podnoszenie materiałów na znaczne wysokości. Dobrą praktyką jest również regularne serwisowanie tych urządzeń, co zapewnia ich długotrwałe i niezawodne działanie w trudnych warunkach operacyjnych.

Pytanie 10

Proces produkcji kwasu octowego odbywa się zgodnie z reakcją przedstawioną równaniem CH3OH + CO kat. ⇌ CH3COOH.
Ile ton tlenku węgla(II) należy użyć, aby otrzymać 300 ton kwasu octowego, jeżeli proces przebiega z wydajnością 80%?

MCO = 28 g / mol
MCH3COOH = 60 g / mol

A. 280t
B. 140t
C. 112t
D. 175t
Poprawna odpowiedź to 175 ton tlenku węgla(II), co można obliczyć na podstawie wydajności procesu oraz ilości kwasu octowego, który chcemy uzyskać. Teoretyczna ilość CO potrzebna do produkcji 300 ton kwasu octowego wynosi 140 ton, ponieważ stosunek molowy metanolu do tlenku węgla(II) w tej reakcji jest równy 1:1. Jednakże, w praktyce wydajność procesu wynosi 80%, co oznacza, że tylko 80% teoretycznie dostępnych reagentów przekształca się w produkt. Aby uwzględnić tę wydajność, należy obliczyć, ile tlenku węgla(II) jest potrzebne, dzieląc teoretyczną ilość przez 0.8. Taki sposób obliczeń jest zgodny z metodologią stosowaną w przemyśle chemicznym, gdzie zawsze bierze się pod uwagę wydajność procesu. Dobrą praktyką w tego typu obliczeniach jest również monitorowanie i optymalizacja procesów, aby zminimalizować straty reagentów, co wpływa na efektywność ekonomiczną produkcji. Taka analiza ma zastosowanie nie tylko w produkcji kwasu octowego, ale w wielu innych procesach chemicznych, gdzie kontrola wydajności jest kluczowa.

Pytanie 11

Wydajność finalnych produktów otrzymywanych w procesie pirolizy różnych surowców w % masowych Wskaż surowiec, który należy poddać pirolizie, aby otrzymać możliwie najwyższą ilość propenu (propylenu) przy wydajności butadienu powyżej 4,0% masowych.

Surowiec poddany pirolizieWydajność produktów pirolizy
etylenpropylenbutadien
Etan81,62,03,0
Propan46,918,72,9
n-Butan44,517,24,4
Benzyna lekka42,315,94,7
Benzyna ciężka34,116,04,9
Lekki olej napędowy29,414,010,6

A. Propan.
B. Benzyna lekka.
C. n-Butan.
D. Benzyna ciężka.
n-Butan jest surowcem, który przy procesie pirolizy osiąga najwyższą wydajność propylenu na poziomie 17,2% masowych. To znacząco przewyższa inne badane surowce. Dla praktyków zajmujących się produkcją chemiczną, właściwy dobór surowców do procesów pirolizy jest kluczowy dla maksymalizacji wydajności oraz redukcji kosztów operacyjnych. Wydajność butadienu z n-Butanu wynosząca 4,4% masowych spełnia wymagania, co czyni go bardzo atrakcyjnym surowcem w kontekście produkcji chemikaliów. W praktyce, n-Butan jest często wykorzystywany w branży petrochemicznej do produkcji różnych związków organicznych, a jego zastosowanie w pirolizie sprzyja uzyskaniu nie tylko propylenu, ale także innych cennych produktów. Przemysł chemiczny dąży do efektywności, dlatego znajomość właściwości surowców oraz ich wydajności w różnych procesach jest niezbędna, aby optymalizować cały cykl produkcji oraz dostosowywać go do potrzeb rynku.

Pytanie 12

Reaktor przeznaczony do nitrowania benzenu przed jego konserwacją powinien zostać oczyszczony z zawartości, schłodzony oraz

A. przemyty gorącym benzenem
B. wypłukany powietrzem
C. przemyty zimnym benzenem
D. zneutralizowany wapienną zasadą
Odpowiedź 'zneutralizowany zasadą wapienną' jest prawidłowa, ponieważ przed konserwacją reaktora, szczególnie w przypadku procesów chemicznych, w których mogą występować substancje kwasowe, kluczowym krokiem jest neutralizacja pozostałości. Zasada wapienna działa jako skuteczny środek neutralizujący, który umożliwia usunięcie kwasowych pozostałości z wnętrza reaktora. W praktyce, zapewnia to nie tylko bezpieczeństwo, ale także efektywność przyszłych operacji. Często stosowana jest procedura, w której reaktor jest najpierw dokładnie myty, a następnie napełniany roztworem zasady wapiennej. Po odpowiednim czasie kontaktu, roztwór jest usuwany, a wnętrze reaktora ponownie płukane. Dobre praktyki przemysłowe wymagają dokumentacji całego procesu, aby zapewnić, że reaktor jest w odpowiednim stanie przed rozpoczęciem kolejnych reakcji. Ignorowanie tego kroku może prowadzić do niebezpiecznych reakcji chemicznych lub kontaminacji, co podkreśla znaczenie przestrzegania standardów BHP oraz procedur operacyjnych w chemii. Przykład zastosowania to przemysł petrochemiczny, gdzie odpowiednia konserwacja reaktorów wpływa na bezpieczeństwo i jakość produktów.

Pytanie 13

Ile kilogramów wody znajduje się w 2 tonach mieszaniny nitrującej, której skład procentowy (m/m) wynosi: H2SO4 – 56 %, HNO3 – 28 % oraz H2O – 16 %?

A. 80 kg
B. 640 kg
C. 160 kg
D. 320 kg
Aby obliczyć ilość wody w 2 tonach mieszaniny nitrującej, należy najpierw przeliczyć masę na kilogramy. 2 tony to 2000 kilogramów. Procentowy skład mieszaniny wynosi 16% wody. Obliczamy masę wody jako 16% z 2000 kg. Wzór na to obliczenie wygląda następująco: masa wody = (procent wody / 100) * masa całkowita. W naszym przypadku: (16 / 100) * 2000 kg = 320 kg. Otrzymana wartość 320 kg jest poprawna. Takie obliczenia są istotne w wielu branżach chemicznych, gdzie precyzyjne określenie składu mieszanin jest kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów. Wiedza na temat składów chemikaliów jest niezbędna przy pracy z substancjami niebezpiecznymi, a właściwe obliczenia pozwalają na odpowiednie ich przechowywanie i użytkowanie.

Pytanie 14

Rozpuszczono 60 kg KCl w 150 kg wody w temperaturze 90ºC. Do jakiej temperatury należy obniżyć temperaturę tego roztworu, aby otrzymać roztwór nasycony i aby KCl nie wytrącał się z roztworu?

Rozpuszczalność KCl [g/100 g H2O]
0 °C10 °C20 °C30 °C40 °C50 °C60 °C70 °C80 °C90 °C100 °C
27,63134374042,645,548,351,15456,7

A. 20ºC
B. 40ºC
C. 10ºC
D. 70ºC
Obniżenie temperatury roztworu KCl do 40ºC jest kluczowe dla osiągnięcia stanu nasycenia. Rozpuszczalność KCl w wodzie w tej temperaturze wynosi 40 g na 100 g wody, co oznacza, że w 150 kg wody można rozpuścić 60 kg KCl, co dokładnie odpowiada naszym warunkom. W praktyce, monitorowanie rozpuszczalności soli w różnych temperaturach jest niezwykle istotne w wielu procesach chemicznych i przemysłowych, takich jak produkcja nawozów czy procesy oczyszczania. Zgodnie z dobrymi praktykami, zawsze warto odnosić się do tabel rozpuszczalności, aby unikać nieprzewidzianych efektów, takich jak wytrącanie się substancji z roztworu. Wiedza na temat rozpuszczalności substancji w różnych temperaturach jest również korzystna w kontekście projektowania systemów chemicznych oraz w laboratoriach badawczych, gdzie kontrolowanie warunków eksperymentalnych jest kluczowe dla uzyskania wiarygodnych wyników.

Pytanie 15

Zbiorniki używane do rozcieńczania kwasu siarkowego(VI) w procesie wytwarzania superfosfatu są wyłożone

A. polietylenem
B. blachą ołowianą
C. blachą ze stali nierdzewnej
D. polipropylenem
Zastosowanie materiałów takich jak polipropylen, stal nierdzewna czy polietylen w budowie zbiorników do kwasu siarkowego(VI) może wydawać się na pierwszy rzut oka rozsądne, jednak w praktyce wiąże się z istotnymi ograniczeniami i ryzykiem. Polipropylen, chociaż odporny na niektóre chemikalia, nie jest wystarczająco odporny na działanie kwasu siarkowego, co może prowadzić do uszkodzeń i przecieków. Stal nierdzewna, mimo że ma wiele zalet w kontekście odporności na korozję, nie radzi sobie z silnymi kwasami bez dodatkowych powłok ochronnych, a nawet wtedy może wystąpić degradacja materiału. W przypadku polietylenu, jego zastosowanie w zbiornikach do silnych kwasów również jest ograniczone ze względu na potencjalne reakcje chemiczne, które mogą prowadzić do osłabienia struktury materiału. Często mylnie sądzi się, że nowoczesne materiały plastikowe lub stali nierdzewnej mogą zastąpić tradycyjne metody, co może prowadzić do niedoszacowania ryzyka i późniejszych kosztów związanych z naprawą lub wymianą uszkodzonych zbiorników. W kontekście przemysłowym, gdzie bezpieczeństwo i zgodność z normami są kluczowe, wybór odpowiednich materiałów jest niezwykle istotny i powinien opierać się na solidnych podstawach inżynieryjnych oraz najlepszych praktykach branżowych.

Pytanie 16

Jakie warunki podczas przeprowadzania procesu absorpcji mogą przyczynić się do zwiększenia jego efektywności?

A. Zwiększenie temperatury oraz obniżenie ciśnienia procesu
B. Zmniejszenie temperatury oraz obniżenie ciśnienia procesu
C. Zmniejszenie temperatury oraz zwiększenie ciśnienia procesu
D. Zwiększenie temperatury oraz zwiększenie ciśnienia procesu
Obniżenie temperatury i podwyższenie ciśnienia procesu absorpcji sprzyja osiągnięciu wyższej wydajności, ponieważ takie warunki mogą zwiększyć rozpuszczalność gazu w cieczy. W przypadku procesów chemicznych, takich jak absorpcja dwutlenku węgla w wodzie, zmniejszenie temperatury zwiększa energię, potrzebną do rozpuszczenia gazu, podczas gdy zwiększenie ciśnienia powoduje, że więcej cząsteczek gazu jest zmuszonych do interakcji z cieczą, co prowadzi do wyższej efektywności absorpcyjnej. Przykładem zastosowania tej zasady może być przemysłowy proces usuwania CO2 z gazów odlotowych, gdzie kontrolowanie warunków procesowych jest kluczowe do optymalizacji wydajności. W praktyce, stosowanie odpowiednich reaktorów z systemami chłodzenia i podwyższonym ciśnieniem, w połączeniu z monitorowaniem parametrów procesowych, pozwala na efektywniejsze wykorzystanie chemikaliów i redukcję odpadów, co jest zgodne z najlepszymi praktykami w zakresie inżynierii procesowej.

Pytanie 17

Jaką czynność należy wykonać przed rozpoczęciem przeglądu oraz konserwacji bełkotki?

A. Zwiększyć natężenie przepływu powietrza
B. Wydobyć bełkotkę z aparatu
C. Obniżyć temperaturę cieczy w zbiorniku
D. Odłączyć przepływ powietrza
Odłączenie przepływu powietrza przed przystąpieniem do przeglądu i konserwacji bełkotki jest kluczowym krokiem w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania urządzenia. Bełkotka, będąca elementem mającym na celu mieszanie i transport cieczy, może generować wysokie ciśnienie, które w przypadku nieodłączenia przepływu powietrza może prowadzić do niebezpiecznych sytuacji, takich jak wycieki lub niekontrolowane rozpryski cieczy. W praktyce, przed rozpoczęciem jakichkolwiek działań konserwacyjnych, zaleca się zawsze stosowanie procedur bezpieczeństwa, które powinny obejmować odłączenie źródła zasilania powietrzem. Zgodnie z wymogami branżowymi, takie praktyki są szczególnie istotne w środowiskach przemysłowych, gdzie bezpieczeństwo pracowników oraz integralność sprzętu są priorytetowe. Ponadto, odłączenie przepływu powietrza pozwala na dokładniejszą ocenę stanu technicznego bełkotki, co może być kluczowe w zapobieganiu awariom oraz w planowaniu przyszłych działań konserwacyjnych. Rekomenduje się także dokonywanie regularnych przeglądów, co zwiększa wydajność systemu i zmniejsza ryzyko wystąpienia usterek.

Pytanie 18

Przed wprowadzeniem substratów do reaktora na produkcję tlenku etylenu, należy przeprowadzić analizę ich zawartości

A. acetylenu i związków siarki
B. tlenków azotu
C. gazu szlachetnych
D. metanu oraz związków srebra
Wybór acetylenu i związków siarki jako ważnych elementów do analizy przed wytwarzaniem tlenku etylenu jest jak najbardziej trafny. To dlatego te substancje mogą mieć spory wpływ na to, jak będzie przebiegał cały proces katalityczny. Acetylen, to taki alkin, który może wchodzić w reakcję z tlenkiem etylenu, a to z kolei może się kończyć powstawaniem różnych niepożądanych produktów oraz obniżeniem wydajności reakcji. Związki siarki? No cóż, te także są ważne, bo mogą prowadzić do powstawania siarkowodoru i innych nieciekawych substancji, które mogą zrujnować katalizatory w produkcji. W chemii bardzo ważne jest, aby monitorować surowce, a normy, takie jak ISO 9001, to potwierdzają. Dobrym przykładem są zakłady chemiczne, gdzie regularne testy surowców są mega istotne, żeby wszystko działało jak należy i żeby było bezpiecznie.

Pytanie 19

Który z parametrów powinien być przede wszystkim monitorowany oraz w razie konieczności dostosowywany przez personel obsługujący krystalizator zbiornikowy z mieszadłem?

A. Obrotowa prędkość mieszadła
B. pH roztworu
C. Ciśnienie
D. Temperatura
Temperatura jest kluczowym parametrem kontrolowanym w krystalizatorach typu zbiornikowego z mieszadłem, ponieważ ma bezpośredni wpływ na rozpuszczalność substancji oraz proces krystalizacji. Utrzymanie optymalnej temperatury pozwala na osiągnięcie pożądanej wielkości i jakości kryształów, co jest niezbędne dla efektywności procesów przemysłowych. Przykładowo, w produkcji soli, niewłaściwie zarządzana temperatura może prowadzić do powstawania kryształów o różnych rozmiarach, co z kolei wpływa na dalsze etapy przetwarzania. W praktyce, standardy branżowe, takie jak ISO 9001, podkreślają znaczenie monitorowania i regulacji temperatury jako krytycznego elementu zapewnienia jakości produktów. Dlatego, aby osiągnąć wysoką skuteczność procesu krystalizacji, należy stosować systemy automatycznej regulacji, które pozwalają na precyzyjne dostosowanie temperatury do wymagań technologicznych.

Pytanie 20

W którym z urządzeń pomiarowych wilgotności używane jest zjawisko zmiany rozmiaru elementu sensora w zależności od poziomu wilgotności?

A. W psychrometrze Assmanna
B. W wilgotnościomierzu pojemnościowym
C. W higrometrze kondensacyjnym
D. W higrometrze bimetalicznym
Higrometr bimetaliczny wykorzystuje zjawisko rozszerzania i kurczenia się dwóch różnych metali połączonych w formie bimetalu. W zależności od zmieniającej się wilgotności powietrza, różne metale w bimetalu reagują odmiennie, co prowadzi do zginania się elementu detekcyjnego. To zjawisko jest kluczowe w praktycznych zastosowaniach, ponieważ umożliwia dokładny pomiar wilgotności w różnych warunkach atmosferycznych. Higrometry bimetaliczne są często stosowane w klimatyzatorach, nawilżaczach powietrza oraz w laboratoriach, gdzie precyzyjna kontrola wilgotności jest niezbędna. Warto również zauważyć, że zgodnie z normami branżowymi, urządzenia pomiarowe powinny być regularnie kalibrowane, aby zapewnić ich dokładność, a higrometry bimetaliczne są jednym z najstarszych, ale wciąż efektywnych narzędzi w tej dziedzinie. Ich prostota oraz niezawodność sprawiają, że są szeroko stosowane w różnych aplikacjach, co czyni je ważnym elementem w zarządzaniu środowiskiem. Podsumowując, wybór higrometru bimetalicznego do pomiaru wilgotności oparty jest na jego zdolności do wykorzystania fizycznych właściwości metali, co jest fundamentalne dla dokładnych pomiarów.

Pytanie 21

Produkcja antybiotyków wymaga ścisłego zachowania wartości pH oraz krótkiego czasu trwania procesu ekstrakcji, dlatego do przeprowadzenia ekstrakcji konieczne jest zastosowanie

A. ekstraktora kołyskowego
B. kaskady ekstraktorów
C. ekstraktora wirówkowego
D. kolumny ekstrakcyjnej
Ekstraktor wirówkowy jest optymalnym wyborem do procesu ekstrakcji antybiotyków z kilku istotnych powodów. Przede wszystkim, jego konstrukcja umożliwia skuteczne oddzielanie fazy cieczy od stałej dzięki zastosowaniu siły odśrodkowej, co pozwala na szybkie uzyskanie czystego ekstraktu. W kontekście produkcji antybiotyków, gdzie kluczowe jest zachowanie odpowiedniego reżimu pH, ekstraktor wirówkowy zapewnia minimalny czas kontaktu z reagentami, co redukuje ryzyko degradacji wrażliwych związków. Praktyczne zastosowanie ekstraktorów wirówkowych w przemyśle farmaceutycznym można zauważyć w procesach izolacji penicyliny, gdzie szybkość i efektywność ekstrakcji są kluczowe dla uzyskania wysokiej jakości produktu. Zgodność z dobrymi praktykami produkcyjnymi (GMP) oraz standardami jakości (ISO) również podkreśla znaczenie tego urządzenia w przemyśle, umożliwiając kontrolę nad procesem i zapewniając bezpieczeństwo mikrobiologiczne końcowego produktu.

Pytanie 22

Rysunek przedstawia manometr, który służy do pomiaru ciśnienia w zbiorniku z chlorem. W jakim zakresie ciśnień mierzonego medium powinien pracować ten ciśnieniomierz?

Ilustracja do pytania
A. 0 ± 0,45 MPa
B. 0 ± 0,60 MPa
C. 0 ± 0,40 MPa
D. 0 ± 0,30 MPa
Odpowiedź "0 ± 0,45 MPa" jest prawidłowa, ponieważ manometry są projektowane w taki sposób, aby zapewnić odpowiedni zakres pomiarowy dla medium, które mają mierzyć. W przypadku pomiaru ciśnienia w zbiorniku z chlorem, istotne jest, aby zakres pracy manometru nie tylko obejmował spodziewane ciśnienie, ale także zapewniał pewien zapas bezpieczeństwa. W praktyce przyjmuje się, że manometr powinien mieć zakres pomiarowy wyższy od maksymalnego ciśnienia roboczego o co najmniej 10-20%. W związku z tym wybrany zakres 0 ± 0,45 MPa odpowiada temu wymaganiu, biorąc pod uwagę, że maksymalne ciśnienie wskazywane przez manometr wynosi 0,6 MPa. Dodatkowo, manometry powinny być kalibrowane i testowane pod kątem dokładności w swoim zakresie pracy, co jest zgodne z normami ISO 5170 i ISO 9001, aby zapewnić ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Na przykład, w zakładach chemicznych, przy pomiarze ciśnienia w zbiornikach, użycie manometru z odpowiednim zakresem jest kluczowe dla uniknięcia niebezpiecznych sytuacji związanych z nadciśnieniem.

Pytanie 23

Ilość odsiarczonego gazu syntezowego, wynosząca 1800 m3, przepływa przez reaktor do syntezy metanolu co godzinę. Jaką objętość gazu m3 przemieszcza się przez reaktor w czasie 1 minuty?

A. 30 m3
B. 180 m3
C. 18 m3
D. 60 m3
Poprawna odpowiedź to 30 m³, co można obliczyć, dzieląc ilość gazu syntezowego przepływającego przez reaktor w ciągu godziny przez liczbę minut w godzinie. W ciągu godziny przepływa 1800 m³ gazu, a ponieważ godzina ma 60 minut, obliczenie wygląda następująco: 1800 m³ / 60 min = 30 m³/min. Tego typu obliczenia są kluczowe w przemyśle chemicznym i energetycznym, gdzie precyzyjne zarządzanie przepływem gazów jest niezbędne do optymalizacji procesów produkcyjnych, takich jak synteza metanolu. W praktyce, zrozumienie przepływów gazów i ich pomiarów jest fundamentem dla inżynierów zajmujących się projektowaniem reaktorów, co pozwala na efektywne zarządzanie procesami i zapewnienie bezpieczeństwa operacji. Dodatkowo, stosowanie narzędzi takich jak diagramy przepływu i analizy procesów stanowi standard w branży, co umożliwia bieżące monitorowanie i optymalizację wydajności.

Pytanie 24

W jaki sposób powinien zachowywać się pracownik nadzorujący działanie autoklawu?

A. Kontrolować wskazania manometru i zmniejszać temperaturę procesu, kiedy wartość ciśnienia przekroczy normę
B. Obserwować temperaturę procesu i systematycznie ją zwiększać, aż do osiągnięcia 150°C
C. Monitorować temperaturę procesu i regulować ją tak, aby nie przekroczyła normy o więcej niż 20%
D. Śledzić wskazania manometru i zwiększać temperaturę procesu, gdy wartość ciśnienia przekroczy normę
Odpowiedź polegająca na obserwacji wskazań manometru i obniżaniu temperatury prowadzenia procesu, gdy wartość ciśnienia przekracza normę, jest kluczowa w kontekście bezpiecznej eksploatacji autoklawu. Wysokie ciśnienie może prowadzić do niebezpiecznych sytuacji, takich jak eksplozje lub awarie sprzętu. W praktyce, podczas procesu sterylizacji, ważne jest, aby monitorować zarówno temperaturę, jak i ciśnienie, ponieważ te dwa parametry są ze sobą ściśle powiązane. Zmiany w ciśnieniu mogą wskazywać na problemy w procesie, takie jak nieszczelności w obiegu. Dlatego, obniżając temperaturę, można skutecznie zredukować ciśnienie, co jest zgodne z zaleceniami standardów dotyczących bezpieczeństwa w laboratoriach i placówkach medycznych. Taka praktyka jest zgodna z wytycznymi Organizacji Zdrowia oraz krajowymi normami dotyczącymi sterylizacji, co zapewnia bezpieczeństwo i skuteczność procesu.

Pytanie 25

W jakim momencie, z powodu ograniczeń sprzętowych, powinno się zakończyć proces zagęszczania roztworu, który jest realizowany w wyparce Roberta – z pionowymi rurkami, przy naturalnej cyrkulacji roztworu?

A. Gdy poziom cieczy zagęszczanej osiągnie górny poziom rurek grzewczych
B. Po osiągnięciu temperatury wrzenia zagęszczanej cieczy
C. Gdy poziom cieczy zagęszczanej zbliży się do dolnego poziomu rurek grzewczych
D. Po osiągnięciu maksymalnej lepkości dla zagęszczanego roztworu
Odpowiedź, że należy zakończyć proces zatężania roztworu, gdy poziom cieczy osiągnie górny poziom rurek grzewczych, jest prawidłowa z powodów aparaturowych i operacyjnych. W wyparce Roberta, która wykorzystuje naturalną cyrkulację, kluczowe jest, aby unikać sytuacji, w której ciecz się przegrzewa lub zaczyna wrzeć w niewłaściwym momencie. Osiągnięcie górnego poziomu rurek grzewczych oznacza, że dalsze prowadzenie procesu mogłoby prowadzić do niekontrolowanego parowania, co stwarza ryzyko uszkodzenia sprzętu. Obserwacja poziomu cieczy jest standardową praktyką w technologii zatężania, pozwalającą na utrzymanie stabilnych warunków procesowych. Przykładem zastosowania tej zasady jest przemysł chemiczny, gdzie precyzyjne kontrolowanie poziomu cieczy oraz odpowiednich parametrów procesu, takich jak temperatura i ciśnienie, jest niezbędne do zapewnienia bezpieczeństwa oraz efektywności operacyjnej. Zastosowanie systemów alarmowych lub automatycznych zaworów może dodatkowo pomóc w monitorowaniu poziomu cieczy oraz zapobiegać przekroczeniu krytycznych wartości.

Pytanie 26

Proces produkcji polietylenu w metodzie wysokociśnieniowej odbywa się w temperaturze 150--260°C oraz pod ciśnieniem
150-200 MPa. Wyniki monitorowania temperatury tego procesu, zapisane w dokumentacji, wyrażone w kelwinach, powinny znajdować się w zakresie

A. 273--423 K
B. 423--533 K
C. 423--473 K
D. 150--260 K
Produkcja polietylenu w wysokiej temperaturze rzeczywiście zachodzi w przedziale 150-260°C. Jak chcesz to przeliczyć na kelwiny, to wystarczy dodać 273,15 do stopni Celsjusza. Czyli, 150°C to 423,15 K, a 260°C to 533,15 K. Dlatego zgadza się, że przedział 423-533 K jest poprawny. W przemyśle to monitorowanie temperatury jest naprawdę kluczowe. Jeśli temperatura jest za niska lub za wysoka, to mogą być kłopoty z reakcją chemiczną i w efekcie jakością oraz wydajnością produkcji polietylenu. Trzymanie się odpowiednich temperatur to nie tylko zasady inżynierii chemicznej, ale również standardy, jak ISO 9001, które dbają o efektywność w produkcji. Poza tym, często korzysta się z systemów automatyki, które pomagają w monitorowaniu i optymalizacji warunków produkcji. To bardzo ważne w dużych zakładach, żeby wszystko szło sprawnie.

Pytanie 27

Jakie odczynniki są potrzebne do oznaczenia twardości ogólnej wody kotłowej?

A. Mianowany roztwór wersenianu sodu, bufor amoniakalny, czerń eriochromową
B. Mianowany roztwór NaOH, bufor octanowy, czerń eriochromową
C. Mianowany roztwór H2SO4, bufor amoniakalny, oranż metylowy
D. Mianowany roztwór wersenianu sodu, bufor octanowy, fenoloftaleinę
Odpowiedź dotycząca mianowanego roztworu wersenianu sodu, buforu amoniakalnego oraz czerwi eriochromowej jest prawidłowa, ponieważ te odczynniki są kluczowe dla wykonania oznaczenia twardości ogólnej wody kotłowej. Wersenian sodu działa jako kompleksujący reagent, który skutecznie wiąże jony wapnia i magnezu, co jest istotne w procesie analizy twardości wody. Bufor amoniakalny stabilizuje pH roztworu, co jest niezbędne do uzyskania dokładnych wyników analizy. Czerń eriochromowa służy jako wskaźnik, zmieniający barwę w momencie, gdy wszystkie jony wapnia i magnezu zostały skompleksowane, co sygnalizuje zakończenie titracji. W praktyce, taka analiza jest kluczowa w branży energetycznej, gdzie kontrola jakości wody kotłowej ma bezpośredni wpływ na wydajność systemów oraz unikanie korozji i osadów w kotłach. Przykładem może być monitoring wody w elektrowniach, gdzie twardość musi być ściśle kontrolowana, aby zapewnić długotrwałą i bezpieczną pracę urządzeń.

Pytanie 28

Który z poniższych materiałów jest najczęściej używany do produkcji zbiorników na kwas siarkowy?

A. Miedź
B. Stal nierdzewna
C. Mosiądz
D. Aluminium
Stal nierdzewna jest najczęściej używanym materiałem do produkcji zbiorników na kwas siarkowy z wielu powodów. Przede wszystkim, stal nierdzewna jest wysoko odporna na korozję, co jest kluczowe w przypadku kontaktu z agresywnym kwasem siarkowym. Dzięki obecności chromu w składzie, stal nierdzewna tworzy pasywną warstwę na powierzchni, która chroni przed dalszym utlenianiem. To sprawia, że jest to materiał nie tylko trwały, ale również ekonomicznie opłacalny w dłuższym okresie użytkowania, mimo że początkowy koszt może być wyższy. W przemyśle chemicznym stosuje się różne gatunki stali nierdzewnej, takie jak 316L, które zapewniają dodatkową odporność na działanie kwasów. Stal nierdzewna jest również odporna na wahania temperatury, co jest istotne w procesach, gdzie kwas siarkowy może być podgrzewany lub chłodzony. Warto również wspomnieć, że stal nierdzewna jest materiałem o wysokiej wytrzymałości mechanicznej, co pozwala na budowanie zbiorników o dużych rozmiarach, które są bezpieczne i spełniają wszystkie normy bezpieczeństwa. Dzięki tym właściwościom stal nierdzewna jest preferowanym wyborem w produkcji zbiorników przemysłowych na substancje żrące.

Pytanie 29

Jakie urządzenie można wykorzystać do pomiaru natężenia przepływu cieczy?

A. wiskozymetr Ubbelohdego
B. aparatura Orsata
C. urządzenie Abla-Pensky'ego
D. zwężka Venturiego
Zwężka Venturiego jest urządzeniem pomiarowym, które działa na zasadzie różnicy ciśnień w cieczy przepływającej przez zwężenie. Dzięki zjawisku Bernoulliego, gdy ciecz przepływa przez zwężkę, jej prędkość wzrasta, a ciśnienie maleje. To zjawisko pozwala na dokładne obliczenie natężenia przepływu na podstawie różnicy ciśnień, co jest zgodne z równaniem Bernoulliego. W praktyce zwężki Venturiego są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, hydraulika czy systemy nawadniające. Zgodnie z normami ISO dotyczących pomiaru przepływu, zwężki Venturiego są uznawane za jedno z najdokładniejszych narzędzi w tej kategorii, co czyni je preferowanym wyborem w zastosowaniach wymagających wysokiej precyzji. Dodatkowo, ich konstrukcja jest prosta i niezawodna, co ułatwia ich integrację w różnych systemach rurociągowych, zapewniając minimalne opory przepływu, co jest kluczowe w wielu zastosowaniach inżynieryjnych.

Pytanie 30

Jakie elementy należy przede wszystkim zweryfikować, przygotowując butle do składowania gazów technicznych pod ciśnieniem do 15 MPa?

A. Stan powłoki malarskiej butli
B. Aktualność legalizacji butli
C. Ilość rozpuszczalnika w butli
D. Wagę butli
Aktualność legalizacji butli jest kluczowym aspektem przy przygotowywaniu butli do magazynowania gazów technicznych pod ciśnieniem. Zgodnie z normami oraz przepisami prawa, każdy zbiornik ciśnieniowy, w tym butle, musi być regularnie poddawany kontroli technicznej oraz legalizacji, aby zapewnić ich bezpieczeństwo i efektywność użytkowania. W Polsce na przykład, zgodnie z Rozporządzeniem Ministra Gospodarki, butle muszą być legalizowane co 10 lat. Kontrola legalizacji obejmuje ocenę stanu technicznego butli, a także potwierdzenie, że spełnia ona odpowiednie normy i standardy jakości. Przykładem zastosowania jest kontrola butli w zakładach przemysłowych, gdzie gazy techniczne są niezbędne do procesów produkcyjnych. Regularna legalizacja pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu czy eksplozjami, co czyni ten proces kluczowym dla bezpieczeństwa wszystkich pracowników oraz otoczenia.

Pytanie 31

Jakie kroki należy podjąć, aby przygotować 250 cm3 pięciowodnego roztworu soli CuSO4 (Msol = 250 g/mol) o stężeniu 0,2 mol/dm3?

A. Odważyć 12,5 g soli, przenieść ilościowo do kolby miarowej o pojemności 500 cm3, uzupełnić wodą do kreski
B. Odważyć 12,5 g soli, przenieść ilościowo do kolby miarowej o pojemności 250 cm3, uzupełnić wodą do kreski
C. Odważyć 8 g soli, przenieść ilościowo do kolby miarowej o pojemności 250 dm3, uzupełnić wodą do kreski
D. Odważyć 50 g soli, przenieść ilościowo do kolby miarowej o pojemności 500 cm3, uzupełnić wodą do kreski
W celu przygotowania 250 cm³ roztworu 5-wodnej soli CuSO₄ o stężeniu 0,2 mol/dm³, najpierw musimy obliczyć wymaganą ilość soli. Stężenie molowe (C) oblicza się ze wzoru C = n/V, gdzie n to liczba moli, a V to objętość roztworu w dm³. Dla 250 cm³ (czyli 0,25 dm³) i stężenia 0,2 mol/dm³, liczba moli soli wynosi: n = C * V = 0,2 mol/dm³ * 0,25 dm³ = 0,05 mol. Molarność soli CuSO₄ wynosi 250 g/mol, więc masa soli to: m = n * M = 0,05 mol * 250 g/mol = 12,5 g. Przenosząc tę masę soli do kolby miarowej o pojemności 250 cm³ i uzupełniając wodą do kreski, zapewniamy, że roztwór ma dokładnie wymagane stężenie, co jest kluczowe w praktykach laboratoryjnych. Takie postępowanie jest zgodne z dobrymi praktykami chemicznymi, gdzie precyzyjne pomiary i standardowe procedury przygotowywania roztworów są niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 32

Urządzenie z zaworem bezpieczeństwa jest przeznaczone do pracy

A. przy podwyższonym ciśnieniu
B. z substancjami agresywnie korozyjnymi
C. z substancjami szczególnie niebezpiecznymi
D. przy obniżonym ciśnieniu
Odpowiedź 'pod zwiększonym ciśnieniem' jest prawidłowa, ponieważ aparaty wyposażone w zawory bezpieczeństwa są zaprojektowane, aby działać w warunkach, gdzie ciśnienie może przekraczać wartości nominalne. Zawory te mają na celu ochronę przed nadmiernym ciśnieniem, co może prowadzić do uszkodzenia urządzenia lub niebezpieczeństwa dla użytkowników. Przykładem mogą być kotły parowe, które pracują pod wysokim ciśnieniem, gdzie zawór bezpieczeństwa odgrywa kluczową rolę w regulacji i zapewnieniu bezpieczeństwa operacji. Przemysłowe standardy, takie jak ASME (American Society of Mechanical Engineers), podkreślają znaczenie stosowania zaworów bezpieczeństwa w aplikacjach, gdzie nadciśnienia mogą prowadzić do katastroficznych awarii. Zawory te są również regularnie testowane, aby upewnić się, że działają prawidłowo w sytuacjach awaryjnych, co jest istotne dla zapewnienia integralności systemu i bezpieczeństwa operacji.

Pytanie 33

W trakcie produkcji nawozów wieloskładnikowych, pyły oddzielane w urządzeniach odpylających oraz produkty, które nie spełniają standardów jakościowych, zgodnie z zasadą maksymalnego wykorzystania surowców, powinny być

A. w całości zwrócone do procesu
B. przechowywane na składowiskach odpadów niebezpiecznych
C. zneutralizowane mlekiem wapiennym
D. umieszczone na poletkach osadowych
Odpowiedź, która wskazuje na konieczność zwrócenia pyłów oraz produktów niespełniających norm jakościowych z powrotem do procesu produkcji nawozów wieloskładnikowych, jest zgodna z zasadą najlepszej praktyki w zarządzaniu surowcami. W branży nawozowej, zrównoważone wykorzystanie surowców i minimalizacja odpadów są kluczowe. Zwracanie surowców do procesu produkcyjnego nie tylko zwiększa efektywność wykorzystania materiałów, ale również zmniejsza negatywny wpływ na środowisko. Przykładem może być sytuacja, w której niezadowalające jakościowo odpady są poddawane dalszym procesom przetwarzania, takim jak regeneracja czy ponowne wykorzystanie składników aktywnych. Wdrożenie takich praktyk jest zgodne z normami ISO 14001, które promują systemy zarządzania środowiskowego. Działania te są również często wspierane przez regulacje prawne, które nakładają obowiązek ograniczania odpadów i promują recykling. Stosując te zasady, przedsiębiorstwa nie tylko dbają o zrównoważony rozwój, ale także mogą zmniejszyć koszty produkcji przez redukcję zakupu nowych surowców.

Pytanie 34

Urządzenia, które funkcjonują na zasadzie przesuwania materiału przy pomocy obracającego się wału o śrubowej powierzchni w otwartym lub zamkniętym korycie, to przenośniki

A. ślimakowe
B. zgarniakowe
C. członowe
D. kubełkowe
Przenośniki ślimakowe są urządzeniami, które wykorzystują zasadę działania obrotowego wału o powierzchni śrubowej do przesuwania materiałów w korytach otwartych lub zamkniętych. Ich konstrukcja pozwala na efektywne transportowanie materiałów sypkich, takich jak zboża, piasek czy węgiel. Wał ślimakowy, który jest umieszczony w obudowie, obraca się, co powoduje przesuwanie materiału w kierunku wyjścia. Przenośniki te są szeroko stosowane w różnych branżach, w tym w rolnictwie, budownictwie i przemyśle chemicznym. Standardy branżowe, takie jak normy ISO dotyczące transportu materiałów, podkreślają znaczenie przenośników ślimakowych w procesach logistycznych, ze względu na ich wysoką wydajność oraz możliwość dostosowania do różnych zastosowań. Przykładowe zastosowania obejmują systemy transportowe w młynach, gdzie przenośniki te transportują mąkę, lub w zakładach produkcyjnych, gdzie przesuwają różne surowce w procesach produkcyjnych. Dodatkowo, przenośniki ślimakowe mogą być projektowane w różnych rozmiarach i konfiguracjach, co pozwala na ich dopasowanie do specyficznych wymagań operacyjnych.

Pytanie 35

Dekarbonizacja wody przy użyciu wody wapiennej polega na dodawaniu do niej nasyconego roztworu Ca(OH)2 o stężeniu 0,15%. Do zmiękczania 1000 dm3 wody przemysłowej konieczne jest przygotowanie 1 kg wody wapiennej. Ile wodorotlenku wapnia jest potrzebne do uzyskania 1 kg wody wapiennej?

A. 0,15 kg Ca(OH)2
B. 1,5 g Ca(OH)2
C. 0,15 g Ca(OH)2
D. 1,5 kg Ca(OH)2
Odpowiedź 1,5 g Ca(OH)2 jest poprawna, ponieważ do sporządzenia 1 kg wody wapiennej o stężeniu 0,15% potrzebujemy 1,5 g wodorotlenku wapnia. Obliczenia można przeprowadzić w sposób następujący: 0,15% roztworu oznacza, że na 100 g roztworu przypada 0,15 g substancji czynnej. W przypadku 1 kg (1000 g) roztworu, wartość ta wynosi 1,5 g (1000 g * 0,15% = 1,5 g). Taki roztwór jest stosowany w procesach dekabonizacji, gdzie woda wapienna działa jako środek zmiękczający, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak oczyszczanie wody czy neutralizacja kwasów. Zastosowanie odpowiednich dawek substancji chemicznych jest zgodne z normami branżowymi, co przyczynia się do efektywności procesów oraz ochrony środowiska.

Pytanie 36

Ile dm3 wody o gęstości 1 g/cm3 powinno być odmierzone, by przygotować 1000 kg roztworu chlorku sodu o stężeniu 25% masowych?

A. 250 dm3
B. 25 dm3
C. 975 dm3
D. 750 dm3
Aby sporządzić 1000 kg roztworu chlorku sodu o stężeniu 25%, musimy najpierw obliczyć masę chlorku sodu oraz masę wody, która będzie potrzebna. Stężenie masowe 25% oznacza, że na 100 g roztworu przypada 25 g chlorku sodu. Zatem w 1000 kg roztworu (co odpowiada 1 000 000 g) ilość chlorku sodu wynosi 25% z tej masy, co daje 250 000 g. Reszta masy roztworu, czyli masa wody, będzie wynosić 1 000 000 g - 250 000 g = 750 000 g. Ponieważ gęstość wody wynosi 1 g/cm³, to 750 000 g wody odpowiada 750 000 cm³, co przelicza się na 750 dm³. Takie wyliczenia są zgodne z zasadami przygotowania roztworów w chemii oraz standardami laboratoryjnymi, gdzie precyzyjne obliczenia są kluczowe dla uzyskania oczekiwanych wyników. W praktyce, znajomość stężeń i umiejętność przeliczania objętości wody jest niezwykle ważna podczas przygotowywania reagentów w laboratoriach chemicznych oraz w przemyśle farmaceutycznym.

Pytanie 37

Należy podłączyć poziomowskaz rurkowy do zbiornika otwartego

A. dwoma końcami, jeden na górze, a drugi w środkowej części
B. jednym końcem jedynie od góry
C. jednym końcem jedynie od dołu
D. dwoma końcami, jeden na dole, drugi w środkowej części
Poziomowskaz rurkowy, który czasami nazywamy manometrem otwartym, to naprawdę użyteczne narzędzie do sprawdzania poziomu cieczy w różnych zbiornikach. Działa na zasadzie hydrostatyki, co oznacza, że różnica ciśnienia w cieczy sprawia, że ciecz przemieszcza się w rurkach. Jak podłączysz go jednym końcem do dołu zbiornika otwartego, to możesz mieć pewność, że pomiar będzie prawidłowy. Ciecz w zbiorniku wpłynie bezpośrednio na poziom cieczy w rurce, co jest super ważne, żeby uniknąć zakłóceń od ciśnienia atmosferycznego. Taki poziomowskaz świetnie się sprawdza przy kontroli poziomu wody w studniach, przemyśle czy instalacjach wodociągowych, gdzie ważna jest dokładność. Warto też pamiętać o standardach, jak ISO 5167, które podkreślają, jak ważna jest właściwa instalacja tych urządzeń, żeby działały sprawnie i pokazywały prawidłowe wartości.

Pytanie 38

Ile gramów azotanu(V) potasu należy zmieszać z drugą solą i 150 g lodu, aby otrzymać mieszaninę oziębiającą do co najmniej -19°C?

Sole i ich masa (w gramach) przypadająca na 100 g loduTemperatura minimalna otrzymana w wyniku zmieszania soli w °C
24,5 g KCl + 4,5 g KNO₃-11,8
55,3 g NaNO₃ + 48,0 g KH₂Cl-17,7
62,0 g NaNO₃ + 10,7 g KNO₃-19,4
18,8 g NH₄Cl + 44,0 g NH₄NO₃-22,1

A. 13,50 g
B. 9,20 g
C. 6,75 g
D. 16,05 g
Aby uzyskać mieszaninę oziębiającą do co najmniej -19°C, kluczowe jest zrozumienie, jak działają reakcje endotermiczne zachodzące podczas rozpuszczania soli. W przypadku azotanu(V) potasu, zgodnie z badaniami, stosunek masy soli do masy lodu wynosi 10,7 g soli na 100 g lodu. Przy 150 g lodu, potrzebna masa soli wynosi 16,05 g, co odpowiada odpowiedzi czwartej. Przykładem praktycznego zastosowania tej wiedzy może być przygotowanie chłodzących mieszanin w laboratoriach chemicznych, gdzie precyzyjne temperatury są kluczowe dla wielu eksperymentów. Warto również pamiętać, że oparte na fundamentalnych zasadach chemicznych metody przygotowania takich mieszanin są zgodne z podstawowymi normami bezpieczeństwa i efektywności w pracy z substancjami chemicznymi, co podkreśla ich znaczenie w praktyce laboratoryjnej.

Pytanie 39

Jakie działania nie powinny być realizowane w procesie technologicznym?

A. Najbardziej efektywne prowadzenie procesów przy minimalnym zużyciu energii
B. Najbardziej efektywne prowadzenie procesów przy maksymalnym zużyciu surowców
C. Osiąganie wysokiej wydajności produktów z jednostki objętości urządzenia
D. Najbardziej efektywne prowadzenie procesów przy minimalnym zużyciu surowców
Postępowanie polegające na najszybszym prowadzeniu procesów przy minimalnym wykorzystaniu surowców jest nieodpowiednie, ponieważ prowadzi do nieefektywności w szerokim kontekście procesu technologicznego. W praktyce, maksymalne wykorzystanie surowców jest kluczowe dla optymalizacji kosztów produkcji oraz minimalizacji odpadów. Wiele branż, takich jak przemysł chemiczny czy spożywczy, stosuje zasady zrównoważonego rozwoju, w których dąży się do jak największej efektywności wykorzystania surowców. Przykładem może być metodologia Lean Manufacturing, która koncentruje się na eliminacji marnotrawstwa, gdzie surowce są wykorzystywane w sposób maksymalny, co również przekłada się na lepszą jakość produktów końcowych. Wprowadzenie efektywnych procesów technologicznych pozwala nie tylko na zwiększenie wydajności, ale także na zminimalizowanie negatywnego wpływu na środowisko. Dobre praktyki wskazują, że każdy proces technologiczny powinien być zaprojektowany z myślą o równowadze między wydajnością a efektywnością wykorzystania zasobów, co jest fundamentalne w nowoczesnym podejściu do produkcji.

Pytanie 40

Jakie typy materiałów mogą być rozdrabniane przy użyciu młyna młotkowego?

A. Suche i kruche
B. Wilgotne i włókniste
C. Miękkie oraz elastyczne
D. Twarde i zbrylające się
Młyn młotkowy jest urządzeniem przeznaczonym do rozdrabniania materiałów suchych i kruchych, co wynika z jego konstrukcji oraz sposobu działania. Materiały te, w przeciwieństwie do włóknistych czy ciągliwych, charakteryzują się niską zawartością wody oraz strukturą, która umożliwia ich efektywne rozdrabnianie przy użyciu młotków. W procesie rozdrabniania, młotki uderzają o materiał, powodując jego łamanie na mniejsze cząstki. Przykłady materiałów, które można skutecznie rozdrabniać przy użyciu młyna młotkowego, to ziarna zbóż, cukier, a także różne rodzaje węgla i minerałów. Zastosowanie młynów młotkowych znajduje się w wielu branżach, takich jak przemysł spożywczy, chemiczny czy farmaceutyczny, gdzie precyzyjne zmielenie surowców jest kluczowe dla dalszego etapu produkcji. Dobre praktyki wskazują, że prawidłowe dobieranie materiałów do młyna młotkowego przekłada się na efektywność procesu oraz jakość finalnego produktu.