Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 20 maja 2025 11:38
  • Data zakończenia: 20 maja 2025 11:46

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie działania nie powinny być realizowane w procesie technologicznym?

A. Najbardziej efektywne prowadzenie procesów przy maksymalnym zużyciu surowców
B. Osiąganie wysokiej wydajności produktów z jednostki objętości urządzenia
C. Najbardziej efektywne prowadzenie procesów przy minimalnym zużyciu surowców
D. Najbardziej efektywne prowadzenie procesów przy minimalnym zużyciu energii
Postępowanie polegające na najszybszym prowadzeniu procesów przy minimalnym wykorzystaniu surowców jest nieodpowiednie, ponieważ prowadzi do nieefektywności w szerokim kontekście procesu technologicznego. W praktyce, maksymalne wykorzystanie surowców jest kluczowe dla optymalizacji kosztów produkcji oraz minimalizacji odpadów. Wiele branż, takich jak przemysł chemiczny czy spożywczy, stosuje zasady zrównoważonego rozwoju, w których dąży się do jak największej efektywności wykorzystania surowców. Przykładem może być metodologia Lean Manufacturing, która koncentruje się na eliminacji marnotrawstwa, gdzie surowce są wykorzystywane w sposób maksymalny, co również przekłada się na lepszą jakość produktów końcowych. Wprowadzenie efektywnych procesów technologicznych pozwala nie tylko na zwiększenie wydajności, ale także na zminimalizowanie negatywnego wpływu na środowisko. Dobre praktyki wskazują, że każdy proces technologiczny powinien być zaprojektowany z myślą o równowadze między wydajnością a efektywnością wykorzystania zasobów, co jest fundamentalne w nowoczesnym podejściu do produkcji.

Pytanie 2

Jakie urządzenia wykorzystuje się do łączenia składników w stanie ciekłym?

A. Miksery
B. Mieszarki
C. Mieszalniki
D. Zagniatarki
Mieszalniki są specjalistycznymi urządzeniami zaprojektowanymi do efektywnego mieszania składników w fazie ciekłej. Działają na zasadzie wprowadzenia energii mechanicznej do cieczy, co umożliwia równomierne rozprowadzenie składników i uzyskanie jednorodnej konsystencji. W praktyce znajdują zastosowanie w różnych branżach, takich jak przemysł chemiczny, spożywczy, farmaceutyczny czy kosmetyczny. Przykładem może być produkcja farb, gdzie mieszalniki zapewniają dokładne wymieszanie pigmentów z rozpuszczalnikami. Kluczowymi cechami dobrego mieszalnika są jego wydajność, łatwość w obsłudze oraz zdolność do mieszania różnorodnych gęstości cieczy. Dobre praktyki branżowe zalecają regularne utrzymanie i czyszczenie mieszalników, aby zapewnić ich długowieczność oraz jakość produkcji.

Pytanie 3

Zbiorniki używane do rozcieńczania kwasu siarkowego(VI) w procesie wytwarzania superfosfatu są wyłożone

A. polipropylenem
B. blachą ołowianą
C. blachą ze stali nierdzewnej
D. polietylenem
Blacha ołowiana jest stosowana do wykładania zbiorników przeznaczonych do rozcieńczania kwasu siarkowego(VI) z kilku kluczowych powodów. Po pierwsze, ołów charakteryzuje się doskonałą odpornością na działanie silnych kwasów, takich jak kwas siarkowy, co czyni go idealnym materiałem do tego rodzaju zastosowań. Zastosowanie blachy ołowianej minimalizuje ryzyko uszkodzenia zbiornika oraz potencjalne wycieki, które mogą prowadzić do niebezpiecznych sytuacji. Po drugie, blacha ołowiana ma właściwości antykorozyjne, co jest istotne w kontekście długotrwałego przechowywania i transportu substancji agresywnych. Przykładem zastosowania blachy ołowianej są zbiorniki w zakładach chemicznych, gdzie przechowuje się substancje reaktywne. Użycie odpowiednich materiałów zgodnych z normami, takimi jak standardy ISO dotyczące bezpieczeństwa chemicznego, jest kluczowe w procesach przemysłowych, aby zapewnić nie tylko efektywność, ale także bezpieczeństwo operacyjne.

Pytanie 4

Zanim zatrzymasz działającą pompę wirową, powinieneś

A. przeprowadzić "zalanie" pompy
B. otworzyć zawór w rurociągu tłocznym
C. zweryfikować poziom oleju smarującego
D. zamknąć zawór w rurociągu ssawnym
Dokonanie 'zalania' pompy wirowej przed jej zatrzymaniem jest kluczowym krokiem w procesie zapewnienia jej prawidłowej pracy. Zalanie pompy polega na napełnieniu wirnika cieczą, co zapobiega nadmiernemu nagrzewaniu się elementów pompy oraz minimalizuje ryzyko uszkodzenia wirnika na skutek pracy na sucho. Niezalanie pompy może prowadzić do zjawiska kawitacji, co negatywnie wpływa na efektywność pompy, a w skrajnych przypadkach może prowadzić do jej uszkodzenia. W praktyce, przed zatrzymaniem pompy, warto również obserwować temperaturę oraz ciśnienie w instalacji, aby upewnić się, że proces zatrzymania jest bezpieczny. Dobre praktyki przemysłowe sugerują, aby każdy operator pomp wirowych był dobrze zaznajomiony z procedurami zabezpieczającymi ich urządzenia, a także regularnie odbywał szkolenia dotyczące obsługi i konserwacji sprzętu. Wprowadzenie procedur operacyjnych, które obejmują 'zalanie' przed zatrzymaniem, wpisuje się w standardy utrzymania ruchu oraz bezpieczeństwa w branży.

Pytanie 5

Co należy zrobić w przypadku, gdy dojdzie do rozszczelnienia rurociągu, który przesyła medium technologiczne?
sprężone powietrze.

A. Opróżnić rurociąg z przesyłanego medium i przedmuchać gazem neutralnym
B. Zamknąć zawór odcinający odpływ przesyłanego medium i wtłoczyć do rurociągu
C. Zamknąć najbliższe zawory odcinające dopływ i odpływ przesyłanego medium
D. Przełączyć przepływ medium na rurociąg zapasowy
Zamknięcie najbliższych zaworów odcinających dopływ i odpływ transportowanego medium jest kluczowym krokiem w sytuacji rozszczelnienia rurociągu. Taki proces minimalizuje ryzyko dalszych strat medium oraz zapewnia bezpieczeństwo operacji. W praktyce, zawory odcinające są projektowane jako elementy zabezpieczające, które powinny być łatwo dostępne w sytuacjach awaryjnych. Po ich zamknięciu, możliwe jest przeprowadzenie dalszych działań, takich jak ocena uszkodzenia, naprawa rurociągu czy przetłaczanie medium do rurociągu zapasowego. Wiele standardów branżowych, w tym normy ISO i ASME, zaleca stosowanie procedur awaryjnych, które obejmują zamykanie zaworów w przypadku wykrycia rozszczelnienia. Umożliwia to skuteczną kontrolę procesu oraz ogranicza potencjalne zagrożenia dla pracowników oraz środowiska. Ponadto, regularne szkolenia dla pracowników oraz testowanie systemów odcinających są niezbędne dla zapewnienia ich prawidłowego działania.

Pytanie 6

Jak należy pobrać próbkę 98 % roztworu kwasu siarkowego(VI) do badań laboratoryjnych, aby zbadać jego stężenie?

A. Za pomocą pipety
B. Za pomocą kurka probierczego
C. Za pomocą wgłębnika spiralnego
D. Za pomocą aspiratora
Pobieranie próbki kwasu siarkowego(VI) z roztworu 98% wymaga zastosowania narzędzi, które zapewnią bezpieczeństwo i precyzję. Kurki probiercze są standardowym rozwiązaniem w laboratoriach chemicznych, które umożliwiają kontrolowane pobieranie cieczy bez ryzyka jej rozlania czy zanieczyszczenia. Dzięki zastosowaniu kurka, można pobrać dokładną ilość kwasu, co jest kluczowe dla dalszych analiz, w tym określenia stężenia roztworu. W przypadku kwasu siarkowego(VI), który jest substancją żrącą, kluczowe jest również, aby wszelkie operacje przeprowadzać z zachowaniem odpowiednich procedur BHP, w tym użycie rękawic, okularów ochronnych oraz pracy w dobrze wentylowanym pomieszczeniu. Tego typu próbki są często używane do badań jakościowych i ilościowych, a ich prawidłowe pobranie wpływa na wyniki analizy. Warto również pamiętać, że standardy laboratoryjne, takie jak ISO, zalecają stosowanie odpowiednich narzędzi do pobierania próbek, co dodatkowo potwierdza zasadność wyboru kurka probierczego.

Pytanie 7

Nadzór nad działaniem rurociągu transportującego ciekłą siarkę obejmuje między innymi weryfikację poprawności funkcjonowania

A. systemu grzewczego oraz kontroli szczelności izolacji
B. systemu transportu pneumatycznego
C. systemu chłodzącego oraz kontroli zaworów bezpieczeństwa
D. systemu chłodnic ociekowych
Cały proces monitorowania rurociągów do transportu ciekłej siarki jest mega ważny, jeśli chodzi o bezpieczeństwo i sprawność działania. Twoja odpowiedź o systemie grzewczym oraz kontroli szczelności izolacji jest na miejscu, bo w przypadku cieczy, a zwłaszcza takiej, jak siarka, która jest gęsta i wrażliwa na temperaturę, trzeba dbać o odpowiednią temperaturę, żeby nie doszło do krystalizacji. System grzewczy trzyma siarkę w płynnej formie, co jest kluczowe przy jej przewożeniu. Kontrola szczelności izolacji też ma ogromne znaczenie, bo żeby utrzymać dobrą temperaturę, izolacja musi być sprawna. Dobrze jest regularnie sprawdzać te systemy, robić inspekcje i testy, żeby nie doszło do jakichś strat energii ani wycieków, co mogłoby być niebezpieczne dla środowiska i ludzi. Trzymanie się takich praktyk idzie w parze z międzynarodowymi normami, jak ISO 14001, które promują odpowiedzialne podejście do ochrony środowiska w przemyśle.

Pytanie 8

Rysunek przedstawia manometr, który służy do pomiaru ciśnienia w zbiorniku z chlorem. W jakim zakresie ciśnień mierzonego medium powinien pracować ten ciśnieniomierz?

Ilustracja do pytania
A. 0 ± 0,60 MPa
B. 0 ± 0,40 MPa
C. 0 ± 0,30 MPa
D. 0 ± 0,45 MPa
Odpowiedź "0 ± 0,45 MPa" jest prawidłowa, ponieważ manometry są projektowane w taki sposób, aby zapewnić odpowiedni zakres pomiarowy dla medium, które mają mierzyć. W przypadku pomiaru ciśnienia w zbiorniku z chlorem, istotne jest, aby zakres pracy manometru nie tylko obejmował spodziewane ciśnienie, ale także zapewniał pewien zapas bezpieczeństwa. W praktyce przyjmuje się, że manometr powinien mieć zakres pomiarowy wyższy od maksymalnego ciśnienia roboczego o co najmniej 10-20%. W związku z tym wybrany zakres 0 ± 0,45 MPa odpowiada temu wymaganiu, biorąc pod uwagę, że maksymalne ciśnienie wskazywane przez manometr wynosi 0,6 MPa. Dodatkowo, manometry powinny być kalibrowane i testowane pod kątem dokładności w swoim zakresie pracy, co jest zgodne z normami ISO 5170 i ISO 9001, aby zapewnić ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Na przykład, w zakładach chemicznych, przy pomiarze ciśnienia w zbiornikach, użycie manometru z odpowiednim zakresem jest kluczowe dla uniknięcia niebezpiecznych sytuacji związanych z nadciśnieniem.

Pytanie 9

Napawanie to sposób na

A. regenerację
B. montaż
C. demontaż
D. czyszczenie
Napawanie to taki proces technologiczny, który polega na dodawaniu i odbudowywaniu materiału na powierzchni różnych elementów. Większość z nas pewnie kojarzy je z regenerowaniem zużytych części maszyn, które z czasem się erodują lub uszkadzają. Na przykład, napawanie wałów, które są już mocno zużyte od długiego używania, to świetny sposób na przedłużenie ich żywotności. W praktyce możemy używać różnych metod napawania, jak gazowo-łukowe, MIG, TIG czy nawet laserowe, w zależności od tego, co mamy do naprawy i jakie właściwości chcemy uzyskać. Osobiście uważam, że dobrze jest znać te różne metody, bo wybór zależy od materiału, z jakiego robimy napawanie, oraz od tego, jakie cechy chcemy osiągnąć. Ważne jest też, żeby przed tym wszystkim zrobić analizę materiałową, żeby zapewnić dobrą przyczepność i zminimalizować naprężenia, co naprawdę wpływa na żywotność końcowego produktu. Także, warto o tym pamiętać w kontekście technologii obróbczej.

Pytanie 10

Jaką czynność należy wykonać przed rozpoczęciem przeglądu oraz konserwacji bełkotki?

A. Obniżyć temperaturę cieczy w zbiorniku
B. Zwiększyć natężenie przepływu powietrza
C. Odłączyć przepływ powietrza
D. Wydobyć bełkotkę z aparatu
Odłączenie przepływu powietrza przed przystąpieniem do przeglądu i konserwacji bełkotki jest kluczowym krokiem w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania urządzenia. Bełkotka, będąca elementem mającym na celu mieszanie i transport cieczy, może generować wysokie ciśnienie, które w przypadku nieodłączenia przepływu powietrza może prowadzić do niebezpiecznych sytuacji, takich jak wycieki lub niekontrolowane rozpryski cieczy. W praktyce, przed rozpoczęciem jakichkolwiek działań konserwacyjnych, zaleca się zawsze stosowanie procedur bezpieczeństwa, które powinny obejmować odłączenie źródła zasilania powietrzem. Zgodnie z wymogami branżowymi, takie praktyki są szczególnie istotne w środowiskach przemysłowych, gdzie bezpieczeństwo pracowników oraz integralność sprzętu są priorytetowe. Ponadto, odłączenie przepływu powietrza pozwala na dokładniejszą ocenę stanu technicznego bełkotki, co może być kluczowe w zapobieganiu awariom oraz w planowaniu przyszłych działań konserwacyjnych. Rekomenduje się także dokonywanie regularnych przeglądów, co zwiększa wydajność systemu i zmniejsza ryzyko wystąpienia usterek.

Pytanie 11

Osoba zajmująca się konserwacją autoklawu powinna w szczególności

A. zabezpieczyć uszczelkę pokrywy smarem
B. dokręcić śruby mocujące urządzenie
C. wymienić manometr
D. wymienić uszczelkę pokrywy
Wymiana uszczelki w pokrywie autoklawu to naprawdę ważna sprawa, jeśli chodzi o konserwację tego sprzętu. Ta uszczelka pomaga utrzymać szczelność autoklawu, co jest kluczowe, żeby osiągnąć potrzebne ciśnienie i temperaturę w trakcie sterylizacji. Jak już uszczelka zaczyna być zużyta, może pojawić się para, co wpływa na efektywność sterylizacji i można się wtedy obawiać jakiejś kontaminacji. Dobrze jest regularnie sprawdzać stan uszczelki podczas przeglądów, zgodnie z tym, co mówi producent i normami ISO 13485, które dotyczą jakości w medycynie. Wymiana powinna być robiona według instrukcji, żeby autoklaw działał sprawnie przez długi czas i żeby standardy sterylizacji były na wysokim poziomie.

Pytanie 12

Jakie są zasady bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła?

A. Na regulacji ilości par odprowadzanych do skraplacza
B. Na analizowaniu twardości wody w wymienniku
C. Na regulacji temperatury czynnika grzewczego/chłodzącego
D. Na weryfikacji szczelności połączeń rur w dnie sitowym
Regulacja ilości oparów odprowadzanych do skraplacza, sprawdzanie szczelności połączeń rurek w dnie sitowym oraz twardości wody w wymienniku to podejścia, które nie odpowiadają na istotę bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła. Pierwsze z wymienionych podejść, dotyczące regulacji oparów, odnosi się głównie do skraplaczy i nie ma bezpośredniego wpływu na efektywność wymiany ciepła w wymiennikach płaszczowo-rurowych. Proces ten koncentruje się na usuwaniu ciepła, a nie na jego regulacji. Sprawdzanie szczelności połączeń rurek w dnie sitowym jest niewątpliwie ważnym aspektem utrzymania wymiennika, jednak nie jest to wymaganie dotyczące bieżącej kontroli pracy, lecz raczej rutynowa inspekcja mająca na celu zapobieganie wyciekom i awariom. Ostatecznie sprawdzanie twardości wody w wymienniku, choć istotne dla ochrony przed osadami, nie jest kluczowe dla bieżącej regulacji temperatury czynnika grzewczego lub chłodzącego, która ma zasadnicze znaczenie dla efektywności wymiany ciepła. W praktyce, skupiając się na tych alternatywnych podejściach, można łatwo przeoczyć istotny element, jakim jest regulacja temperatury, co może prowadzić do nieoptymalnych warunków operacyjnych i obniżenia sprawności całego systemu wymiany ciepła.

Pytanie 13

Produkcja antybiotyków wymaga ścisłego zachowania wartości pH oraz krótkiego czasu trwania procesu ekstrakcji, dlatego do przeprowadzenia ekstrakcji konieczne jest zastosowanie

A. kaskady ekstraktorów
B. ekstraktora wirówkowego
C. kolumny ekstrakcyjnej
D. ekstraktora kołyskowego
Ekstraktor wirówkowy jest optymalnym wyborem do procesu ekstrakcji antybiotyków z kilku istotnych powodów. Przede wszystkim, jego konstrukcja umożliwia skuteczne oddzielanie fazy cieczy od stałej dzięki zastosowaniu siły odśrodkowej, co pozwala na szybkie uzyskanie czystego ekstraktu. W kontekście produkcji antybiotyków, gdzie kluczowe jest zachowanie odpowiedniego reżimu pH, ekstraktor wirówkowy zapewnia minimalny czas kontaktu z reagentami, co redukuje ryzyko degradacji wrażliwych związków. Praktyczne zastosowanie ekstraktorów wirówkowych w przemyśle farmaceutycznym można zauważyć w procesach izolacji penicyliny, gdzie szybkość i efektywność ekstrakcji są kluczowe dla uzyskania wysokiej jakości produktu. Zgodność z dobrymi praktykami produkcyjnymi (GMP) oraz standardami jakości (ISO) również podkreśla znaczenie tego urządzenia w przemyśle, umożliwiając kontrolę nad procesem i zapewniając bezpieczeństwo mikrobiologiczne końcowego produktu.

Pytanie 14

Który z wymienionych metali, użyty jako dodatek do stali, poprawi odporność tego stopu na działanie kwasów?

A. Aluminium
B. Cynk
C. Magnez
D. Nikiel
Nikiel jest metalem, który wykazuje doskonałe właściwości antykorozyjne, co czyni go idealnym dodatkiem do stopów żelaza w zastosowaniach, gdzie odporność na działanie kwasów i różnych mediów chemicznych jest kluczowa. Dzięki swojej zdolności do tworzenia pasywnej warstwy ochronnej, nikiel zapobiega dalszej korozji żelaza, co zwiększa trwałość oraz żywotność takich materiałów. Przykładem zastosowania niklu w stopach żelaza jest stal nierdzewna, która zawiera zazwyczaj od 8% do 12% niklu. Stal nierdzewna, dzięki swoim właściwościom, znajduje szerokie zastosowanie w przemyśle spożywczym, chemicznym oraz budowlanym, gdzie narażona jest na kontakt z agresywnymi substancjami. Stosowanie niklu w stopach żelaza zgodne jest z branżowymi standardami, takimi jak ASTM A240, które określają wymogi dotyczące stali nierdzewnej. Warto również zaznaczyć, że nikiel pomaga w poprawie właściwości mechanicznych stali, co w połączeniu z jego odpornością na korozję czyni go niezwykle ważnym składnikiem w nowoczesnym inżynierii materiałowej.

Pytanie 15

Po włączeniu mieszadła śmigłowego przyciskiem ON, urządzenie nie rozpoczęło pracy. Jakie czynności należy wykonać w pierwszej kolejności?

A. sprawdzenie poziomu urządzenia
B. ocena stanu urządzenia pod kątem korozji
C. połączenie urządzenia z gniazdkiem sieciowym
D. termin ostatniego serwisu
Kiedy próbujesz uruchomić mieszadło śmigłowe i nic się nie dzieje po naciśnięciu przycisku ON, pierwsze co powinieneś sprawdzić, to czy maszyna jest podpięta do gniazdka. To dosyć podstawowa sprawa, ale naprawdę ważna. Zanim zaczniesz grzebać w bardziej skomplikowanych rzeczach, jak sprawdzanie stanu technicznego czy poziomowania, upewnij się, że urządzenie ma prąd. Jeśli nie jest podłączone, to nie ruszy, a wtedy zaczynasz myśleć o poważniejszych problemach, które wcale nie muszą istnieć. Z mojego doświadczenia, zawsze najlepiej zacząć od najprostszych rzeczy, bo to często one są przyczyną problemu. No i nie zapomnij o regularnych przeglądach instalacji elektrycznej – to naprawdę pomoże uniknąć kłopotów. Zgodnie z normami IEC 60204-1, bezpieczne podłączenie do prądu to absolutna podstawa przed używaniem jakiejkolwiek maszyny.

Pytanie 16

Manometr zamontowany na reaktorze do polimeryzacji etylenu pokazuje ciśnienie 3,0 atm. Jakie ciśnienie byłoby odczytywane przez manometr w MPa?

A. Mniej więcej 0,3 MPa
B. Mniej więcej 3 MPa
C. Mniej więcej 30 MPa
D. Mniej więcej 0,03 MPa
Odpowiedź 'około 0,3 MPa' jest poprawna, ponieważ przeliczenie ciśnienia z atmosfer na megapaskale wymaga znajomości konwersji jednostek. 1 atm odpowiada około 0,101325 MPa. W przypadku podanego ciśnienia 3,0 atm, przeliczenie odbywa się według wzoru: 3,0 atm * 0,101325 MPa/atm = 0,303975 MPa, co w zaokrągleniu daje około 0,3 MPa. Rozumienie tych konwersji jest kluczowe, zwłaszcza w kontekście przemysłowym, gdzie ciśnienie jest często monitorowane i regulowane w procesach chemicznych, takich jak polimeryzacja etylenu. W przemyśle petrochemicznym i chemicznym, gdzie precyzyjne pomiary są niezbędne do zapewnienia bezpieczeństwa i efektywności procesów, znajomość jednostek ciśnienia oraz ich przeliczeń jest niezbędna. Warto zaznaczyć, że zgodnie z normami ISO i ANSI, właściwe przeliczanie jednostek oraz ich użycie w dokumentacji technicznej są kluczowe dla dokładności i jednoznaczności danych operacyjnych.

Pytanie 17

Rozpoczęcie analizy stężenia jonów Cu2+ w rozcieńczonych próbkach wody metodą spektrometrii atomowej powinno nastąpić od przygotowania krzywej wzorcowej?

A. adsorpcyjnej
B. polarograficznej
C. amperometrycznej
D. stężeniowej
Odpowiedź stężeniowa jest prawidłowa, ponieważ analiza stężenia jonów Cu2+ w próbkach wodnych wymaga skonstruowania krzywej wzorcowej, która umożliwia określenie stężenia badanej substancji na podstawie pomiarów spektrometrycznych. Krzywa ta jest tworzona poprzez przygotowanie serii roztworów o znanym stężeniu jonu Cu2+, a następnie pomiar intensywności sygnału w spektrometrze atomowym. Dzięki temu możliwe jest ustalenie korelacji pomiędzy stężeniem a intensywnością sygnału, co pozwala na dokładne określenie stężenia w próbkach rozcieńczonych. Tego typu analizy są powszechnie stosowane w laboratoriach analitycznych w celu monitorowania zanieczyszczeń w wodach, zgodnie z wytycznymi metod analitycznych takich jak ISO 11885, co czyni je standardową praktyką w analizie chemicznej.

Pytanie 18

Podczas pracy z pompą wirową, wzrost poziomu hałasu może wskazywać na:

A. zmniejszenie wydajności pompy
B. prawidłowe działanie pompy
C. zużycie łożysk lub kawitację
D. zwiększenie ciśnienia wejściowego
Wzrost poziomu hałasu w pompie wirowej jest zazwyczaj sygnałem ostrzegawczym, że coś jest nie tak. Jednym z głównych powodów takiego stanu może być zużycie łożysk. Łożyska w pompach są kluczowym elementem, zapewniającym płynne i efektywne działanie urządzenia. Z czasem jednak ulegają one zużyciu, co może prowadzić do zwiększonego tarcia, a w konsekwencji do wzrostu hałasu. Innym istotnym powodem może być zjawisko kawitacji. Kawitacja to proces, w którym pęcherzyki pary wodnej tworzą się w cieczy przepływającej przez pompę, a następnie gwałtownie zapadają się. To nie tylko generuje hałas, ale również może prowadzić do uszkodzeń mechanicznych. Zrozumienie tych procesów jest kluczowe dla eksploatacji i konserwacji maszyn przemysłu chemicznego. Regularne przeglądy i monitorowanie stanu technicznego pompy mogą zapobiec poważnym awariom i zapewnić jej długotrwałe działanie. Dbałość o prawidłowe działanie pompy to nie tylko kwestia efektywności, ale również bezpieczeństwa procesu przemysłowego.

Pytanie 19

Przyczyną otrzymywania zbyt wilgotnego osadu w efekcie filtracji zawiesiny z zastosowaniem filtra talerzowego może być

Filtr talerzowy stanowi tarczę o podwójnym dnie, z których dno górne jest perforowane i pokryte tkaniną filtracyjną. Przestrzeń między nimi podłączona jest na trójdrożne segmenty połączone z głowicą umieszczoną na pionowym pustym wale. Głowica podłączona jest do próżni i sprężonego powietrza. Zawiesina jest podawana na powierzchnię segmentów połączonych z próżnią i podczas obrotu talerza podlega filtracji. Filtrat po przejściu przez tkaninę odpływa do źródła próżni, natomiast osad pozostaje na tkaninie i po myciu oraz spulchnieniu strumieniem sprężonego powietrza jest usuwany z tkaniny skrobakiem.

A. zbyt duża częstość obrotów talerza.
B. uszkodzona przegroda filtracyjna.
C. zbyt niskie ciśnienie sprężonego powietrza podczas zbierania osadu.
D. zbyt niskie podciśnienie podczas prowadzenia procesu filtracji.
Zbyt niskie podciśnienie podczas filtracji jest kluczowym czynnikiem mającym wpływ na efektywność procesu filtracyjnego w filtrach talerzowych. Podciśnienie działa jako siła przyciągająca, która umożliwia przetransportowanie zawiesiny do tkaniny filtracyjnej. W przypadku niedostatecznego podciśnienia, proces filtracji może być niewystarczający, co skutkuje powstawaniem osadów o zbyt wysokiej wilgotności. Dobrą praktyką w branży jest regularne monitorowanie wartości podciśnienia oraz jego optymalizowanie w zależności od charakterystyki filtrowanej cieczy. Na przykład, w aplikacjach przemysłowych, takich jak oczyszczanie ścieków, zaleca się stosowanie czujników podciśnienia, które pozwalają na bieżąco śledzenie parametrów filtracji. Dodatkowo, w sytuacjach, które wymagają intensywnej filtracji, można zastosować systemy automatycznej regulacji podciśnienia, co zwiększa efektywność procesu i jakość uzyskanego osadu.

Pytanie 20

Pompa niskociśnieniowa wymaga założenia uszczelki płynnej. Na podstawie zamieszonego fragmentu etykiety wskaż sposób postępowania przy jej zakładaniu.

Uszczelka płynna (fragment etykiety)
Płynne uszczelki stanowią odrębną grupę materiałów, o najlepszych wśród materiałów uszczelniających zdolnościach do dopasowywania się do uszczelnianych powierzchni. Idealnie niwelują wszelkie niedokładności powierzchni, wżery oraz wypełniają nierówności wynikające z chropowatości powierzchni. Są skutecznym rozwiązaniem we wszystkich układach o dużej sztywności elementów np. pomp, zaworów, połączeń gwintowych. Uszczelki mogą pracować w szerokim zakresie temperatur przez długi czas, zapewniają szczelność połączenia przy niskich ciśnieniach natychmiast po zmontowaniu części, oraz eliminują konieczność posiadania pełnego kompletu uszczelek stałych o różnych kształtach.

A. Wyszlifować powierzchnię, nałożyć uszczelkę, gdy temperatura pompy spadnie do temperatury pokojowej, odczekać do uzyskania pełnej szczelności układu.
B. Wyciąć odpowiednią uszczelkę z arkusza i umieścić na oczyszczonej powierzchni, pokryć warstwą uszczelki płynnej, odczekać do uzyskania pełnej szczelności układu.
C. Oczyścić powierzchnię z pyłu i kurzu, nałożyć uszczelkę, która od razu zapewnia pełną szczelność układu.
D. Wyciąć odpowiednią uszczelkę z arkusza i umieścić na wyszlifowanej powierzchni, pokryć warstwą uszczelki płynnej.
Odpowiedź sugerująca wycinanie uszczelki z arkusza lub oczekiwanie na uzyskanie pełnej szczelności układu po nałożeniu uszczelki płynnej zawiera kilka istotnych nieporozumień. Przede wszystkim, uszczelki płynne są zaprojektowane tak, aby po aplikacji od razu osiągały wymagane parametry szczelności. Wiele osób może sądzić, że konieczność wycinania uszczelki z arkusza jest standardową praktyką, jednak nie jest to zalecane w przypadku produktów oferujących natychmiastową funkcjonalność. Tego typu podejście nie tylko może prowadzić do powstania odpadów, ale także wydłuża czas montażu i wprowadza ryzyko niedopasowania uszczelki do konkretnego zastosowania. W praktyce, uszczelki płynne powinny być stosowane zgodnie z instrukcjami producenta, co zapewnia ich optymalną wydajność. Ponadto, oczekiwanie na uzyskanie pełnej szczelności można interpretować jako brak zrozumienia właściwości uszczelki płynnej, ponieważ ich efektywność polega na natychmiastowym związku z aplikowaną powierzchnią. W zastosowaniach przemysłowych, gdzie precyzyjne uszczelnienie jest kluczowe, niewłaściwe podejście do montażu prowadzi do zwiększenia ryzyka awarii układów. Dlatego ważne jest, aby stosować się do sprawdzonych metod i zasad, które są zgodne z aktualnymi standardami branżowymi.

Pytanie 21

Nadzór nad funkcjonowaniem rurociągu, który transportuje oleje smarne, opiera się głównie na monitorowaniu

A. szczelności otuliny izolacyjnej
B. działania systemu chłodzenia
C. temperatury odbieranego medium
D. pracy pompy zanurzeniowej
Monitorowanie szczelności otuliny izolacyjnej rurociągu transportującego oleje smarne jest kluczowym elementem zapewnienia bezpieczeństwa oraz efektywności systemu. Otulina izolacyjna odgrywa istotną rolę w minimalizowaniu strat ciepła oraz zapobieganiu kondensacji, co jest szczególnie ważne w przypadku olejów smarnych, które muszą być transportowane w odpowiednich warunkach temperaturowych. Niekontrolowanie szczelności może prowadzić do poważnych konsekwencji, takich jak wycieki substancji, co nie tylko zagraża środowisku, ale również generuje dodatkowe koszty związane z naprawą i utrzymaniem infrastruktury. W branży petrochemicznej, zgodnie z normami ISO 9001 oraz API 570, regularne inspekcje oraz monitorowanie stanu izolacji są zalecane. Przykładowo, stosowanie technologii termograficznej do wykrywania różnic temperatury na powierzchniach otuliny może pomóc w identyfikacji potencjalnych problemów zanim dojdzie do ich eskalacji. Im bardziej efektywnie monitorujemy stan izolacji, tym mniejsze ryzyko awarii oraz straty ekonomiczne.

Pytanie 22

Wydajność finalnych produktów otrzymywanych w procesie pirolizy różnych surowców w % masowych Wskaż surowiec, który należy poddać pirolizie, aby otrzymać możliwie najwyższą ilość propenu (propylenu) przy wydajności butadienu powyżej 4,0% masowych.

Surowiec poddany pirolizieWydajność produktów pirolizy
etylenpropylenbutadien
Etan81,62,03,0
Propan46,918,72,9
n-Butan44,517,24,4
Benzyna lekka42,315,94,7
Benzyna ciężka34,116,04,9
Lekki olej napędowy29,414,010,6

A. n-Butan.
B. Benzyna ciężka.
C. Benzyna lekka.
D. Propan.
n-Butan jest surowcem, który przy procesie pirolizy osiąga najwyższą wydajność propylenu na poziomie 17,2% masowych. To znacząco przewyższa inne badane surowce. Dla praktyków zajmujących się produkcją chemiczną, właściwy dobór surowców do procesów pirolizy jest kluczowy dla maksymalizacji wydajności oraz redukcji kosztów operacyjnych. Wydajność butadienu z n-Butanu wynosząca 4,4% masowych spełnia wymagania, co czyni go bardzo atrakcyjnym surowcem w kontekście produkcji chemikaliów. W praktyce, n-Butan jest często wykorzystywany w branży petrochemicznej do produkcji różnych związków organicznych, a jego zastosowanie w pirolizie sprzyja uzyskaniu nie tylko propylenu, ale także innych cennych produktów. Przemysł chemiczny dąży do efektywności, dlatego znajomość właściwości surowców oraz ich wydajności w różnych procesach jest niezbędna, aby optymalizować cały cykl produkcji oraz dostosowywać go do potrzeb rynku.

Pytanie 23

Zawartość żywic w benzynie oznacza się spalając na szkiełku zegarkowym 0,5 cm3 lub 1 cm3 benzyny. Pozostałość po spaleniu zostawia ślad w postaci pierścienia, a jego średnica wyznacza zawartość żywic. Benzyna przeznaczona do użytku nie powinna przekraczać 5 mg żywicy w cm3. Tą metodą dokonano analizy i po spaleniu 0,5 cm3 otrzymano pierścień o średnicy 11 mm, a po spaleniu 1 cm3 otrzymano pierścień o średnicy 17 mm. Badana benzyna posiada zawartość żywicy

Zawartość żywic w zależności
od powstającego pierścienia
mg/cm3
51015202530
Próbka 0,5 cm3Średnica
mm
6 – 78 – 910 – 1111 – 1212 – 1314 – 15
Próbka 1,0 cm39 – 1012 – 1314 – 1516 – 1717 – 1819 – 21

A. 15 mg/cm3 i nie nadaje się do użytku.
B. 30 mg/cm3 i nie nadaje się do użytku.
C. 20 mg/cm3 i nie nadaje się do użytku.
D. 15 mg/cm3 i nadaje się do użytku.
Odpowiedź 20 mg/cm3 jest poprawna, ponieważ wynika bezpośrednio z analizy średnicy pierścienia pozostałego po spaleniu benzyny. Średnica 11 mm dla próbki 0,5 cm3 oraz średnica 17 mm dla próbki 1 cm3 wskazują na tę samą zawartość żywic, wynoszącą 20 mg/cm3. Normalizacja w branży paliwowej przewiduje, że maksymalna zawartość żywic w benzynie nie powinna przekraczać 5 mg/cm3, aby zapewnić jej odpowiednią jakość oraz bezpieczeństwo stosowania. Wysoka zawartość żywic może prowadzić do problemów z zasilaniem silników, zwiększonego osadzania się zanieczyszczeń oraz obniżonej wydajności paliwa. Dlatego też, w przypadku badanej benzyny, jej zawartość żywic stanowi poważne naruszenie norm jakościowych, co implikuje, że nie nadaje się ona do użytku. Przykładowo, w przemyśle motoryzacyjnym, stosowanie paliw o zbyt wysokiej zawartości żywic może prowadzić do uszkodzeń układu paliwowego, a w dłuższej perspektywie do znacznie droższych napraw.

Pytanie 24

Jak powinno się składować opakowania z saletrą amonową?

A. Umieszczając je w jasnych, nieprzewiewnych miejscach, ściśle upakowane
B. W magazynach charakteryzujących się wysoką wilgotnością
C. W ogrzewanych pomieszczeniach magazynowych obok gazów technicznych
D. Umieszczając je w bezpiecznej odległości od materiałów palnych i źródeł ciepła
Saletra amonowa jest substancją chemiczną, która w trakcie przechowywania wymaga szczególnej uwagi w odniesieniu do warunków otoczenia. Utrzymywanie opakowań z saletrą amonową z dala od materiałów łatwopalnych i źródeł ciepła jest kluczowe, aby zminimalizować ryzyko pożaru oraz zachować stabilność chemiczną substancji. W wysokich temperaturach i w obecności substancji łatwopalnych, saletra amonowa może stać się niebezpieczna, a nawet prowadzić do wybuchów. Dlatego zgodnie z zaleceniami norm takich jak NFPA (National Fire Protection Association) oraz OSHA (Occupational Safety and Health Administration), należy zapewnić odpowiednie odległości i warunki składowania. Przykładowo, w przemyśle chemicznym, opakowania z saletrą amonową powinny być przechowywane w specjalnie przystosowanych pomieszczeniach magazynowych, które posiadają odpowiednią wentylację oraz systemy przeciwpożarowe. Dodatkowo, ważne jest, aby opakowania były w odpowiednich, trwałych pojemnikach, które uniemożliwią ich uszkodzenie, co mogłoby prowadzić do uwolnienia substancji i zwiększenia ryzyka wystąpienia niebezpiecznych sytuacji.

Pytanie 25

Jakie elementy należy przede wszystkim zweryfikować, przygotowując butle do składowania gazów technicznych pod ciśnieniem do 15 MPa?

A. Aktualność legalizacji butli
B. Stan powłoki malarskiej butli
C. Wagę butli
D. Ilość rozpuszczalnika w butli
Aktualność legalizacji butli jest kluczowym aspektem przy przygotowywaniu butli do magazynowania gazów technicznych pod ciśnieniem. Zgodnie z normami oraz przepisami prawa, każdy zbiornik ciśnieniowy, w tym butle, musi być regularnie poddawany kontroli technicznej oraz legalizacji, aby zapewnić ich bezpieczeństwo i efektywność użytkowania. W Polsce na przykład, zgodnie z Rozporządzeniem Ministra Gospodarki, butle muszą być legalizowane co 10 lat. Kontrola legalizacji obejmuje ocenę stanu technicznego butli, a także potwierdzenie, że spełnia ona odpowiednie normy i standardy jakości. Przykładem zastosowania jest kontrola butli w zakładach przemysłowych, gdzie gazy techniczne są niezbędne do procesów produkcyjnych. Regularna legalizacja pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu czy eksplozjami, co czyni ten proces kluczowym dla bezpieczeństwa wszystkich pracowników oraz otoczenia.

Pytanie 26

Jakie dodatki stosowane w stalach podnoszą ich odporność na działanie pary wodnej, roztworów soli oraz węglowodorów?

A. Chrom, molibden, tytan
B. Mangan, miedź, arsen
C. Fosfor, krzem, nikiel
D. Nikiel, glin, miedź
Chrom, molibden i tytan to dodatki, które znacząco zwiększają odporność stali na działanie pary wodnej, roztworów soli oraz węglowodorów. Chrom, jako kluczowy składnik stali nierdzewnej, działa poprzez tworzenie cienkowarstwowej powłoki pasywnej, która chroni stal przed korozją. W połączeniu z molibdenem, jego właściwości antykorozyjne są znacznie wzmacniane, ponieważ molibden poprawia stabilność struktury w wysokich temperaturach i zwiększa odporność na pitting, czyli miejscową korozję. Tytan z kolei zwiększa wytrzymałość mechaniczna stali oraz jej odporność na działanie wysokich temperatur. W praktyce, stali z tymi dodatkami używa się w przemyśle chemicznym, na przykład w produkcji zbiorników i rur, które są narażone na działanie agresywnych mediów. Zastosowanie stali nierdzewnej w środowiskach o wysokiej wilgotności, jak np. przemysł spożywczy, potwierdza korzyści płynące z używania chromu, molibdenu i tytanu, co wpisuje się w normy jakościowe, takie jak ISO 9327, które regulują produkcję materiałów odpornych na korozję.

Pytanie 27

Ilość odsiarczonego gazu syntezowego, wynosząca 1800 m3, przepływa przez reaktor do syntezy metanolu co godzinę. Jaką objętość gazu m3 przemieszcza się przez reaktor w czasie 1 minuty?

A. 30 m3
B. 60 m3
C. 180 m3
D. 18 m3
Poprawna odpowiedź to 30 m³, co można obliczyć, dzieląc ilość gazu syntezowego przepływającego przez reaktor w ciągu godziny przez liczbę minut w godzinie. W ciągu godziny przepływa 1800 m³ gazu, a ponieważ godzina ma 60 minut, obliczenie wygląda następująco: 1800 m³ / 60 min = 30 m³/min. Tego typu obliczenia są kluczowe w przemyśle chemicznym i energetycznym, gdzie precyzyjne zarządzanie przepływem gazów jest niezbędne do optymalizacji procesów produkcyjnych, takich jak synteza metanolu. W praktyce, zrozumienie przepływów gazów i ich pomiarów jest fundamentem dla inżynierów zajmujących się projektowaniem reaktorów, co pozwala na efektywne zarządzanie procesami i zapewnienie bezpieczeństwa operacji. Dodatkowo, stosowanie narzędzi takich jak diagramy przepływu i analizy procesów stanowi standard w branży, co umożliwia bieżące monitorowanie i optymalizację wydajności.

Pytanie 28

Pompa membranowa jest wykorzystywana do transportowania cieczy

A. bardzo agresywnych
B. o dużej lepkości
C. bardzo lotnych
D. o właściwościach smarujących
Pompy membranowe są specjalistycznym rodzajem urządzeń, które doskonale nadają się do przetłaczania cieczy o wysokiej agresywności chemicznej. Działają na zasadzie zmiany objętości komory pompy, co pozwala na precyzyjne dozowanie i transportowanie substancji. Dzięki zastosowaniu membrany, te pompy mogą radzić sobie z cieczami, które są korozyjne lub mają inne właściwości, które mogłyby uszkodzić tradycyjne pompy. W praktyce pompy membranowe znajdują zastosowanie w wielu branżach, na przykład w przemyśle chemicznym, gdzie transportuje się silne kwasy i zasady, a także w farmaceutyce, gdzie istotne jest zachowanie czystości i jakości substancji. Zgodnie z normami branżowymi, pompy te muszą być regularnie kontrolowane pod kątem ich stanu technicznego oraz szczelności, aby uniknąć wycieków, które mogłyby prowadzić do zanieczyszczenia środowiska lub uszkodzenia instalacji.

Pytanie 29

Jakie działania należy podjąć zgodnie z zasadami technologicznymi w odniesieniu do nadziarna uzyskanego przy produkcji apatytu do wytwarzania superfosfatu?

A. Zwrócić do ponownego mielenia
B. Zastosować jako dodatek do gotowego nawozu
C. Użyć do zagęszczania pulpy fosforowej
D. Przeznaczyć na składowiska z odpadami
Zawrócenie nadziarna do ponownego mielenia jest zgodne z zasadami efektywnego zarządzania surowcami w procesie produkcji superfosfatu. W praktyce oznacza to, że materiał, który nie spełnia odpowiednich norm granulacyjnych, może zostać poddany dodatkowym procesom mielenia, co zwiększa jego wartość użytkową i pozwala na optymalne wykorzystanie surowców. Przykładem zastosowania tej metody jest cykliczne mielenie surowców mineralnych w zakładach chemicznych, gdzie zredukowana granulacja wpływa na lepszą reaktywność substancji w późniejszych etapach produkcji, co z kolei przekłada się na wyższą efektywność nawozów. Zastosowanie ponownego mielenia jest również zgodne z zasadą minimalizacji odpadów w przemyśle chemicznym, co jest kluczowym elementem zrównoważonego rozwoju oraz odpowiedzialności środowiskowej. Ponadto, zgodnie z normami ISO 14001, dążenie do redukcji odpadów i efektywnego gospodarowania surowcami powinno być integralną częścią strategii firmy.

Pytanie 30

Określ zestaw urządzeń laboratoryjnych, który powinien zostać wykorzystany do przeprowadzenia destylacji prostej?

A. Kolba destylacyjna, chłodnica, termometr
B. Kolba ssawkowa, chłodnica, nasadka destylacyjna
C. Kolba destylacyjna, lejek szklany, termometr
D. Kolba stożkowa, chłodnica, tryskawka
Poprawna odpowiedź to kolba destylacyjna, chłodnica i termometr, ponieważ jest to standardowy zestaw sprzętu używanego w procesie destylacji prostej. Kolba destylacyjna jest kluczowym elementem, w którym znajduje się mieszanina cieczy do destylacji. Jej kształt umożliwia efektywne prowadzenie procesu, przyczyniając się do oddzielania substancji na podstawie różnicy temperatur wrzenia. Chłodnica służy do schładzania par, które powstają w wyniku podgrzewania cieczy, co jest niezbędne do kondensacji pary w cieczy. Termometr pozwala na precyzyjne monitorowanie temperatury, co jest kluczowe dla kontrolowania procesu destylacji, gdyż różne składniki mają różne temperatury wrzenia. Przykładem zastosowania destylacji prostej jest oczyszczanie wody, gdzie można oddzielić zanieczyszczenia czy sole rozpuszczone w wodzie. Dzięki zastosowaniu tego zestawu sprzętu, można uzyskać wysokiej jakości produkt końcowy, który spełnia standardy czystości wymagane w laboratoriach oraz przemyśle chemicznym.

Pytanie 31

Który z wymienionych materiałów budowlanych posiada cechy umożliwiające jego wykorzystanie do produkcji chłodnic w przemysłowej instalacji syntezy metanolu?

A. Winidur
B. Stopy cyny
C. Polistyren
D. Stopy glinu
Stopy glinu są szeroko stosowane w przemyśle ze względu na swoje korzystne właściwości mechaniczne i termiczne. Charakteryzują się one dobrą odpornością na korozję, co czyni je idealnym materiałem do zastosowań w instalacjach, gdzie występuje kontakt z substancjami chemicznymi, takimi jak metanol. Dodatkowo, stopy glinu mają niską gęstość, co pozwala na zmniejszenie masy konstrukcji chłodnic, a także doskonałe przewodnictwo cieplne, co jest kluczowe w aplikacjach związanych z wymianą ciepła. Przykładem zastosowania stopów glinu w przemyśle może być produkcja wymienników ciepła, które są kluczowymi komponentami w procesach chemicznych, w tym w syntezie metanolu. W kontekście dobrych praktyk, standardy takie jak ASTM B221 regulują wymagania dla tych materiałów, co zapewnia ich jakość i odpowiednią wydajność w trudnych warunkach przemysłowych.

Pytanie 32

Nadzór nad funkcjonowaniem instalacji zasilającej piec rurowo cylindryczny (flaszkowy) opiera się na ciągłej obserwacji

A. natężenia przepływu oraz temperatury wody
B. natężenia przepływu oraz temperatury ropy naftowej
C. twardości wody dostarczanej do pieca
D. składu oraz odczynu podawanej ropy naftowej
Monitorowanie działania instalacji zasilającej piec rurowo cylindryczny, szczególnie w kontekście przemysłu naftowego, wymaga stałej kontroli natężenia przepływu i temperatury ropy naftowej. Ropa, jako surowiec energetyczny, musi być dostarczana do pieca w odpowiednich warunkach, aby zapewnić efektywność procesu spalania oraz stabilność jego pracy. Odpowiednie natężenie przepływu zapewnia optymalne warunki reakcji chemicznych zachodzących w piecu, co wpływa na jego wydajność oraz bezpieczeństwo operacyjne. Zastosowanie nowoczesnych technologii monitoringu, takich jak sensory temperatury i przepływu, zgadza się z najlepszymi praktykami branżowymi, co pozwala na wczesne wykrywanie nieprawidłowości w działaniu instalacji. Na przykład, nagłe zmiany w natężeniu przepływu mogą wskazywać na zatykanie rurociągów lub problemy z pompami. Właściwe zarządzanie tymi parametrami jest kluczowe dla minimalizacji ryzyka awarii oraz zwiększenia efektywności energetycznej. W praktyce, firmy stosujące takie systemy monitorowania często osiągają lepsze wyniki operacyjne oraz oszczędności kosztów eksploatacyjnych.

Pytanie 33

Guma zbrojona o wysokiej odporności na zerwanie oraz dużym wskaźniku sprężystości znajduje zastosowanie w przemyśle chemicznym do produkcji

A. chemoodpornych powłok reaktorów
B. izolacji termicznych rurociągów
C. podłóg w pomieszczeniach technologicznych
D. taśm transportowych przenośników
Zbrojona guma o dużej wytrzymałości na zerwanie i wysokim współczynniku sprężystości znajduje szerokie zastosowanie w przemyśle chemicznym, w tym w produkcji taśm transportowych przenośników. Ten rodzaj materiału jest idealny do takiego zastosowania, ponieważ musi on znosić intensywne obciążenia mechaniczne oraz kontakt z substancjami chemicznymi. Taśmy transportowe są wykorzystywane do transportu różnych materiałów, od surowców po gotowe produkty, co w praktyce oznacza, że muszą być odporne na działanie chemikaliów, a także charakteryzować się elastycznością, która pozwala na ich odpowiednie dopasowanie do systemów przenośnikowych. Wybór zbrojonej gumy do tych zastosowań oparty jest na standardach branżowych, takich jak ISO 9001, które podkreślają konieczność utrzymania wysokiej jakości materiałów wykorzystywanych w procesach przemysłowych. Przykłady zastosowań obejmują przenośniki używane w zakładach chemicznych, które transportują substancje takie jak kwasy, zasady czy rozpuszczalniki. Odpowiednia trwałość i odporność na czynniki zewnętrzne są kluczowe dla zapewnienia długotrwałej eksploatacji tych systemów.

Pytanie 34

Podczas realizacji procesu suszenia w suszarce wielotaśmowej obsługa powinna od czasu do czasu

A. oczyszczać taśmy i zsyp materiału wysuszonego
B. zawrócić powietrze wylotowe do suszarki
C. wyłączać nagrzewnicę powietrza
D. obniżać intensywność przepływu powietrza
Wyłączanie podgrzewacza powietrza w trakcie procesu suszenia jest niewłaściwym działaniem, które może prowadzić do obniżenia efektywności całego systemu. Podgrzewacz ma na celu utrzymanie odpowiedniej temperatury powietrza, co jest kluczowe dla efektywnego usuwania wilgoci z materiału. Przerwy w podgrzewaniu mogą skutkować zbyt niską temperaturą powietrza, co ogranicza zdolność suszenia i wydłuża czas procesu. Zawracanie powietrza wylotowego do suszarki, choć może wydawać się korzystne z perspektywy ponownego wykorzystania ciepła, w praktyce może prowadzić do obniżenia jakości powietrza wchodzącego do systemu. Takie działanie może powodować gromadzenie się zanieczyszczeń, co negatywnie wpływa na proces suszenia. Zmniejszanie natężenia przepływu powietrza również jest błędnym podejściem, ponieważ odpowiedni przepływ powietrza jest kluczowy dla efektywnego transportu wilgoci z materiału. Zbyt niski przepływ może spowodować, że wilgoć nie zostanie skutecznie usunięta, co prowadzi do niepełnego wysuszenia i potencjalnych problemów z jakością. W związku z tym, kluczowe jest stosowanie się do zaleceń dotyczących przepływu powietrza, co podkreślają standardy branżowe. Właściwe zarządzanie parametrami suszenia i systematyczne czyszczenie urządzeń to fundamentalne aspekty, które pozwalają na osiągnięcie optymalnych rezultatów w procesie suszenia.

Pytanie 35

Które urządzenie jest używane do oddzielania cieczy od ciał stałych w procesie filtracji?

A. wirówka filtracyjna
B. zbiornik ciśnieniowy
C. komora susząca
D. reaktor chemiczny
Proces filtracji jest jednym z kluczowych etapów w przemyśle chemicznym, mającym na celu oddzielenie substancji stałych od cieczy. Wirówka filtracyjna to urządzenie, które wykonuje to zadanie poprzez wykorzystanie siły odśrodkowej. Dzięki szybkiemu obrotowi, ciecz przepływa przez materiał filtracyjny, pozostawiając na nim ciała stałe. Tego typu urządzenia są szczególnie skuteczne przy dużych ilościach zawiesin i gdy wymagana jest wysoka wydajność. W praktyce często stosowane są w zakładach chemicznych, farmaceutycznych czy spożywczych, gdzie jakość filtracji ma kluczowe znaczenie dla końcowej postaci produktu. Wirówki filtracyjne mogą być projektowane w różnych wariantach, dopasowanych do specyficznych wymagań procesowych. Standardy w tym zakresie obejmują takie aspekty jak materiał wykonania, dostosowanie do warunków ciśnieniowych oraz zgodność z normami bezpieczeństwa i higieny. Stosowanie wirówek filtracyjnych zgodnie z zaleceniami producenta i branżowymi wytycznymi zapewnia optymalne rezultaty filtracji oraz minimalizuje ryzyko awarii.

Pytanie 36

W celu przygotowania wsadu do komór koksowniczych należy

Mieszanka wsadowa do komór koksowniczych
składa się z różnych gatunków węgla
zawiera 90-95% kawałków o średnicy mniejszej niż 3 mm
zawiera wodę w ilości poniżej 9%
zawiera popiół w ilości poniżej 8%

A. rozdrobnić i wymieszać w potrzebnych proporcjach węgiel określonych gatunków, przesiać i wysuszyć otrzymaną mieszankę.
B. wymieszać w potrzebnych proporcjach węgiel określonych gatunków, przeprowadzić klasyfikację i pełną analizę mieszanki.
C. rozdrobnić i przesiać węgiel różnych gatunków, zarobić olejem na pastę, przeprowadzić granulację i wysuszyć.
D. rozdrobnić i przesiać węgiel różnych gatunków, posortować, podzielić na partie i wysuszyć.
Odpowiedź jest prawidłowa, ponieważ przygotowanie wsadu do komór koksowniczych wymaga mieszania węgla różnych gatunków w odpowiednich proporcjach, co jest kluczowe dla uzyskania właściwych parametrów technologicznych. Mieszanka powinna mieć zawartość węgla o odpowiedniej frakcji, co zapewnia proces przesiania. Odpowiednie rozdrobnienie węgla do frakcji mniejszej niż 3 mm jest istotne, gdyż umożliwia optymalne spalanie w piecach koksowniczych. Warto zauważyć, że zawartość wody w mieszance nie powinna przekraczać 9%, co jest istotne dla wydajności procesu koksowania. Dodatkowo, niska zawartość popiołu (poniżej 8%) jest również kluczowa, aby uniknąć niepożądanych efektów ubocznych w procesie produkcyjnym. W praktyce, odpowiednie przygotowanie wsadu pozwala na uzyskanie wyższej jakości koksu, co ma bezpośredni wpływ na efektywność produkcyjną oraz jakość finalnych produktów. Dlatego też, kluczowym zagadnieniem w technologii koksowania jest nie tylko dobór odpowiednich gatunków węgla, ale również zapewnienie właściwego procesu technologicznego, co zostało uwzględnione w poprawnej odpowiedzi.

Pytanie 37

Aby przetransportować ciecz o lepkości porównywalnej do lepkości wody z zbiornika znajdującego się na poziomie 0 do zbiornika usytuowanego kilka metrów wyżej, konieczne jest użycie

A. pompy ssąco-tłoczącej
B. pompy próżniowej
C. transportera pneumatycznego
D. transportera ślimakowego
Prawidłowa odpowiedź to pompa ssąco-tłocząca, która jest idealnym rozwiązaniem do transportu cieczy o lepkości zbliżonej do lepkości wody. Tego typu pompy wykorzystują zjawisko podciśnienia, które pozwala na zasysanie cieczy z niższego poziomu i przetłaczanie jej na wyższy poziom. W praktyce pompy ssąco-tłoczące są szeroko stosowane w różnych gałęziach przemysłu, takich jak chemiczny, spożywczy czy farmaceutyczny. Dzięki ich konstrukcji, która składa się z wirnika i obudowy, są one zdolne do efektywnego transportu cieczy, minimalizując jednocześnie straty energii. Z punktu widzenia norm branżowych, stosowanie pomp ssąco-tłoczących zgodnie z wymaganiami ISO 5199 gwarantuje wysoką jakość i niezawodność w działaniu. Przykładem zastosowania mogą być procesy wytwarzania napojów, gdzie konieczne jest przemieszczanie dużych ilości cieczy w sposób ciągły i efektywny. Warto również zauważyć, że te pompy mogą być dostosowane do różnych warunków pracy, co czyni je uniwersalnym narzędziem w transporcie cieczy.

Pytanie 38

Jakim parametrem posługuje się polarymetr podczas przeprowadzania oznaczeń?

A. Kąt skręcenia płaszczyzny polaryzacji światła po przejściu przez roztwór
B. Absorbancja roztworu
C. Różnica współczynników załamania światła pomiędzy próbką a wzorcem
D. Refrakcja roztworu
Wybór błędnych odpowiedzi może wynikać z mylnego zrozumienia podstawowych pojęć związanych z optyką i analizą chemiczną. Odpowiedź dotycząca refrakcji roztworu odnosi się do zjawiska załamania światła, które jest efektem różnicy w prędkości światła w różnych mediach, ale nie jest bezpośrednio związane z pomiarami przeprowadzanymi w polarymetrii. Również absorbancja roztworu, która jest mierzona w spektrofotometrii, jest miarą ilości światła pochłanianego przez substancję, co nie jest tożsame z analizą skręcania płaszczyzny polaryzacji. Różnica współczynników załamania światła natomiast również nie odnosi się do kątów skręcania, ale do właściwości optycznych materiałów. Błędnie przypisując te pojęcia do pomiarów polarymetrycznych, można wpaść w pułapkę myślenia, że różnice w refrakcji czy absorbancji są kluczowe w tej metodzie. Kluczem do zrozumienia polarymetrii jest orientacja na właściwości chiralne substancji, które powodują zmianę kierunku płaszczyzny polaryzacji, co nie jest związane z innymi parametrami optycznymi, takimi jak refrakcja czy absorbancja. Kiedy rozważamy zastosowania polarymetrii, należy skupić się na jej unikalnej zdolności do pomiaru kątów skręcania, które są bezpośrednio związane z chiralnością substancji, a nie na parametrach, które mogą być istotne w innych metodach analitycznych.

Pytanie 39

Jedną z operacji technologicznych realizowanych na etapie wstępnego przetwarzania rud miedzi jest

A. ekstrakcja
B. wypalanie
C. flotacja
D. rafinacja
Flotacja to naprawdę ważny etap w przygotowywaniu rud miedzi. To, co się dzieje, to mieszanie drobno zmielonej rudy z wodą i różnymi chemikaliami, dzięki czemu minerały zawierające miedź oddzielają się od reszty. Wiesz, w przemyśle miedziowym to jest kluczowa metoda, bo pozwala uzyskać naprawdę dobre koncentraty miedzi, które potem można dalej przerabiać. Co ciekawe, flotacja jest uniwersalna i można ją dostosować do różnych rodzajów rud - to jest jej ogromny atut. W branży to jest standard, więc jakby co, zawsze można znaleźć więcej informacji na ten temat w różnych dokumentach o technologii surowców. Myślę, że dobrze rozumiesz, że flotacja jest nieodzowna w tym wszystkim, co dotyczy wydobycia i przetwarzania miedzi.

Pytanie 40

Żywice epoksydowe zaliczane są do kategorii materiałów niemetalicznych

A. ceramicznych
B. kompozytowych
C. szklanych
D. polimerowych
Żywice epoksydowe są klasyfikowane jako materiały polimerowe, co oznacza, że są to substancje zbudowane z długich łańcuchów molekularnych, które nadają im charakterystyczne właściwości. Polimery epoksydowe charakteryzują się doskonałą adhezją, wysoką odpornością chemiczną oraz dobrą stabilnością termiczną, co sprawia, że znajdują szerokie zastosowanie w różnych branżach, takich jak budownictwo, motoryzacja oraz elektronika. Na przykład, epoksydy są często wykorzystywane w produkcji klejów konstrukcyjnych, powłok ochronnych czy kompozytów wzmacnianych włóknem szklanym, co podkreśla ich wszechstronność. Zgodnie z normami takimi jak ASTM D2563, żywice epoksydowe są testowane pod kątem swoich właściwości fizycznych i chemicznych, co zapewnia ich wysoką jakość i niezawodność w aplikacjach przemysłowych. Warto również zwrócić uwagę, że ich właściwości można modyfikować poprzez dodawanie różnych wypełniaczy lub utwardzaczy, co umożliwia dostosowanie do specyficznych potrzeb użytkowników. Dzięki tym cechom, żywice epoksydowe odgrywają kluczową rolę w nowoczesnych technologiach materiałowych.