Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 5 maja 2025 13:10
  • Data zakończenia: 5 maja 2025 13:40

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 1 bar
B. 2 bary
C. 6 barów
D. 9 barów
Nastawa zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła powinna wynosić 6 barów, co odpowiada standardom dla tego typu systemów. Pompy ciepła są projektowane do pracy w określonym zakresie ciśnienia, a 6 barów stanowi odpowiednią wartość zabezpieczającą przed nadmiernym wzrostem ciśnienia, co może prowadzić do uszkodzenia instalacji. W praktyce, zawór bezpieczeństwa powinien otworzyć się, gdy ciśnienie wewnętrzne przekroczy ustaloną wartość, a 6 barów jest powszechnie przyjętą normą dla większości systemów grzewczych. Przykład zastosowania to instalacje ogrzewania podłogowego, gdzie nadmiar ciśnienia może zniszczyć rury. Wybór odpowiedniej nastawy zaworu bezpieczeństwa jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności systemu. Zgodnie z normami PN-EN 12828 oraz PN-EN 12831, należy regularnie kontrolować i konserwować te urządzenia, aby zapewnić ich prawidłowe działanie, co przekłada się na efektywność energetyczną oraz długowieczność instalacji grzewczej.

Pytanie 2

Jakie będzie pierwsze następstwo utraty zasilania w instalacji solarnej podczas słonecznego dnia?

A. wzrost temperatury płynu solarnego
B. wrzenie wody w zbiorniku
C. zapowietrzenie systemu solarnego
D. przeciek płynu solarnego przez zawór bezpieczeństwa
Wzrost temperatury płynu w instalacji solarnej, gdy zasilanie gaśnie, to dość istotny temat. Kiedy jest słońce i panele produkują energię, płyn, który zazwyczaj jest mieszanką wody z glikolem, nagrzewa się pod wpływem promieni słonecznych. Normalnie, dzięki pompom, płyn krąży przez wymienniki ciepła i przekazuje energię do zbiornika. Ale gdy zniknie zasilanie, pompy stają się bezużyteczne, płyn się nie rusza i zaczyna się nagrzewać. To może prowadzić do przegrzania i nawet uszkodzenia sprzętu. Dlatego nowoczesne systemy mają czujniki temperatury i różne zabezpieczenia, które mogą reagować na zmiany temperatury, żeby minimalizować ryzyko uszkodzeń. Normy, jak EN 12975, dostarczają metod, które pomagają monitorować systemy solarne, co jest naprawdę ważne, żeby działały sprawnie przez dłuższy czas.

Pytanie 3

Producent pompy ciepła zasugerował, aby wykonać przyłącze elektryczne chronione wyłącznikiem nadmiarowo-prądowym C20. Oznaczenie to wskazuje, że wyłącznik zadziała podczas uruchamiania pompy przy określonej wielokrotności prądu znamionowego:

A. I = (5-10)In
B. I = (3-5)In
C. I = (15-20)In
D. I = (10-15)In
Wybrane odpowiedzi nie uwzględniają specyfiki działania wyłączników nadmiarowo-prądowych typu C, które charakteryzują się określonym zakresem prądów rozruchowych. Odpowiedzi takie jak (15-20)In, (3-5)In czy (10-15)In przedstawiają błędne założenia co do zachowania wyłączników w warunkach przeciążeniowych. W przypadku wyłączników typu C, ich charakterystyka zadziałania jest dostosowana do obciążeń indukcyjnych, co oznacza, że są one zdolne do tolerowania krótkotrwałych wzrostów prądu, które występują podczas rozruchu silników. Przeciążenia w zakresie 3-5 razy prądu znamionowego są zbyt niskie dla typowych zastosowań w przypadku pomp cieplnych, co może prowadzić do nieprawidłowego działania zabezpieczeń. Odpowiedzi sugerujące wyższe wartości, jak (10-15)In czy (15-20)In, nie są zgodne z rzeczywistością, ponieważ wyłączniki te muszą zadziałać w odpowiednim momencie, aby chronić przed uszkodzeniami, ale nie mogą być zbyt czułe, aby nie wyłączały się w trakcie normalnej pracy urządzenia. Kluczowym błędem jest nieznajomość właściwego zakresu prądów roboczych, co może prowadzić do niewłaściwego doboru elementów zabezpieczających. Zrozumienie, że wyłączniki C są przystosowane do tolerowania wyższych prądów rozruchowych, jest fundamentalne dla zapewnienia zarówno bezpieczeństwa, jak i efektywności systemu elektrycznego w aplikacjach przemysłowych oraz budowlanych.

Pytanie 4

Jaki maksymalny roczny poziom wydajności jednostkowej może uzyskać instalacja solarna z powierzchnią absorberów kolektorów słonecznych równą 15 m2, zaplanowana do podgrzewania wody użytkowej przy dobowym zapotrzebowaniu wynoszącym 500 dm3?

A. 700 ÷ 800 kWh/m2/rok
B. 1000 ÷ 1100 kWh/m2/rok
C. 400 ÷ 500 kWh/m2/rok
D. 100 ÷ 200 kWh/m2/rok
Wartości wydajności jednostkowej dla instalacji solarnej są kluczowe do zrozumienia jej efektywności energetycznej, a nieprawidłowe szacowanie tych wartości prowadzi do mylnych wniosków. Odpowiedzi wskazujące na zakres 100 ÷ 200 kWh/m²/rok oraz 1000 ÷ 1100 kWh/m²/rok nie uwzględniają typowych parametrów dla systemów solarnych, zwłaszcza w kontekście podgrzewania wody użytkowej. Wydajność w przedziale 100 ÷ 200 kWh/m²/rok jest zbyt niska w porównaniu do standardów branżowych, ponieważ nowoczesne kolektory słoneczne, w zależności od lokalnych warunków, powinny osiągać znacznie wyższe wyniki. Z drugiej strony, wysokie wartości w zakresie 1000 ÷ 1100 kWh/m²/rok są wysoce nierealistyczne i wykraczają poza typowe osiągi kolektorów słonecznych, które w rzeczywistości nie są w stanie przetworzyć tak dużej ilości energii w ciągu roku. Błędne podejścia do oceny wydajności mogą wynikać z ignorowania wpływu czynników środowiskowych, takich jak kąt nachylenia kolektorów, ich orientacja oraz lokalne warunki atmosferyczne, które są niezbędne do uzyskania dokładnych szacunków. Ponadto, brak uwzględnienia standardów branżowych, takich jak normy EN 12975, które regulują efektywność kolektorów słonecznych, prowadzi do błędnych ocen ich możliwości. Zrozumienie tych parametrów jest kluczowe dla skutecznego projektowania systemów solarnych, które spełniają wymagania użytkowników.

Pytanie 5

Wartość robót przewidywana przez inwestora jest ustalana w kosztorysie

A. zamiennym
B. inwestorskim
C. ofertowym
D. powykonawczym
Odpowiedź 'inwestorskim' jest prawidłowa, ponieważ koszty robót inwestycyjnych są szczegółowo analizowane i przewidywane w kosztorysie inwestorskim. Kosztorys inwestorski to dokument, który określa przewidywane koszty realizacji projektu budowlanego, biorąc pod uwagę wszystkie niezbędne wydatki związane z jego realizacją. W ramach tego kosztorysu uwzględnia się koszty materiałów, robocizny, transportu oraz innych wydatków związanych z realizacją projektu. Dobrym przykładem może być sytuacja, w której inwestor planuje budowę nowego obiektu budowlanego. Przygotowując kosztorys inwestorski, dokładnie analizuje wszystkie etapy inwestycji, co pozwala na efektywne zarządzanie budżetem oraz minimalizowanie ryzyka wystąpienia nieprzewidzianych wydatków. Kosztorys inwestorski jest zgodny z normami i dobrymi praktykami branżowymi, co zwiększa jego wiarygodność jako narzędzia do planowania finansowego w procesie inwestycyjnym.

Pytanie 6

Kocioł na biomasę powinien być poddany konserwacji w najbardziej odpowiednim czasie, czyli w trakcie

A. przerw w dostawie paliwa do kotła
B. wzrostu efektywności cieplnej kotła
C. realizacji remontu zbiornika CWU
D. zaplanowanego postoju pracy kotłowni
Odpowiedź wskazująca na planowany przestój pracy kotłowni jako najkorzystniejszy okres na przeprowadzenie konserwacji kotła na biomasę jest właściwa, ponieważ w tym czasie urządzenie nie jest eksploatowane, co pozwala na dokładne przeprowadzenie niezbędnych działań serwisowych bez wpływu na jego wydajność i funkcjonalność. Przykładowo, podczas przestoju można przeprowadzić inspekcję elementów krytycznych, takich jak wymienniki ciepła, palniki czy układy podawania paliwa, co jest zgodne z zaleceniami producentów oraz standardami branżowymi, które nakładają obowiązek regularnej konserwacji w celu zapewnienia efektywności energetycznej oraz bezpieczeństwa pracy. Regularne przeglądy i konserwacje mogą również przyczynić się do wydłużenia żywotności kotła oraz zmniejszenia ryzyka awarii, co w dłuższej perspektywie jest korzystne pod względem ekonomicznym. Przykładem może być planowanie prac konserwacyjnych w okresach letnich, kiedy zapotrzebowanie na ciepło jest minimalne, co zapewnia optymalne warunki do przeprowadzenia takich działań.

Pytanie 7

W trakcie montażu systemów energii odnawialnej multicyklony wykorzystywane są jako urządzenia redukujące emisję do atmosfery

A. tlenku węgla
B. koksu
C. pyłu
D. tlenku siarki
W kontekście systemów energetyki odnawialnej, separacja i kontrola emisji zanieczyszczeń jest istotnym zagadnieniem, jednak odpowiedzi dotyczące koksu, tlenku węgla i tlenku siarki są nieadekwatne. Koks jest materiałem stałym, który powstaje w procesie karbochemicznym i nie ma bezpośredniego związku z emisjami w kontekście energetyki odnawialnej, ponieważ nie jest to substancja emitowana w typowych procesach takich jak spalanie biomasy czy wykorzystanie energii wiatrowej. Tlenek węgla, gaz powstający głównie w wyniku niekompletnego spalania, jest ograniczany poprzez odpowiednie technologie kotłowe i nie jest głównym celem działania multicyklonów, które skupiają się na particulate matter. Tlenek siarki, z kolei, jest emisją charakterystyczną dla procesów spalania paliw kopalnych, a nie odnawialnych. Typowe błędy myślowe, prowadzące do wyboru tych odpowiedzi, wynikają z ogólnych skojarzeń z procesami przemysłowymi, które nie są specyficzne dla technologii odnawialnych, a także z niedostatecznego zrozumienia funkcji multicyklonów i ich roli w kontekście jakości powietrza oraz emisji pyłów. W rzeczywistości, efektywność multicyklonów w usuwaniu pyłów jest kluczowa dla spełnienia norm środowiskowych i poprawy jakości powietrza, co podkreśla znaczenie ich stosowania w branży energetyki odnawialnej.

Pytanie 8

Dokumentem dołączonym do propozycji sprzedaży sprzętu systemów odnawialnych źródeł energii, w którym znajdują się specyfikacje techniczne, zasady instalacji, diagramy montażowe oraz warunki użytkowania, są

A. katalogi ofertowe
B. standardy
C. projekty architektoniczne
D. potwierdzone protokoły odbiorcze montażu urządzeń
Katalogi ofertowe stanowią kluczowy element dokumentacji związanej z ofertą sprzedaży urządzeń systemów energetyki odnawialnej. Zawierają one nie tylko szczegółowe dane techniczne dotyczące oferowanych urządzeń, ale także informacje na temat warunków montażu, schematów montażowych oraz warunków eksploatacji. Dzięki temu inwestorzy i wykonawcy mogą dokładnie ocenić, czy dany produkt spełnia ich wymagania i jakie są oczekiwania dotyczące jego instalacji oraz użytkowania. W praktyce katalogi ofertowe są często wykorzystywane na etapie przygotowania projektu, pomagając w doborze odpowiednich urządzeń do konkretnego zastosowania, zgodnie z obowiązującymi normami i przepisami. Przykładowo, w katalogach mogą być zawarte informacje o efektywności energetycznej, co jest istotne przy ocenie zgodności z normami unijnymi, takimi jak dyrektywa w sprawie efektywności energetycznej. Dobrą praktyką w branży jest również aktualizowanie katalogów zgodnie z nowymi technologiami, co umożliwia inwestorom korzystanie z najnowszych rozwiązań na rynku.

Pytanie 9

W instalacji elektrycznej łączącej inwerter z urządzeniem odbierającym prąd zmienny, kolor przewodu neutralnego powinien być

A. czerwony
B. czarny
C. niebieski
D. brązowy
Odpowiedź 'niebieski' jest poprawna, ponieważ kolor niebieski jest standardowym oznaczeniem dla przewodu neutralnego w instalacjach elektrycznych zgodnie z normą IEC 60446. Przewód neutralny odgrywa kluczową rolę w systemie elektrycznym, ponieważ zapewnia drogę powrotną dla prądu, co jest niezbędne do prawidłowego funkcjonowania obwodu. W systemie zasilania prądem zmiennym, przewód neutralny łączy się z ziemią w punkcie transformacji, co pomaga w stabilizacji napięcia oraz bezpieczeństwie użytkowania. Prawidłowe oznaczenie kolorystyczne przewodów jest istotne, aby uniknąć pomyłek podczas instalacji oraz konserwacji systemów elektrycznych. Przykładowo, w instalacjach domowych, przewód neutralny jest zazwyczaj łączony z gniazdkami, co pozwala na prawidłowe funkcjonowanie urządzeń elektrycznych. Warto również zaznaczyć, że inne kolory, takie jak brązowy (faza), czarny (faza) czy czerwony (w niektórych systemach staroświeckich jako faza), nie mogą być używane jako oznaczenie przewodu neutralnego, aby uniknąć niebezpiecznych sytuacji podczas pracy z instalacją.

Pytanie 10

Na podstawie fragmentu katalogu producenta regulatora ładowania dobierz zabezpieczenie do regulatora Solarix PRS 2020.

Regulator ładowania STECA Solarix PRSPRS 1010PRS 1515PRS 2020PRS 3030
Parametry operacyjne
Napięcie systemu12V (24V)
Zużycie własne< 4 mA
Strona wejściowa DC
Maksymalne napięcie obwodu otwartego Uoc paneli< 47 V
Maksymalny prąd wejściowy (Imax)10 A15 A20 A30 A
Strona wyjściowa DC
Napięcie akumulatorów9V ... 17 V (17,1 V ... 34 V)
Maksymalny prąd obciążenia10 A15 A20 A30 A
Zakończenie ładowania13,9 V (27,8 V)
Ładowanie boost14,4 V (28,8 V)
Ładowanie wyrównawcze14,7 V (29,4 V)
Załączenie po rozłączeniu (LVR)12,4 V ... 12,7 V (24,8 V ... 25,4 V)
Rozłączenie akumulatora (LVD)11,2 V ... 11,6 V (22,4 V ... 23,2 V))
Warunki pracy
Temperatura otoczenia-25°C ÷ +50°C
Montaż i podłączenie
Terminal16 mm2 / 25 mm2 - AWG 6 / 4
OchronaIP 32
Wymiary (D x W x G)187 x 96 x 45 mm
Masa345 g

A. 10 A
B. 30 A
C. 15 A
D. 20 A
Wybranie zabezpieczenia o wartości 20 A dla regulatora ładowania Solarix PRS 2020 jest prawidłowe, ponieważ maksymalny prąd wejściowy (I_max) zgodnie z informacjami zawartymi w katalogu producenta wynosi właśnie 20 A. Dobrze dobrane zabezpieczenie jest kluczowe dla efektywnej pracy systemu fotowoltaicznego, ponieważ chroni zarówno regulator, jak i akumulatory przed nadmiernym prądem, który mógłby prowadzić do ich uszkodzenia lub skrócenia żywotności. W praktyce, zabezpieczenie powinno być dostosowane do maksymalnych parametrów urządzenia, aby zapewnić optymalne działanie. W branży fotowoltaicznej zaleca się stosowanie zabezpieczeń o wartości nieprzekraczającej maksymalnego prądu wejściowego, co zmniejsza ryzyko przeciążenia. Przy doborze zabezpieczeń niezbędne jest również uwzględnienie warunków pracy oraz specyfiki instalacji, co jest istotnym elementem w zgodności z normami bezpieczeństwa. Warto także pamiętać, że właściwe zabezpieczenie wpływa na stabilność oraz wydajność całego systemu, co jest kluczowe dla inwestycji w odnawialne źródła energii.

Pytanie 11

Który typ kotła pozwala na odzyskanie ciepła z pary wodnej obecnej w spalinach?

A. Odzyskowy
B. Przepływowy
C. Nadkrytyczny
D. Kondensacyjny
Kocioł kondensacyjny jest zaprojektowany do odzyskiwania ciepła pary wodnej zawartej w spalinach, co znacząco zwiększa jego efektywność energetyczną. Działa na zasadzie kondensacji pary wodnej, co pozwala na wykorzystanie energii cieplnej, która byłaby w przeciwnym razie utracona w atmosferze. W praktyce, kocioł kondensacyjny potrafi osiągnąć sprawność przekraczającą 100% na podstawie wartości dolnej, co oznacza, że wykorzystuje więcej energii zawartej w paliwie niż tradycyjne kotły. Tego rodzaju urządzenia są zgodne z normami ekologicznymi, takimi jak dyrektywy unijne dotyczące efektywności energetycznej i emisji CO2. Przykładem zastosowania kotłów kondensacyjnych są nowoczesne systemy grzewcze w budynkach mieszkalnych, które dzięki nim mogą znacząco obniżyć koszty ogrzewania oraz zmniejszyć ślad węglowy. Dodatkowo, zastosowanie kotłów kondensacyjnych w przemyśle może przyczynić się do poprawy efektywności energetycznej procesów przemysłowych, co wpisuje się w ogólne trendy zrównoważonego rozwoju.

Pytanie 12

Jaką minimalną powierzchnię działki należy posiadać do zainstalowania poziomego wymiennika gruntowego w glebie gliniastej, który będzie źródłem energii niskotemperaturowej dla pompy ciepła o mocy grzewczej wynoszącej 10 kW?

A. od 400 m2 do 600 m2
B. od 10 m2 do 20 m2
C. od 2000 m2 do 3000 m2
D. od 60 m2 do 100 m2
Odpowiedź od 400 m2 do 600 m2 jest prawidłowa, ponieważ montaż wymiennika gruntowego poziomego w gruncie gliniastym wymaga odpowiedniej powierzchni do efektywnego pozyskiwania energii cieplnej. W gruntach gliniastych, ze względu na ich niską przewodność cieplną, wymiennik musi mieć większą powierzchnię, aby zapewnić efektywne przekazywanie ciepła do pompy ciepła o nominalnej mocy grzewczej wynoszącej 10 kW. Zgodnie z normami i zaleceniami branżowymi, optymalne projektowanie wymienników gruntowych uwzględnia nie tylko moc urządzenia, ale także właściwości gruntu. W praktyce, dla systemów gruntowych, zaleca się, aby na każdy 1 kW mocy grzewczej przypadało przynajmniej 10-15 m2 powierzchni wymiennika, co w przypadku 10 kW daje nam 100-150 m2. Jednak ze względu na specyfikę gruntów gliniastych, powyżej tego minimum, powierzchnia od 400 m2 do 600 m2 jest niezbędna, aby zapewnić optymalną wydajność całego systemu. Przykładowo, w sytuacji, gdy grunt jest zbyt mały, może to doprowadzić do niskiej efektywności systemu, co w dłuższej perspektywie może skutkować wyższymi kosztami eksploatacyjnymi oraz obniżoną wydajnością pompy ciepła.

Pytanie 13

W trakcie działania słonecznej instalacji grzewczej zauważono wyciek czynnika z zaworu bezpieczeństwa. Jakie mogą być przyczyny tego zjawiska?

A. niskie natężenie przepływu płynu solarnego
B. niewystarczająca temperatura czynnika roboczego
C. niedostateczna pojemność naczynia przeponowego
D. nadmierne natężenie przepływu płynu solarnego
Zawór bezpieczeństwa w instalacji grzewczej jest kluczowym elementem, który zapewnia ochronę układu przed nadmiernym ciśnieniem. W przypadku, gdy pojemność naczynia przeponowego jest niewystarczająca, może dojść do nadmiernego wzrostu ciśnienia w układzie, co skutkuje wypływem czynnika grzewczego z zaworu bezpieczeństwa. Naczynie przeponowe ma za zadanie kompensować zmiany objętości płynów w systemie w wyniku podgrzewania, a zbyt mała jego pojemność nie jest w stanie skutecznie zniwelować tych zmian, co prowadzi do niebezpiecznych sytuacji. Na przykład, w systemach słonecznych, gdzie ciepło generowane jest intensywnie, odpowiednia pojemność naczynia przeponowego jest niezbędna, aby zapobiec nadmiernemu wzrostowi ciśnienia. Standardy branżowe, takie jak normy PN EN 12828, podkreślają znaczenie prawidłowego wymiarowania naczynia przeponowego. Dlatego warto regularnie kontrolować pojemność naczynia oraz jego stan techniczny, aby zapewnić bezpieczeństwo i efektywność całego systemu grzewczego.

Pytanie 14

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. kontrolowania procesu ładowania akumulatorów
B. przekształcania prądu stałego na prąd przemienny
C. ochrony systemu przed przetężeniem
D. ochrony akumulatorów przed całkowitym wyładowaniem
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 15

Minimalna przestrzeń między sąsiadującymi turbinami w elektrowniach wiatrowych, mierzona w średnicach wirnika turbiny, powinna wynosić przynajmniej

A. 10
B. 5
C. 20
D. 15
Minimalna odległość między sąsiadującymi turbinami wiatrowymi, wyrażona w średnicach wirnika turbiny, wynosząca co najmniej 5, jest uzasadniona wieloma czynnikami technicznymi i praktycznymi. Przestrzeganie tej normy pozwala na zminimalizowanie wpływu turbulencji powietrza generowanych przez jedną turbinę na drugą. W praktyce, turbiny wiatrowe wymagają odpowiedniej separacji, aby zapewnić optymalną wydajność oraz efektywność wytwarzania energii. Ponadto, odpowiednia odległość ogranicza ryzyko uszkodzeń mechanicznych związanych z wiatrem, co może prowadzić do zwiększenia kosztów eksploatacji. Standardy branżowe, takie jak those recommended by the International Electrotechnical Commission (IEC), podkreślają znaczenie odpowiednich odległości między turbinami, co jest kluczowe dla zapewnienia ich długowieczności oraz stabilności operacyjnej. W przypadku turbin o dużych średnicach wirnika, zalecenia dotyczące minimalnych odległości są jeszcze bardziej istotne, aby zminimalizować wpływ na ich wydajność i bezpieczeństwo. Przykłady dobrych praktyk w tej dziedzinie można zaobserwować w projektach dużych farm wiatrowych, gdzie optymalizacja układu turbin jest kluczowa dla maksymalizacji produkcji energii.

Pytanie 16

Kosztorys, który nie zawiera danych o cenach, nazywamy kosztorysem:

A. ofertowym
B. ślepym
C. powykonawczym
D. wstępnym
Kosztorys ślepy jest specyficznym rodzajem dokumentu, który nie zawiera informacji o cenach jednostkowych, lecz koncentruje się na ilościach materiałów oraz robocizny niezbędnych do realizacji danego projektu. Tego rodzaju kosztorys jest stosowany w sytuacjach, gdy organizacja chce oszacować zapotrzebowanie na zasoby, nie ujawniając przy tym informacji o kosztach. Jest to praktyka, która znajduje zastosowanie w różnych etapach planowania projektu, szczególnie w fazie wstępnej, gdzie istotna jest ocena zasobów bez obciążania decyzji o konkretne ceny. Wiele przedsiębiorstw budowlanych i inżynieryjnych korzysta z kosztorysów ślepych, aby lepiej planować przyszłe prace oraz negocjować warunki współpracy z dostawcami. W branży budowlanej, w której zmienna dynamika cen materiałów i robocizny może wpływać na ostateczny koszt projektu, posiadanie takiego kosztorysu pozwala na elastyczność w podejmowaniu decyzji i zarządzaniu budżetem.

Pytanie 17

Aby podłączyć wylot zimnego powietrza z parownika monoblokowej pompy ciepła typu powietrze-woda o współczynniku COP = 3,5, która podgrzewa wodę o mocy 7 kW, należy zastosować

A. rury miedzianej o średnicy 25 mm
B. rury stalowej o średnicy 125 mm
C. rury PVC o średnicy 20 mm
D. rury PVC o średnicy 125 mm
Rura PVC o średnicy 125 mm to całkiem dobry wybór do podłączenia wylotu zimnego powietrza z parownika w monoblokowej pompie ciepła powietrze-woda. Gdy projektujemy systemy HVAC, ważne, żeby materiały, które używamy, były zgodne z wymaganiami dotyczącymi przepływu powietrza i odporności na różne warunki atmosferyczne, a rura PVC właśnie takie właściwości ma. Średnica 125 mm powinna zapewnić odpowiedni przepływ powietrza, co jest kluczowe dla efektywności pompy ciepła, szczególnie gdy ma ona współczynnik COP na poziomie 3,5 i moc 7 kW. Warto pamiętać, żeby przy doborze materiałów do instalacji HVAC sprawdzić normy branżowe, jak PN-EN 1452, które precyzują wymagania dla rur w systemach hydraulicznych. Rury PVC są naprawdę niezawodne, łatwe do zamontowania i dobrze znoszą korozję. Przykładem ich zastosowania mogą być instalacje wentylacyjne czy klimatyzacyjne, gdzie odpowiedni przepływ powietrza przekłada się na komfort użytkowników i efektywność energetyczną całego systemu.

Pytanie 18

W konstrukcji systemów solarnych należy wykorzystywać rury

A. stalowe
B. polipropylenowe
C. polietylenowe
D. miedziane
Miedziane rury to naprawdę najlepszy wybór, jeżeli chodzi o instalacje solarne. Ich właściwości przewodzenia ciepła są po prostu świetne, co sprawia, że energia słoneczna jest wykorzystana w 100%. Co więcej, miedź jest bardzo trwała i elastyczna, więc łatwo można ją formować i instalować. W praktyce, miedziane rury są wykorzystywane nie tylko w kolektorach słonecznych, ale także w ogrzewaniu podłogowym. Dzięki nim cały system działa o wiele lepiej. A wiadomo, że miedź spełnia normy, takie jak PN-EN 1057, co też jest sporym plusem, bo to znaczy, że możemy na niej polegać w instalacjach wodociągowych, a to się przekłada na bezpieczeństwo i efektywność systemu solarnych.

Pytanie 19

W jaki sposób oraz w jakim miejscu powinno się zainstalować fotoogniwo, aby osiągnąć najlepszą wydajność przez cały rok?

A. Prostopadle, na południowej ścianie obiektu
B. Pod kątem 45 stopni do poziomu gruntu, na wschodniej części dachu
C. Pod kątem 55 stopni do poziomu gruntu, na południowej części dachu
D. W poziomie, na tarasie
Montaż fotoogniw pod kątem 55 stopni do powierzchni terenu na południowej połaci dachu jest optymalnym rozwiązaniem, które zapewnia maksymalną efektywność ich pracy przez cały rok. Pod kątem 55 stopni panel słoneczny jest w stanie lepiej wykorzystać promieniowanie słoneczne, szczególnie w miesiącach zimowych, kiedy Słońce znajduje się nisko na horyzoncie. Południowa ekspozycja dachu zapewnia, że panele będą miały największy dostęp do światła słonecznego w ciągu dnia, co przekłada się na wyższą produkcję energii. Warto również zauważyć, że taki kąt montażu minimalizuje ryzyko gromadzenia się śniegu i zanieczyszczeń na powierzchni paneli, co mogłoby wpłynąć na ich wydajność. Dodatkowo, stosowanie się do zaleceń branżowych dotyczących montażu, takich jak standardy IEC 61215 i IEC 61730, gwarantuje bezpieczeństwo i trwałość instalacji. Odpowiedni dobór kąta i miejsca montażu jest kluczowy dla długoterminowej efektywności systemów fotowoltaicznych oraz ich opłacalności ekonomicznej.

Pytanie 20

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 20°
B. 45°
C. 90°
D. 70°
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 21

Na jakiej głębokości układa się rury gruntowego wymiennika ciepła w instalacji pompy cieplnej?

A. 1,6-2,2 m
B. 2,2-2,8 m
C. 0,6-1,2 m
D. 1,0-1,6 m
Rury gruntowego wymiennika ciepła w instalacjach pomp ciepła układa się zazwyczaj na głębokości od 1,0 do 1,6 m. Taki zakres głębokości jest preferowany, ponieważ zapewnia optymalne warunki do wymiany ciepła pomiędzy gruntem a płynem roboczym w systemie. Grunt na tej głębokości ma stabilną temperaturę, co jest kluczowe dla efektywności działania pompy ciepła. W praktyce, głębokość układania rur wpływa na wydajność systemu, zwłaszcza w kontekście lokalnych warunków geotermalnych oraz właściwości gruntu. Zbyt płytkie ułożenie rur może prowadzić do nieefektywnej wymiany ciepła, szczególnie w okresach dużego zapotrzebowania na energię grzewczą. Z kolei zbyt głębokie ułożenie może wiązać się z większymi kosztami inwestycyjnymi oraz trudnościami w instalacji. Warto zaznaczyć, że normy budowlane oraz najlepsze praktyki branżowe sugerują uwzględnienie lokalnych warunków geologicznych i klimatycznych przy projektowaniu systemów gruntowych wymienników ciepła.

Pytanie 22

W którym z podanych miesięcy produkcja energii słonecznej z systemu grzewczego jest w Polsce statystycznie najwyższa?

A. W sierpniu
B. W marcu
C. W czerwcu
D. We wrześniu
Czerwiec jest miesiącem, w którym w Polsce osiąga się największy uzysk solarny dzięki optymalnym warunkom nasłonecznienia. W okresie letnim, szczególnie w okolicach przesilenia letniego, dni są najdłuższe, co sprzyja produkcji energii z instalacji słonecznych. Warto zauważyć, że w czerwcu promieniowanie słoneczne jest na najwyższym poziomie, co jest efektem zarówno większej długości dnia, jak i wyższej pozycji Słońca na niebie. Z tego powodu instalacje solarne, takie jak kolektory słoneczne, generują w tym czasie maksymalną ilość energii. W praktyce oznacza to, że gospodarstwa domowe oraz przedsiębiorstwa korzystające z energii słonecznej mogą liczyć na znaczne oszczędności w kosztach ogrzewania w tym miesiącu. Przykładowo, inwestycje w systemy solarne mogą przynieść zwrot z inwestycji w krótkim czasie, zwłaszcza gdy są eksploatowane w miesiącach o wysokim uzysku solarnym, takich jak czerwiec.

Pytanie 23

W Polsce płaskie kolektory słoneczne powinny być umieszczane na dachu budynku, skierowane w stronę

A. południową
B. północną
C. wschodnią
D. zachodnią
Kolektory słoneczne płaskie powinny być zorientowane na południe, aby maksymalizować ilość otrzymywanego promieniowania słonecznego przez cały dzień. Dzięki takiej orientacji, kolektory są w stanie wykorzystać maksymalne nasłonecznienie, zwłaszcza w godzinach szczytowych, kiedy słońce znajduje się najwyżej na niebie. W Polsce, ze względu na nasze położenie geograficzne, orientacja południowa jest kluczowa dla uzyskania optymalnej efektywności energetycznej. Przykładowo, instalacje w orientacji południowej mogą zwiększyć wydajność kolektorów o 15-30% w porównaniu do innych kierunków. Dobre praktyki wskazują, że przy projektowaniu systemów solarnych należy także uwzględniać kąt nachylenia kolektorów, który powinien wynosić od 30 do 45 stopni, co dodatkowo wspiera efektywność zbierania energii. W związku z tym, podejmowanie decyzji o lokalizacji i orientacji kolektorów powinno być oparte na analizach nasłonecznienia oraz lokalnych warunkach klimatycznych, co przyczynia się do maksymalizacji zysków energetycznych.

Pytanie 24

Aby zapewnić jednostronny przepływ czynnika grzewczego, należy zainstalować zawór

A. bezpieczeństwa
B. czerpalny
C. zwrotny
D. spustowy
Zawór zwrotny to urządzenie stosowane w systemach hydraulicznych i grzewczych, które zapewnia przepływ czynnika grzewczego tylko w jednym kierunku, zapobiegając cofaniu się płynu. Jego działanie opiera się na zasadzie wykorzystania ciśnienia różnicowego, które otwiera zawór w kierunku przepływu, a zamyka go w przeciwnym. Zawory te są kluczowe w instalacjach grzewczych, gdzie niekontrolowany przepływ może prowadzić do strat ciepła i obniżenia efektywności systemu. Na przykład, w instalacjach centralnego ogrzewania, stosowanie zaworów zwrotnych zapewnia, że gorąca woda z kotła nie wraca do niego, co mogłoby prowadzić do uszkodzenia sprzętu oraz obniżenia komfortu grzewczego. W praktyce, zawory zwrotne są często instalowane w pobliżu kotłów oraz na zasilaniu i powrocie do grzejników, co minimalizuje ryzyko niepożądanych zjawisk. Warto także zwrócić uwagę na standardy branżowe, takie jak normy PN-EN dotyczące instalacji, które zalecają stosowanie zaworów zwrotnych w odpowiednich miejscach, aby zapewnić bezpieczeństwo i efektywność systemów grzewczych.

Pytanie 25

Na podstawie danych zawartych w tabeli określ, jakiego typu palenisko należy zastosować do spalania zrębków o dużej wilgotności.

UwagiTypZakres mocyPaliwaPopiółWilgoć
Dozowanie paliwa manualnePiece2÷10 kWPolana drzewne< 25÷20%
Kotły5÷50 kWPolana, szczapy< 25÷30%
GranulatyPiece i kotły2÷25 kWGranulaty< 28÷10%
Dozowanie paliwa automatycznePaleniska podsuwowe20 kW÷2,5 MWZrębki, odpady drzewne< 25÷50%
Paleniska z rusztem mechanicznym150 kW÷15 MWWszystkie rodzaje biomasy< 5%5÷60%
Przedpalenisko20 kW÷1,5 MWDrewno, trociny< 5%5÷35%
Palenisko obrotowe podsuwowe2÷5 MWZrębki< 5%40÷65%
Palenisko cygarowe3÷5 MWBaloty słomy< 5%20%
Palenisko do spalania całych balotów3÷5 MWBaloty słomy< 5%20%

A. Obrotowe podsuwowe.
B. Podsuwowe.
C. Cygarowe.
D. Z rusztem mechanicznym.
Palenisko obrotowe podsuwowe jest idealnym wyborem do spalania zrębków o dużej wilgotności, ponieważ jego konstrukcja pozwala na efektywne zarządzanie paliwem, które charakteryzuje się wilgotnością w przedziale 40%-65%. Dzięki temu, możliwe jest osiągnięcie optymalnej temperatury spalania oraz minimalizacja emisji szkodliwych substancji. W praktyce, zastosowanie tego typu paleniska zapewnia lepsze spalanie, co prowadzi do uzyskania większej ilości energii z danego paliwa. W branży energetycznej, obrotowe podsuwowe paleniska są szeroko stosowane w instalacjach przemysłowych, gdzie efektywność energetyczna i redukcja emisji są kluczowe. Ponadto, zgodnie z normami europejskimi, odpowiednia wilgotność paliwa jest istotnym czynnikiem wpływającym na sprawność procesów spalania. Dlatego wybór paleniska obrotowego podsuwowego przyczynia się do realizacji standardów dotyczących ochrony środowiska oraz efektywności energetycznej.

Pytanie 26

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. panele szeregowo
B. akumulatory równolegle
C. akumulatory szeregowo
D. panele równolegle
Wybór połączenia akumulatorów szeregowo prowadzi do zwiększenia napięcia systemu do 24 V, co jest nieodpowiednie dla zasilania urządzeń zaprojektowanych do pracy z napięciem 12 V. Z tego powodu, takie połączenie może prowadzić do uszkodzenia podłączonych urządzeń, które nie są przystosowane do pracy z wyższym napięciem. Połączenie akumulatorów szeregowo jest powszechnie mylone z równoległym, ponieważ wiele osób nie dostrzega różnicy w funkcjonalności, a koncentruje się jedynie na wyjściowym napięciu. Kolejnym błędem jest myślenie, że panele fotowoltaiczne należy łączyć równolegle, aby zwiększyć ich moc. W rzeczywistości, dla uzyskania wyższego napięcia z paneli, połączenie szeregowe jest bardziej odpowiednie. Jednakże, w kontekście tego pytania, niezrozumienie zasady działania akumulatorów prowadzi do błędnych wniosków. Każde ogniwo akumulatora ma swoje napięcie oraz pojemność i ich połączenie wymaga znajomości zasad elektryczności. Przy prawidłowym połączeniu równoległym, każdy akumulator pracuje na swoich warunkach, co zapewnia równomierne rozładowanie i ładowanie. Zrozumienie tych zasad jest kluczowe dla projektowania efektywnych systemów zasilania opartych na energii odnawialnej.

Pytanie 27

Jak należy łączyć miedziane rury z rurami ze stali ocynkowanej?

A. Zaciska się miedzianą rurę na stalowej rurze
B. Używa się specjalnej złączki mosiężnej jako przejściowej
C. Lutuje się miedzianą złączkę do stalowej rury
D. Lutuje się stalową złączkę do miedzianej rury
Lutowanie złączki stalowej do rury miedzianej oraz lutowanie złączki miedzianej do rury stalowej to metody, które mogą wydawać się logiczne, jednak w praktyce są niewłaściwe ze względu na różnice w temperaturze topnienia oraz charakterystyce chemicznej obu materiałów. Lutowanie wymaga odpowiednich materiałów lutowniczych, a w przypadku stali i miedzi występuje ryzyko powstawania nieszczelności, gdyż różnice w rozszerzalności cieplnej mogą prowadzić do pęknięć w połączeniach. Co więcej, lutowanie stalowych złączek do miedzi może skutkować korozją elektrolityczną, co jest skutkiem kontaktu dwóch różnych metali w obecności elektrolitu, jakim jest woda. Użycie zacisku do rur miedzianych na rurze stalowej jest również niewłaściwym podejściem, gdyż nie zapewnia trwałego, szczelnego połączenia. Zaciski mogą z czasem się luzować, co prowadzi do wycieków. W praktyce, dla bezpieczeństwa i wydajności systemów hydraulicznych, powinno się stosować dedykowane złączki mosiężne, które eliminują te problemy i gwarantują długotrwałą niezawodność połączeń. Warto również pamiętać o przestrzeganiu norm dotyczących łączenia różnych materiałów, co jest kluczowe dla zapewnienia bezpieczeństwa i trwałości instalacji.

Pytanie 28

W systemie grzewczym opartym na energii słonecznej, przeznaczonym do podgrzewania wody użytkowej, gdzie powinien być zainstalowany zawór mieszający?

A. między przyłączem wody zimnej a obiegiem cyrkulacyjnym wody ciepłej
B. w między obiegiem solarnym a instalacją wody zimnej
C. pomiędzy obiegiem solarnym a obiegiem cyrkulacyjnym wody ciepłej
D. między przyłączem wody zimnej a systemem ciepłej wody użytkowej
Wybór nieprawidłowej odpowiedzi wynika z niepełnego zrozumienia roli zaworu mieszającego w systemach ogrzewania wody. Nieumiejscowienie zaworu pomiędzy przyłączem wody zimnej a instalacją ciepłej wody użytkowej prowadzi do nieefektywnego zarządzania temperaturą wody, co w efekcie może powodować ryzyko poparzeń. Umiejscowienie zaworu pomiędzy obiegiem solarnym a cyrkulacją wody ciepłej czy innymi kombinacjami, jak obieg solarny z instalacją wody zimnej, nie uwzględnia zasady mieszania wody gorącej z zimną w odpowiednich proporcjach. W takich rozwiązaniach brakuje możliwości precyzyjnego regulowania temperatury na wylocie, co zwiększa ryzyko dostarczania wody o zbyt wysokiej lub zbyt niskiej temperaturze do punktów poboru. Ponadto, nieodpowiednie umiejscowienie zaworu w systemie wpływa na efektywność energetyczną, co może skutkować niepotrzebnym zużyciem energii oraz kosztami eksploatacyjnymi. Zrozumienie roli zaworu mieszającego jako kluczowego elementu systemu grzewczego oraz jego poprawne zamontowanie są podstawą do osiągnięcia optymalnej wydajności oraz bezpieczeństwa użytkowania wody w instalacjach opartych na energii słonecznej.

Pytanie 29

W trakcie dorocznego przeglądu systemu grzewczego wykorzystującego energię słoneczną, na początku należy

A. sprawdzić stan jakości płynu solarnego
B. przeprowadzić odpowietrzenie instalacji
C. zrealizować dezynfekcję instalacji
D. wykonać regulację położenia kolektorów
Sprawdzenie stanu jakości płynu solarnego jest kluczowym krokiem w corocznej konserwacji instalacji grzewczej. Płyn solarny, który pełni rolę nośnika energii cieplnej, podlega różnym procesom chemicznym oraz fizycznym w trakcie eksploatacji. Regularne monitorowanie jego stanu pozwala uniknąć problemów, takich jak korozja elementów instalacji czy obniżenie efektywności energetycznej. Zgodnie z normami branżowymi, takim jak norma EN 12975, jakość płynu musi spełniać określone parametry, aby zapewnić prawidłowe funkcjonowanie systemu. Praktyczne przykłady obejmują analizę pH, zawartości inhibitorów korozji oraz innych dodatków chemicznych, które mogą wpływać na funkcjonalność instalacji. W przypadku stwierdzenia nieprawidłowości, zaleca się wymianę płynu, co zwiększy żywotność instalacji i poprawi jej efektywność energetyczną.

Pytanie 30

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. zaworu rozprężnego
B. zaworu odcinającego
C. parownika
D. skraplacza
W pompach ciepła z bezpośrednim odparowaniem, wymiennik gruntowy pełni rolę parownika, co oznacza, że absorbuje ciepło z gruntu, które następnie jest wykorzystywane do odparowania czynnika chłodniczego. Proces ten umożliwia efektywne ogrzewanie budynków w zimie oraz chłodzenie latem. W praktyce, wymienniki gruntowe mogą być wykonane w różnych konfiguracjach, takich jak pionowe lub poziome kolektory, w zależności od warunków geologicznych i potrzeb energetycznych obiektu. Zastosowanie technologii gruntowych pozwala na wykorzystanie stabilnej temperatury gruntu, co znacząco zwiększa efektywność energetyczną systemu. Standardy branżowe, takie jak normy EN 14511 dotyczące pomp ciepła, podkreślają znaczenie optymalizacji wymienników ciepła, co wpisuje się w działania mające na celu zwiększenie efektywności energetycznej budynków oraz redukcję emisji CO2. W praktycznych zastosowaniach, właściwie zaprojektowany i zainstalowany wymiennik gruntowy może zapewnić znaczące oszczędności w kosztach ogrzewania i chłodzenia, a także przyczynić się do zrównoważonego rozwoju poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 31

Jaki materiał jest najczęściej używany do wytwarzania ogniw fotowoltaicznych?

A. Miedź
B. Stal
C. Aluminium
D. Krzem
Krzem jest najczęściej wykorzystywanym materiałem do produkcji fotoogniw, co wynika z jego unikalnych właściwości półprzewodnikowych. W procesie fotowoltaicznym krzem absorbuje energię świetlną i przekształca ją w energię elektryczną dzięki zjawisku fotowoltaicznemu. Krzem krystaliczny, a także amorficzny, są powszechnie stosowane w ogniwach solarnych. W przypadku krzemu krystalicznego, jego struktura krystaliczna zapewnia wysoką wydajność konwersji energii, co czyni go preferowanym wyborem dla paneli solarnych stosowanych w instalacjach domowych oraz przemysłowych. Ponadto, produkcja ogniw krzemowych jest dobrze rozwinięta, co obniża koszty produkcji i umożliwia masową produkcję. W branży stosowane są standardy, takie jak IEC 61215 i IEC 61730, które dotyczą wydajności oraz bezpieczeństwa fotoogniw. Właściwości krzemu, takie jak łatwość w obróbce oraz stabilność chemiczna, sprawiają, że cały czas pozostaje on kluczowym materiałem w rozwijającym się sektorze energii odnawialnej.

Pytanie 32

W którym kosztorysie realizacji budowy elektrowni wiatrowej zawarte są przewidywane wydatki na materiały, wyposażenie oraz prace, a także narzuty?

A. Dodatkowym
B. Powykonawczym
C. Inwestorskim
D. Ślepym
Kosztorys inwestorski to mega ważny dokument w budowlance. Określa, ile wszystko będzie kosztować, zarówno materiały, jak i robocizna czy sprzęt. Dzięki niemu inwestor ma jasny obraz wydatków związanych z projektem, co jest super istotne, żeby dobrze zarządzać budżetem. Przed rozpoczęciem budowy, na etapie planowania, ten kosztorys jest sporządzany i stanowi bazę do dalszych działań. Na przykład, przy budowie elektrowni wiatrowej, taki kosztorys mógłby zawierać analizy wydatków na turbiny, instalację elektryczną i prace montażowe. Warto też pamiętać, że ceny materiałów mogą różnić się w czasie, dlatego dobrze jest to uwzględniać w kosztorysie. Z mojego doświadczenia, umiejętność tworzenia takich dokumentów jest kluczowa, bo może uratować projekt przed nieprzyjemnymi niespodziankami.

Pytanie 33

Jakie narzędzie powinno być zastosowane do eliminacji zadziorów powstających po przecięciu rury polietylenowej o średnicy 40 mm?

A. Nażynki
B. Gratownika
C. Frezu
D. Tarnika
Gratownik jest narzędziem zaprojektowanym specjalnie do usuwania zadziorów oraz nierówności na krawędziach materiałów, w tym rur z polietylenu. Jego zastosowanie jest kluczowe w procesie obróbki rur, ponieważ zadzior to ostry, wystający fragment materiału, który może prowadzić do uszkodzeń podczas dalszej instalacji lub eksploatacji. W praktyce, gratownik umożliwia uzyskanie gładkiej krawędzi, co jest istotne z punktu widzenia bezpieczeństwa i funkcjonalności systemów rurociągowych. Zgodnie z normami branżowymi, takim jak PN-EN 1555, zaleca się stosowanie gratowników po każdej operacji cięcia, aby zminimalizować ryzyko przecieków i awarii. Dobre praktyki wskazują, że prawidłowe użycie gratownika poprawia nie tylko estetykę wykonania, ale również wydłuża żywotność instalacji. Warto również zaznaczyć, że gratowanie powinno być częścią standardowego procesu przygotowania przed montażem rur, co pozwala na uniknięcie potencjalnych problemów w przyszłości.

Pytanie 34

Do instalacji ogrzewania podłogowego zasilanego pompą ciepła wykorzystuje się rury

A. stalowe
B. żeliwne
C. kamionkowe
D. z tworzywa sztucznego
Instalację ogrzewania podłogowego zasilaną z pompy ciepła wykonuje się najczęściej z rur z tworzywa sztucznego, takich jak polietylen (PE) lub polipropylen (PP). Te materiały charakteryzują się doskonałą odpornością na korozję, co jest kluczowe w systemach, w których krążą płyny o różnej chemicznej charakterystyce. Ponadto, rury z tworzywa sztucznego mają dobre właściwości izolacyjne, co pozwala na efektywne wykorzystanie energii z pompy ciepła. Elastyczność tych materiałów ułatwia montaż, pozwalając na łatwe formowanie i dostosowanie do najbardziej wymagających układów. W praktyce, stosując rury z tworzywa sztucznego, można zredukować ilość połączeń i złączy, co z kolei zmniejsza ryzyko wycieków. Standardy branżowe, takie jak PN-EN 1264 dotyczące ogrzewania podłogowego, podkreślają zalety używania tych materiałów i ich zgodność z nowoczesnymi technologiami ogrzewania. Dodatkowo, ich lekkość w porównaniu do rur stalowych czy żeliwnych sprawia, że instalacja staje się prostsza i szybsza, co jest nieocenione w praktyce budowlanej.

Pytanie 35

Jaką funkcję pełni parownik w pompie ciepła?

A. wydziela ciepło do otoczenia
B. zamienia energię elektryczną na ciepło
C. przekształca ciepło w energię elektryczną
D. pobiera ciepło z otoczenia
Parownik w pompie ciepła pełni kluczową rolę w procesie pozyskiwania energii cieplnej z otoczenia. Odbiera ciepło ze źródła, którym może być powietrze, woda lub grunt, a następnie przekazuje je do czynnika chłodniczego. W tym procesie czynnik chłodniczy, który jest w stanie odparować w niskich temperaturach, absorbuje ciepło z otoczenia, co powoduje jego przejście w stan gazowy. Następnie gaz ten jest sprężany przez sprężarkę, co podnosi jego temperaturę i ciśnienie, a ciepło jest oddawane do systemu grzewczego. Przykładowo, w systemach ogrzewania powietrznego, parownik można stosować w połączeniu z wentylatorami, co umożliwia efektywne ogrzewanie pomieszczeń przy minimalnym zużyciu energii. Dobrą praktyką stosowaną w branży jest optymalizacja wydajności parowników poprzez odpowiedni dobór materiałów oraz zapewnienie właściwej lokalizacji i izolacji, co wpływa na efektywność całego systemu. Warto również zwrócić uwagę na zmiany temperatur zewnętrznych, które mogą wpływać na wydajność parowników, co ma istotne znaczenie w projektowaniu systemów grzewczych.

Pytanie 36

Aby zredukować wahania wskazań rotametru w jednostce pompującej w instalacji solarnej, należy wykonać

A. odpowietrzenie instalacji
B. zwiększenie ciśnienia w układzie solarnym
C. regulację pompy obiegowej
D. zmniejszenie ciśnienia w układzie solarnym
Odpowiedź 'odpowietrzenie instalacji' jest prawidłowa, ponieważ wahania wskazań rotametru w instalacji solarnej mogą być spowodowane obecnością powietrza w systemie. Kiedy w układzie hydraulicznym znajduje się powietrze, może to prowadzić do zmniejszenia efektywności przepływu cieczy, co z kolei przekłada się na niestabilne wskazania rotametru. Odpowietrzenie instalacji, czyli usunięcie zbędnych pęcherzyków powietrza, przywraca poprawny przepływ wody, co stabilizuje działanie rotametru. W praktyce, aby skutecznie odpowietrzyć instalację, należy zlokalizować i otworzyć odpowietrzniki, które znajdują się w najwyższych punktach systemu. Dobre praktyki branżowe zalecają regularne sprawdzanie stanu odpowietrzników, aby zapewnić ich sprawność oraz unikać problemów związanych z gromadzeniem się powietrza. Zgodnie z normami dotyczącymi instalacji solarnych, odpowiednie odpowietrzenie systemu jest kluczowe dla zapewnienia jego efektywności energetycznej oraz długowieczności.

Pytanie 37

W trakcie corocznej kontroli systemu solarnego do ogrzewania wody należy

A. wykonać płukanie systemu
B. uzupełnić instalację płynem solarnym
C. zweryfikować stan płynu solarnym
D. przeprowadzić regulację ustawienia kolektorów
Sprawdzenie stanu płynu solarnego podczas corocznego przeglądu instalacji grzewczej jest kluczowe dla zapewnienia jej optymalnej wydajności i bezpieczeństwa. Płyn solarny pełni funkcję transportowania ciepła z kolektorów do zbiornika, a jego właściwe właściwości fizyczne są niezbędne dla efektywności całego systemu. Warto regularnie kontrolować poziom płynu, jego temperaturę oraz ewentualne zanieczyszczenia, które mogą wpływać na wydajność instalacji. Przykładowo, zbyt niski poziom płynu może prowadzić do przegrzewania się kolektorów, co w skrajnych przypadkach może uszkodzić system. Z drugiej strony, zanieczyszczenia mogą powodować osady w rurach, co ogranicza przepływ i obniża efektywność wymiany ciepła. Regularne kontrole są zgodne z najlepszymi praktykami branżowymi i pozwalają na wczesne wykrycie problemów, co z kolei redukuje koszty napraw oraz przestojów. Dbałość o stan płynu solarnego to istotny element strategii konserwacyjnej, która wspiera długowieczność i efektywność systemu. Rekomendowane jest również uzupełnianie płynu zgodnie z zaleceniami producenta, co pozwala utrzymać optymalne parametry działania instalacji.

Pytanie 38

Najkorzystniejszą strefą energetyczną pod względem wiatru jest województwo

A. pomorskie
B. lubelskie
C. dolnośląskie
D. małopolskie
Województwo pomorskie jest uznawane za najlepszą strefę energetyczną pod względem wiatru w Polsce z uwagi na korzystne warunki klimatyczne, które sprzyjają produkcji energii z wiatru. Region ten charakteryzuje się dużą średnią prędkością wiatru, co jest kluczowym czynnikiem dla efektywności farm wiatrowych. Zgodnie z normami branżowymi, instalacje wiatrowe powinny być lokowane w obszarach, gdzie średnie roczne prędkości wiatru wynoszą co najmniej 5 m/s, co w pomorskim jest często przekraczane. Przykłady udanych projektów wiatrowych w tym regionie, takie jak farmy wiatrowe na Bałtyku, potwierdzają opłacalność inwestycji w odnawialne źródła energii. Dobre praktyki w tym zakresie obejmują przeprowadzenie dokładnych badań wiatrowych oraz analizę wpływu na środowisko, co jest niezbędne do uzyskania pozwolenia na budowę. W rezultacie, pomorskie staje się liderem w produkcji energii wiatrowej, co przyczynia się do osiągania celów związanych z zrównoważonym rozwojem i redukcją emisji CO2.

Pytanie 39

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. zabezpieczenie turbiny przed zanieczyszczeniami
B. zatrzymanie przepływu wody do turbiny
C. obniżenie poziomu wody w turbinie
D. kontrola strumienia wody wpływającego do turbiny
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 40

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. na przyłączach pionów do przewodów rozprowadzających
B. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
C. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
D. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
Montaż zaworu bezpieczeństwa w nieodpowiednich miejscach, takich jak przed grzejnikami, w dolnej części pionów czy na przyłączach pionów do przewodów rozprowadzających, nie spełnia podstawowych wymogów bezpieczeństwa i efektywności instalacji centralnego ogrzewania. Umieszczanie zaworu przed grzejnikami może prowadzić do zbyt późnego odcięcia nadmiaru ciśnienia, co naraża system na uszkodzenia. Ponadto, umiejscowienie zaworu w dolnej części pionów nie pozwala na efektywne usunięcie nadmiaru ciśnienia, gdyż gorąca woda ma tendencję do unikania dół, co może prowadzić do zjawisk przegrzewania w górnych częściach instalacji. Zawór bezpieczeństwa powinien być w odpowiedniej lokalizacji, aby działał w chwilach krytycznych, co jest kluczowe dla zapobiegania awariom i zagrożeniom. Montaż na przyłączach pionów również nie zapewnia wymaganego poziomu ochrony, gdyż zawór powinien być umiejscowiony jak najbliżej źródła ciepła. Standardy branżowe oraz przepisy budowlane jasno określają wymagania dotyczące lokalizacji zaworu bezpieczeństwa, podkreślając, że niewłaściwe umiejscowienie może prowadzić do katastrofalnych skutków, w tym do zniszczenia urządzeń oraz zagrożenia dla użytkowników instalacji.