Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 20 maja 2025 15:12
  • Data zakończenia: 20 maja 2025 15:19

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. dokładności
B. losowym
C. paralaksy
D. instrumentalnym
Wybierając coś innego niż 'paralaksy', można się pomylić w rozumieniu, jak działają błędy w pomiarach. Błąd przypadkowy to te różnice, które mogą się zdarzać przez różne czynniki, jak temperatura czy drgania, a nie przez to, jak patrzymy na płyn. Błąd precyzji z kolei to raczej te stałe ograniczenia związane z narzędziami, które wcale nie dotyczą paralaksy. Wreszcie, błąd instrumentalny zdarza się przez złe kalibracje sprzętu, co też nie ma nic wspólnego z tym zjawiskiem. Ważne, żeby zrozumieć te wszystkie pojęcia, bo mają inne znaczenie w pomiarach. Traktowanie ich jako jedno może wprowadzić w błąd, a to z kolei skutkuje nieprawidłowymi wynikami. Dlatego tak ważne jest, by wiedzieć, skąd bierze się błąd, bo to klucz do dobrego pomiaru. Odpowiednie techniki i znajomość różnych błędów pomagają uzyskać lepsze i dokładniejsze wyniki w laboratoriach.

Pytanie 2

Proces oddzielania cieczy od osadu nazywa się

A. sublimacji
B. dekantacji
C. aeracji
D. sedymentacji
Dekantacja to proces, który polega na oddzieleniu cieczy od osadu, co jest kluczowym krokiem w wielu dziedzinach, takich jak chemia, biotechnologia czy inżynieria środowiska. W praktyce dekantacja jest często stosowana w laboratoriach do oczyszczania roztworów, a także w przemyśle, na przykład w produkcji wina, gdzie dekantowanie polega na oddzieleniu klarownego wina od osadu, który może powstawać w czasie fermentacji. Proces ten polega na powolnym wylewaniu cieczy z naczynia, co pozwala na pozostawienie osadu na dnie. Zastosowanie dekantacji jest zgodne z dobrymi praktykami laboratoryjnymi i przemysłowymi, które zalecają efektywne i bezpieczne separowanie substancji, minimalizując straty materiałowe. Warto również zauważyć, że dekantacja może być stosowana jako wstępny krok przed innymi metodami rozdziału, takimi jak filtracja czy centrifugacja, co zwiększa jej znaczenie w kontekście procesów technologicznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Engler.
B. Thiel.
C. Kipp.
D. Soxleth.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 5

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. demineralizowanej
B. mineralizowanej
C. redestylowanej
D. destylowanej
Woda mineralizowana to woda, która zawiera rozpuszczone minerały, takie jak wapń, magnez czy potas. Jej stosowanie w laboratoriach chemicznych jest nieodpowiednie, ponieważ te minerały mogą wprowadzać zakłócenia w reakcjach chemicznych oraz analizach, prowadząc do błędnych wyników. Woda redestylowana nie jest powszechnie używana jako termin w laboratoriach; destylacja jest procesem polegającym na odparowaniu cieczy i skropleniu jej pary, co może usunąć zanieczyszczenia, ale nie jest to proces wymiany jonów, który koncentruje się na eliminacji soli. Destylowana woda, choć czysta, może nie spełniać norm jakości demineralizowanej, ponieważ nie do końca eliminuje wszystkie rozpuszczone substancje chemiczne. Typowym błędem jest mylenie procesu destylacji z demineralizacją, co prowadzi do niewłaściwego doboru wody do eksperymentów. W laboratorium kluczowe jest stosowanie wody o odpowiednim stopniu czystości, a demineralizowana woda jest standardem, który zapewnia powtarzalność i precyzję wyników, co jest niezbędne w badaniach naukowych.

Pytanie 6

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,3 mol/dm3
B. 0,0003 mol/dm3
C. 0,003 mol/dm3
D. 0,03 mol/dm3
Często, kiedy wybierasz złą odpowiedź, to znaczy, że coś nie tak zrozumiałeś w obliczeniach stężenia roztworów. Na przykład, stężenia mówią o ilości substancji w danej objętości. To, co może powodować błąd, to niewłaściwe przeliczenie objętości lub moli kwasu. Często ludzie zapominają zamienić jednostki z cm³ na dm³, a to prowadzi do złych wyników. Warto też pamiętać, że zasady dotyczące mieszania roztworów są trochę skomplikowane i nie zawsze są jasne. Niekiedy uczniowie mylą różne rodzaje stężeń, co może się źle skończyć. Kluczowe jest zrozumienie, że przy łączeniu roztworów musimy brać pod uwagę objętość i ilość moli. Bez tego nie da się dobrze przygotować roztworów do analiz chemicznych, bo precyzyjne obliczenia są naprawdę ważne. Dlatego, żeby uniknąć błędów, warto starannie przeliczać i dobrze zrozumieć, jak to wszystko działa.

Pytanie 7

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 20%
B. 48,2%
C. 79,2%
D. 68,9%
Analizując błędne odpowiedzi, można zauważyć kilka typowych nieporozumień dotyczących obliczania wydajności reakcji chemicznych. Wydajność reakcji definiuje się jako stosunek masy uzyskanego produktu do masy teoretycznej, co oznacza, że kluczowe jest dokładne zrozumienie przebiegu reakcji oraz obliczeń molowych. Wiele osób może błędnie zakładać, że 20 g uzyskane po reakcji to całkowita masa reagentów, co jest nieprawidłowe, ponieważ musimy uwzględnić teoretyczną ilość produktu. Ponadto, niektórzy mogą niepoprawnie przeliczać masy molowe, co prowadzi do błędnych wyników. Kluczowe jest również zrozumienie, że wydajność reakcji nie jest jedynie wynikiem stołu z danymi, ale jest złożonym wynikiem wielu czynników, takich jak czystość reagentów, warunki reakcji oraz efektywność procesu. W praktyce chemicznej stosuje się określone standardy, aby ocenić efektywność i wydajność produkcji, i takie błędy mogą prowadzić do nieodpowiednich wniosków. Znajomość teoretycznych podstaw chemii, takich jak zasady zachowania masy i bilans reakcji, jest kluczowa dla prawidłowego obliczania wydajności. Dlatego konieczne jest dokładne zrozumienie tych koncepcji, aby uniknąć pułapek w logicznym myśleniu i uzyskać wiarygodne wyniki.

Pytanie 8

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. częściowy
B. średni
C. twardy
D. miękki
Wybór złego sączka do filtracji osadu galaretowatego Fe(OH)3 może naprawdę narobić bałaganu. Sączki średnie czy twarde, chociaż mogą działać, to nie są najlepsze w przypadku galaretowatych osadów. Te średnie mają większe pory, więc małe cząsteczki osadu mogą przez nie przechodzić, co mija się z celem oddzielania. A twarde sączki są za sztywne, żeby dobrze zatrzymać delikatny osad, co kończy się utratą prób. Sączki częściowe, które mają łapać tylko niektóre cząsteczki, mogą być nieadekwatne dla skomplikowanych osadów. W praktyce, niewłaściwy sączek nie tylko psuje jakość końcowego produktu, ale i może zafałszować wyniki, co jest niezgodne z dobrymi praktykami w laboratoriach. Dlatego przed wyborem sączka warto dokładnie sprawdzić właściwości osadu i wymogi filtracji.

Pytanie 9

Na ilustracji oznaczono numery 1 i 4:

A. 1 - kolbę destylacyjną, 4 - ekstraktor
B. 1 - ekstraktor, 4 - chłodnicę zwrotną
C. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną
D. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
Wskazane odpowiedzi zawierają wiele nieporozumień dotyczących funkcji poszczególnych elementów aparatury chemicznej. Ekstraktor, który został wymieniony w niektórych z odpowiedzi, jest urządzeniem służącym do wydobywania substancji czynnych z materiału stałego lub cieczy, ale nie jest używany w kontekście destylacji. W praktyce, pomylenie ekstraktora z kolbą destylacyjną prowadzi do błędnych wniosków na temat procesu separacji, gdyż każdy z tych sprzętów ma odmienny cel i zastosowanie. Ekstrakcja polega na fizycznym wydobywaniu substancji, podczas gdy destylacja opiera się na różnicy temperatur wrzenia. Kolejnym błędem jest mylenie chłodnicy zwrotnej z kolbą destylacyjną. Chłodnica zwrotna jest elementem, który pełni rolę kondensatora, a nie zbiornika reakcji. Jej funkcją jest schładzanie par, co pozwala na ich skroplenie. Zrozumienie właściwych ról tych urządzeń jest kluczowe dla poprawnego przeprowadzenia procesów chemicznych. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków mogą wynikać z braku znajomości podstawowych zasad chemii oraz ze słabego zrozumienia, jak różne urządzenia funkcjonują w układach laboratoryjnych i przemysłowych. Przykłady zastosowania tych technik mogą obejmować przemysł farmaceutyczny, gdzie precyzyjna separacja drogich substancji czynnych jest kluczowa dla sukcesu produkcji, co potwierdza znaczenie znajomości tych narzędzi w zawodach związanych z chemią.

Pytanie 10

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. analizę produktu zawsze realizuje się dwiema różnymi metodami
B. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
C. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
D. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
Podział średniej próbki na dwie części to coś, na co trzeba zwrócić uwagę w analizie laboratoryjnej. Odpowiedzi, które mówią, że jedna próbka idzie dla dostawcy, a druga dla odbiorcy, mogą wprowadzać w błąd, bo nie bierze się pod uwagę celu analizy rozjemczej, która jest do rozstrzygania sporów. Dwie różne metody analizy mogą być fajne, ale to nie tłumaczy podziału próbki. Taki sposób robienia rzeczy może zamieszać i prowadzić do kiepskich wniosków o wynikach. Co więcej, robienie dwóch analiz i branie z tego średniej to nie jest standard w takich sprawach jak jakość, bo nie wyklucza błędów systematycznych. Trzeba też pamiętać, że analiza rozjemcza to nie to samo co kontrola jakości; jedno ma na celu rozwiązywanie sporów, a drugie to rutynowe sprawdzanie produkcji. Dobrze jest zrozumieć znaczenie właściwego podejścia do podziału próbki, bo to kluczowe dla obiektywności i przejrzystości w analizach.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jak definiuje się próbkę wzorcową?

A. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
B. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
C. próbkę o ściśle określonym składzie
D. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania
Próbka wzorcowa, definiowana jako próbka o dokładnie znanym składzie, jest kluczowym elementem w analizie laboratoryjnej. Jej głównym celem jest służyć jako punkt odniesienia do porównania z próbkami analitycznymi. W praktyce, użycie próbki wzorcowej pozwala na kalibrację instrumentów pomiarowych oraz weryfikację metod analitycznych. Przykładem zastosowania próbki wzorcowej jest analiza chemiczna, gdzie standardy wzorcowe, takie jak roztwory znanych stężeń substancji, są wykorzystywane do określenia stężenia analitów w próbkach rzeczywistych. Próbki wzorcowe są również istotne w kontekście zgodności z normami ISO, które wymagają stosowania takich standardów w procedurach analitycznych, zapewniając tym samym wiarygodność i powtarzalność wyników. Dodatkowo, laboratoria często korzystają z prób wzorcowych w ramach systemów zapewnienia jakości, co podkreśla ich znaczenie dla utrzymania wysokich standardów analitycznych oraz dokładności wyników.

Pytanie 13

Podaj nazwę reagentu chemicznego, który w specyficznych warunkach reaguje tylko z jednym jonem, pierwiastkiem lub związkiem chemicznym?

A. Grupowy
B. Specyficzny
C. Selektywny
D. Wzorcowy
Odczynnik specyficzny to substancja chemiczna, która reaguje wyłącznie z określonymi jonami, pierwiastkami lub związkami chemicznymi, co czyni go niezbędnym narzędziem w chemii analitycznej. Przykładem takiego odczynnika może być wskaźnik pH, który zmienia kolor tylko w obecności określonego zakresu wartości pH. Użycie odczynników specyficznych jest kluczowe w różnych dziedzinach, od analizy środowiskowej po medycynę, gdzie precyzyjne oznaczenie obecności określonych substancji jest niezbędne dla bezpieczeństwa i jakości produktów. W praktyce, standardy branżowe, takie jak ISO 17025, podkreślają znaczenie stosowania odczynników specyficznych w laboratoriach, aby zapewnić wiarygodność i dokładność wyników analiz. Używając odczynnika specyficznego, laboratoria mogą minimalizować ryzyko błędnych odczytów i zwiększać efektywność przeprowadzanych ekspertyz, co jest niezwykle ważne w kontekście regulacji prawnych i zarządzania jakością.

Pytanie 14

Aby przygotować 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3, jaką kolbę miarową o pojemności należy wykorzystać?

A. 1000 cm3 oraz dwa fiksanale zawierające po 0,1 mola HCl
B. 500 cm 3 oraz fiksanal zawierający 0,1 mola HCl
C. 500 cm3 oraz fiksanal zawierający 0,2 mol HCl
D. 0,5 dm3 oraz dwa fiksanale zawierające po 0,2 mola HCl
Odpowiedź jest poprawna, ponieważ przygotowanie 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3 wymaga zastosowania odpowiednich zasad obliczeń chemicznych. W tym przypadku, aby otrzymać roztwór o pożądanej objętości i stężeniu, musimy najpierw obliczyć liczbę moli kwasu chlorowodorowego potrzebnych do przygotowania takiego roztworu. Liczba moli obliczana jest ze wzoru: n = C × V, gdzie n to liczba moli, C to stężenie, a V to objętość. Dla tego zadania: n = 0,2 mol/dm3 × 0,5 dm3 = 0,1 mola. Zastosowanie kolby miarowej o pojemności 500 cm3, równoważnej 0,5 dm3, jest zatem odpowiednie, ponieważ po rozmieszaniu fiksanalu, który zawiera dokładnie 0,1 mola HCl, uzyskamy wymagane stężenie. Takie przygotowania są zgodne z dobrą praktyką laboratoryjną, zapewniając dokładność oraz powtarzalność wyników, co jest kluczowe w chemii analitycznej.

Pytanie 15

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08

A. Tlenku siarki(IV).
B. Ozonu.
C. Amoniaku.
D. Chloroformu.
Ozon (O3) ma objętość molową, która w warunkach normalnych odchyla się od wartości teoretycznej, typowej dla gazu doskonałego, bardziej niż pozostałe gazy wymienione w pytaniu. Dla gazów doskonałych zakłada się, że ich cząsteczki nie oddziałują ze sobą oraz że zajmują objętość zero, co nie ma miejsca w rzeczywistości. Ozon, ze względu na swoją strukturę i bardziej złożoną budowę cząsteczkową, wykazuje znaczące interakcje między cząsteczkami, co prowadzi do odchyleń od wzorów gazu doskonałego. W praktyce, szczególnie w chemii atmosferycznej, zrozumienie tych odchyleń ma kluczowe znaczenie dla modelowania reakcji chemicznych i procesów, takich jak fotochemiczne zachowanie ozonu w atmosferze. Wiedza ta jest niezbędna dla naukowców i inżynierów zajmujących się ochroną środowiska, ponieważ ozon jest zarówno gazem o działaniu prozdrowotnym w górnych warstwach atmosfery, jak i zanieczyszczeniem w niższych warstwach, co sprawia, że jego analiza jest kluczowa dla oceny jakości powietrza i skutków zdrowotnych. Dodatkowo, znajomość objętości molowej ozonu ma zastosowanie w wielu dziedzinach, w tym w meteorologii i farmakologii, gdzie precyzyjne pomiary gazów są kluczowe dla skutecznych interwencji oraz badań.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Gumowe rękawice i maskę ochronną.
B. Odzież ochronną, rękawice i okulary ochronne.
C. Odzież ochronną i maskę tlenową.
D. Fartuch ochronny, rękawice i maskę tlenową.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakim rozpuszczalnikiem o niskiej temperaturze wrzenia wykorzystuje się do suszenia szkła laboratoryjnego?

A. roztwór węglanu wapnia
B. kwas siarkowy(VI)
C. alkohol etylowy
D. woda amoniakalna
Alkohol etylowy, znany również jako etanol, jest powszechnie stosowanym rozpuszczalnikiem w laboratoriach chemicznych ze względu na swoje właściwości lotne oraz zdolność do efektywnego rozpuszczania różnych substancji. W procesie suszenia szkła laboratoryjnego, alkohol etylowy jest wykorzystywany do usuwania wody oraz innych zanieczyszczeń, co jest kluczowe dla uzyskania wysokiej czystości sprzętu. Alkohol etylowy odparowuje w stosunkowo niskich temperaturach, co umożliwia szybkie i skuteczne suszenie bez ryzyka uszkodzenia szkła. Ponadto, etanol jest zgodny z zasadami dobrych praktyk laboratoryjnych, które podkreślają znaczenie stosowania substancji nie tylko skutecznych, ale także bezpiecznych dla użytkowników oraz środowiska. Warto również zwrócić uwagę, że alkohol etylowy jest substancją łatwopalną, dlatego podczas jego stosowania należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak praca w dobrze wentylowanych pomieszczeniach oraz unikanie otwartego ognia. Zastosowanie alkoholu etylowego w laboratoriach chemicznych jest również zgodne z normami EPA, które regulują użycie rozpuszczalników w kontekście ochrony środowiska.

Pytanie 21

Z podanych w tabeli danych wybierz sprzęt potrzebny do zmontowania zestawu do destylacji z parą wodną.

12345
manometrkociołek miedzianychłodnica powietrznakolba destylacyjnaodbieralnik

A. 1,3,4
B. 1,2,3
C. 2,4,5
D. 2,3,5
Wybierając odpowiedzi inne niż 2,4,5, można natknąć się na szereg koncepcji, które nie są zgodne z podstawowymi zasadami destylacji. Manometr (1) jest instrumentem służącym do pomiaru ciśnienia, co nie jest kluczowe w procesie destylacji z parą wodną, gdyż proces ten odbywa się w warunkach atmosferycznych, a nie pod ciśnieniem. Włączenie manometru do zestawu destylacyjnego może prowadzić do błędnych interpretacji funkcji sprzętu i ich zastosowania. Chłodnica powietrzna (3), choć użyteczna w niektórych procesach, nie jest niezbędna w klasycznej destylacji z parą wodną; wiele procesów wykorzystuje inne typy chłodnic, które są bardziej efektywne w tym kontekście. Wybierając niepoprawne kombinacje elementów, można wprowadzać w błąd co do ich funkcji oraz zastosowania. To podejście wskazuje na typowy błąd myślowy polegający na nadmiernym poleganiu na instrumentach, które nie są kluczowe dla procesu lub na brak zrozumienia podstaw działania destylacji. Kluczowe jest, aby każdy element w zestawie był zrozumiany w kontekście jego funkcji i roli w całym procesie, co jest fundamentalne dla efektywności i bezpieczeństwa operacji chemicznych.

Pytanie 22

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. ekstrakcja
B. krystalizacja
C. roztwarzanie
D. rozpuszczanie
Rozpuszczanie, krystalizacja i ekstrakcja to zjawiska, które mogą być mylone z roztwarzaniem, jednak każde z nich ma swoje unikalne cechy oraz przeznaczenie. Rozpuszczanie odnosi się ogólnie do procesu, w którym substancja stała przechodzi w stan roztworu, ale nie zawsze wiąże się z aktywną reakcją chemiczną z rozpuszczalnikiem. Krystalizacja to proces odwrotny do roztwarzania, w wyniku którego substancja przechodzi ze stanu rozpuszczonego do stałego, co jest kluczowe w otrzymywaniu czystych kryształów substancji chemicznych. Ekstrakcja natomiast odnosi się do procesu, w którym substancje są wyodrębniane z mieszanki, na przykład poprzez użycie rozpuszczalnika, ale nie oznacza to, że te substancje muszą ulegać reakcjom chemicznym. Typowym błędem myślowym jest mylenie tych pojęć, gdyż można sądzić, że wszelkie procesy związane z przemieszczaniem się substancji w roztworze są tożsame. Zrozumienie różnic pomiędzy tymi terminami jest kluczowe dla właściwego zarządzania procesami chemicznymi, szczególnie w kontekście przemysłu chemicznego, gdzie precyzyjne operacje są niezbędne do uzyskania pożądanych produktów o wysokiej jakości.

Pytanie 23

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
B. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
C. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
D. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
Sformułowania, które sugerują, że reakcja jest egzotermiczna, są mylne. Ekspansja gazu, która występuje w wyniku wydzielania amoniaku, jest kluczowym czynnikiem w analizie tej reakcji. Egzotermiczność oznacza, że reakcja wydziela ciepło, co w tym przypadku nie ma miejsca. Ponadto, twierdzenie o nieodwracalności reakcji związanej z wydzieleniem soli jest również nieprecyzyjne – chociaż reakcja prowadzi do powstania soli, kluczową rolę odgrywa wydzielanie gazu, a nie samej soli. W przypadku reakcji endotermicznych, często występują mylne przekonania, że jedynie wydzielanie ciepła może być oznaką reakcji spontanicznej. W rzeczywistości, spontaniczność reakcji chemicznej można zrozumieć przez analizę zmian entropii i energii swobodnej. Kluczowym błędem jest także przypisanie roli równowagi chemicznej tylko do produktów stałych, ignorując znaczenie produktów gazowych. Warto również podkreślić, że niektóre reakcje, mimo że energetycznie niekorzystne, mogą zachodzić na skutek zwiększenia entropii, co jest szczególnie istotne w kontekście gazów. Zrozumienie tych koncepcji jest niezbędne dla analizy reakcji chemicznych w praktyce laboratoryjnej i przemysłowej.

Pytanie 24

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. spektralnie czysty
B. czysty
C. czysty do analizy
D. techniczny
Odczynnik chemiczny oznaczany jako "techniczny" jest substancją, w której domieszki stanowią od 1 do 10% całkowitej masy. To definiuje jego szersze zastosowanie w przemyśle, ponieważ odczynniki techniczne często nie są wymagane do wysokiej czystości, ale muszą spełniać określone normy jakościowe. Na przykład, w laboratoriach chemicznych odczynniki techniczne mogą być stosowane w procesach, gdzie nie jest konieczne użycie substancji czystych do analizy. Często wykorzystywane są w syntezach chemicznych, produkcji farb, lakierów czy w kosmetykach. Zgodnie z normą ISO 9001, przedsiębiorstwa muszą dążyć do stosowania odpowiednich standardów jakości, co obejmuje również stosowanie odczynników technicznych, które muszą być odpowiednio oznakowane oraz dokumentowane. Dzięki temu można zapewnić ich właściwe użycie w procesach produkcyjnych oraz badawczych, co podkreśla znaczenie znajomości właściwych klas substancji chemicznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
B. zawartość głównego składnika wynosi 99-99,9%
C. odczynnik jest przeznaczony do analiz spektralnych
D. zawartość głównego składnika wynosi 99,9-99,99%
Zrozumienie oznaczenia 'cz.' jest kluczowe dla każdego, kto pracuje w laboratoriach chemicznych. Wiele osób myli to oznaczenie z innymi wskaźnikami czystości chemikaliów, co prowadzi do nieporozumień. Na przykład, pierwsza z dostępnych odpowiedzi sugeruje, że skrót ten odnosi się do możliwości stosowania odczynnika do analiz spektralnych. To podejście jest błędne, ponieważ czystość chemiczna nie jest bezpośrednio związana z metodą analizy, ale raczej z jakością używanego odczynnika. Zastosowanie reagentów o wysokiej czystości jest ważne w kontekście dokładności wyników, a nie samego sposobu przeprowadzania analizy. Kolejna sugestia dotycząca zawartości głównego składnika na poziomie 99,9-99,99% również jest myląca. Oznaczenie 'cz.' jednoznacznie wskazuje na zakres 99-99,9%, co jest akceptowane w standardach laboratoryjnych. Ostatnia odpowiedź, mówiąca o maksymalnej zawartości zanieczyszczeń, sugeruje jakoby czystość była mierzona w bardziej rygorystyczny sposób niż w rzeczywistości. Zanieczyszczenia zawsze są obecne, ale ich akceptowalny poziom w odczynnikach chemicznych to właśnie 0,1-0,01% dla klasy reagentów czystych. Pojawiające się błędne koncepcje często wynikają z mylenia terminologii i różnorodności standardów stosowanych w praktyce laboratoryjnej, co może prowadzić do nieodpowiednich wyborów reagenty, a tym samym do błędnych wyników badań.

Pytanie 27

Nie należy używać do czyszczenia szklanych naczyń laboratoryjnych

A. alkoholowego roztworu NaOH
B. piasku oraz ściernych detergentów
C. stężonego kwasu siarkowego(VI) technicznego
D. mydlanego roztworu
Użycie piasku i ścierających środków myjących do mycia szklanych naczyń laboratoryjnych jest niewłaściwe z kilku powodów. Po pierwsze, materiały te mogą powodować zarysowania oraz uszkodzenia powierzchni szkła, co prowadzi do zmiany właściwości optycznych i chemicznych naczyń. Zarysowania mogą utrudniać dokładne czyszczenie, sprzyjać gromadzeniu się zanieczyszczeń i prowadzić do kontaminacji próbek. Zgodnie z najlepszymi praktykami w laboratoriach, do mycia szkła należy używać delikatnych środków czyszczących, które nie uszkodzą jego struktury. Alternatywą jest stosowanie specjalistycznych detergentów laboratoryjnych, które są zaprojektowane do usuwania resztek chemicznych i biologicznych bez ryzyka uszkodzenia naczyń. Warto także zwrócić uwagę na kwestie bezpieczeństwa, gdyż stosowanie nieodpowiednich środków czyszczących może prowadzić do nieprzewidywalnych reakcji chemicznych. Dlatego przestrzeganie standardów czyszczenia naczyń laboratoryjnych jest kluczowe dla zapewnienia ich trwałości oraz bezpieczeństwa pracy w laboratorium.

Pytanie 28

Ustalanie miana roztworu polega na

A. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
B. zważeniu substancji i rozpuszczeniu jej w wodzie
C. określaniu przybliżonego stężenia roztworu
D. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
Poprawna odpowiedź dotyczy miareczkowania próbki roztworu o znanym stężeniu za pomocą roztworu nastawianego. Jest to kluczowy proces analityczny w chemii, stosowany do precyzyjnego określania stężenia substancji chemicznych w roztworach. W praktyce, miareczkowanie polega na dodawaniu roztworu titranta o znanym stężeniu do roztworu próbki aż do osiągnięcia punktu końcowego, w którym zachodzi reakcja chemiczna. Użycie roztworu nastawianego, którego stężenie zostało ustalone i potwierdzone na podstawie ścisłych standardów, zapewnia wysoką dokładność i powtarzalność wyników analizy. Na przykład, w laboratoriach analitycznych często stosuje się roztwory wzorcowe, które są przygotowane w zgodzie z normami ISO, co pozwala na uzyskanie wiarygodnych wyników. Miareczkowanie jest nie tylko fundamentalną techniką w chemii analitycznej, ale także w biologii, farmacji, a także w przemyśle spożywczym do kontroli jakości produktów.

Pytanie 29

Sód metaliczny powinien być przechowywany w laboratorium

A. w butlach metalowych z wodą destylowaną
B. w szklanych pojemnikach wypełnionych naftą
C. w szklanych naczyniach
D. w butelkach plastikowych
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 30

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. powietrznych
B. wodnych
C. olejowych
D. piaskowych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 31

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła sodowego
B. ze szkła borowo-krzemowego
C. z tworzywa sztucznego
D. z kwarcu
Chociaż przechowywanie próbek w naczyniach ze szkła kwarcowego czy borowo-krzemowego może wydawać się sensowne, nie jest to najlepszy pomysł, gdy mowa o krzemie. Kwarc, choć jest trwały, może wprowadzać krzemionkę do próbki, przez co wyniki mogą być fałszywe. Z kolei szkło borowo-krzemowe też może mieć trochę krzemu, co znowu wpływa na pomiar. A szkło sodowe, no tutaj to już w ogóle, bo reaguje z różnymi substancjami w wodzie, zwłaszcza przy mocnych kwasach lub zasadach. Dużo osób myśli, że całe szkło jest neutralne, ale to nieprawda - ich właściwości mogą być bardzo różne. To wszystko prowadzi do tego, że źle dobrane materiały do przechowywania próbek mogą nam zepsuć wyniki analizy, co w badaniach środowiskowych czy przy ocenie jakości wody pitnej może mieć poważne skutki. Dlatego ważne jest, żeby używać naczyń, które są odpowiednie i nie dodają niczego do naszych próbek.

Pytanie 32

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,001 mol/dm3
B. 1 mol/dm3
C. 0,1 mol/dm3
D. 0,01 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 33

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. pierwotna laboratoryjna
B. jednostkowa
C. wtórna
D. średnia laboratoryjna
Odpowiedzi, które wskazują wtórną, jednostkową lub pierwotną laboratoryjną próbkę, opierają się na nieprecyzyjnych definicjach i nie są odpowiednie w kontekście analizy reprezentatywności prób. Wtórna próbka odnosi się często do próbki pobranej z próbki, co nie odzwierciedla pojęcia reprezentatywności całej partii produktu. Ponadto, jednostkowa próbka odnosi się do pojedynczego elementu i nie może dostarczyć informacji na temat całej grupy, co czyni ją niewłaściwą w kontekście analizy statystycznej. Z kolei pierwotna laboratoryjna próbka wskazuje na próbkę pobraną bezpośrednio z miejsca produkcji, ale również nie oddaje koncepcji reprezentatywności. W praktyce, stosowanie tych pojęć może prowadzić do błędnych wniosków dotyczących jakości produktów, co jest niezgodne z najlepszymi praktykami w zakresie kontroli jakości i analizy laboratoryjnej. Używanie niewłaściwych terminów może skutkować poważnymi konsekwencjami, w tym błędami w ocenie ryzyka, co jest kluczowe w wielu branżach, zwłaszcza w farmaceutycznej czy spożywczej. Zrozumienie różnic pomiędzy tymi pojęciami jest istotne dla zapewnienia skutecznych i wiarygodnych analiz oraz zgodności z międzynarodowymi standardami.

Pytanie 34

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(IV) z azotu
B. kwasu azotowego(III) z azotu
C. kwasu azotowego(II) z azotu
D. kwasu azotowego(V) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 35

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu etylowego
B. glicyny
C. glicerolu
D. glikolu propylowego
Wybór glicyny, glikolu propylowego lub glikolu etylowego wskazuje na pewne nieporozumienia w zakresie chemii organicznej oraz procesów syntezy chemicznej. Glicyna jest aminokwasem, a nie alkoholem, co oznacza, że jej struktura chemiczna i właściwości nie są zgodne z wymaganiami procesu syntezy glicerolu. Glicyna jest podstawowym składnikiem białek oraz pełni rolę w metabolizmie jako prekursor wielu ważnych związków, jednak nie bierze udziału w opisanym procesie chemicznym, który dotyczy syntezy alkoholu trójwodorotlenowego. Glikol propylowy i glikol etylowy są związkami chemicznymi, które również nie odpowiadają strukturze glicerolu. Mimo że są to alkohole, ich powiązania z procesem syntezy glicerolu są znikome, a ich zastosowania są różne – glikol propylowy jest powszechnie stosowany jako rozpuszczalnik oraz substancja nawilżająca, a glikol etylowy głównie w chłodnictwie i jako składnik płynów hamulcowych. Zrozumienie różnic pomiędzy tymi substancjami oraz ich właściwościami chemicznymi jest niezwykle istotne dla skutecznego podejścia do syntez chemicznych. Zastosowanie właściwych terminów i zrozumienie ich funkcji w procesie produkcji substancji chemicznych jest kluczowe w pracy chemika i inżyniera chemicznego.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby obliczyć gęstość cieczy przy użyciu metody hydrostatycznej, należy zastosować

A. ebuliometr
B. wagę Mohra
C. wagosuszarkę
D. piknometr
Wybór wagosuszarki, piknometru lub ebuliometru jako narzędzi do wyznaczania gęstości cieczy wskazuje na pewne nieporozumienia dotyczące ich funkcji i zastosowania. Wagosuszarka jest urządzeniem przeznaczonym do pomiaru masy oraz wilgotności substancji stałych, a jej głównym celem jest określenie zawartości wody w próbkach, co nie ma bezpośredniego związku z pomiarami gęstości cieczy. Piknometr, z drugiej strony, jest to naczynie służące do pomiaru gęstości, ale nie jest oparte na pomiarze siły wyporu, jak w przypadku wagi Mohra. Piknometry działają w oparciu o pomiar objętości cieczy oraz masy, co w praktyce może prowadzić do większej niepewności w przypadku cieczy o zmiennej gęstości, a więc nie są tak powszechnie stosowane do pomiarów hydrostatycznych. Ebuliometr to narzędzie do pomiaru temperatury wrzenia cieczy, a nie jej gęstości, co także czyni go niewłaściwym wyborem w kontekście tego pytania. Nieprawidłowe podejście do wyboru odpowiedniego sprzętu może prowadzić do błędnych wyników i nieefektywnego przeprowadzania eksperymentów, co jest szczególnie istotne w kontekście precyzyjnych badań laboratoryjnych. Zrozumienie funkcji i zastosowania różnych narzędzi pomiarowych jest kluczowe dla prawidłowego przeprowadzania analizy chemicznej oraz zgodności z obowiązującymi standardami laboratoryjnymi.

Pytanie 38

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Chlorku sodu.
B. Glukozy.
C. Wodorotlenku sodu.
D. Stearynianu sodu.
Prawidłowa odpowiedź to wodorotlenek sodu, ponieważ piktogram przedstawiony na ilustracji symbolizuje substancje żrące. Wodorotlenek sodu (NaOH) jest silną zasadą, która wykazuje właściwości żrące, co sprawia, że jest niezwykle ważne, aby był odpowiednio oznaczony na opakowaniu. W praktyce, wodorotlenek sodu jest szeroko stosowany w przemyśle chemicznym, w produkcji mydeł oraz jako środek czyszczący w gospodarstwie domowym. Zgodnie z przepisami dotyczącymi substancji niebezpiecznych, takie jak Rozporządzenie (WE) nr 1272/2008, każda substancja żrąca musi być oznaczona odpowiednim piktogramem, aby ułatwić identyfikację zagrożeń i zapewnić bezpieczeństwo użytkowników. Ponadto, stosowanie odpowiednich środków ochrony osobistej, takich jak rękawice i gogle ochronne, jest zalecane przy pracy z wodorotlenkiem sodu, aby zminimalizować ryzyko poważnych obrażeń. Dlatego zrozumienie symboli na etykietach jest kluczowe dla bezpiecznego obchodzenia się z substancjami chemicznymi.

Pytanie 39

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
B. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
C. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
D. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego. Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze C1V1 = C2V2, gdzie C1 i V1 to stężenie i objętość stężonego kwasu, a C2 i V2 – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.