Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 stycznia 2025 12:34
  • Data zakończenia: 13 stycznia 2025 12:41

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na ilustracji widoczny jest komunikat, który pojawia się po wprowadzeniu adresu IP podczas ustawiania połączenia sieciowego na komputerze. Adres IP podany przez administratora to adres IP

Ilustracja do pytania
A. pętli zwrotnej
B. komputera
C. rozgłoszeniowym
D. sieci
Pętla zwrotna to specjalny adres IP z zakresu 127.0.0.0/8 zwykle 127.0.0.1 używany do testowania konfiguracji sieciowej komputera lokalnego bez opuszczania go. Nie może być używany jako adres IP w publicznej sieci komputerowej dlatego odpowiedź ta jest niepoprawna. Adres IP komputera to unikalny numer przypisany do urządzenia w sieci który jest używany do identyfikacji i komunikacji. Adres musi należeć do określonej podsieci i być unikalny w tej sieci co nie dotyczy adresu rozgłoszeniowego który jest używany do komunikacji grupowej. Adres sieci to pierwszy adres w danej podsieci który identyfikuje sieć jako całość a nie pojedyncze urządzenie. Adres ten ma wszystkie bity części hosta ustawione na 0 i służy do identyfikacji poszczególnych segmentów sieci. Łatwo jest pomylić adresy rozgłoszeniowe z adresami sieci lub komputerów jednak zrozumienie ich różnic jest kluczowe dla skutecznego zarządzania sieciami komputerowymi. Adresy te pełnią różne role i są używane w różnych kontekstach co podkreśla znaczenie znajomości ich funkcji i zastosowań. Uwzględnianie tych różnic pozwala na efektywne zarządzanie i rozwiązywanie problemów w konfiguracjach sieciowych co jest kluczowe dla administratorów IT. Każdy typ adresu ma swoje unikalne zastosowanie i znaczenie w architekturze sieci co jest fundamentalne dla utrzymania niezawodności i efektywności sieciowej infrastruktury informatycznej. Zrozumienie tych zasad jest niezbędne dla prawidłowej konfiguracji i administrowania sieci w praktycznych zastosowaniach technologii informacyjnej. Przezwyciężenie błędnych założeń i zrozumienie poprawnych zastosowań przyczynia się do stabilności i bezpieczeństwa sieci.

Pytanie 2

Jakie adresy mieszczą się w zakresie klasy C?

A. 192.0.0.0 ÷ 223.255.255.255
B. 128.0.0.1 ÷ 191.255.255.254
C. 1.0.0.1 ÷ 126.255.255.254
D. 224.0.0.1 ÷ 239.255.255.0
Adresy klasy C to zakres od 192.0.0.0 do 223.255.255.255, co jest zgodne z definicją klasy C w protokole IP. Adresy te są powszechnie używane w małych sieciach lokalnych, co sprawia, że są niezwykle praktyczne. W klasycznej konfiguracji sieci, adres klasy C pozwala na posiadanie do 256 różnych adresów (od 192.0.0.0 do 192.0.0.255), z czego 254 mogą być przypisane urządzeniom końcowym, ponieważ jeden adres jest zarezerwowany jako adres sieciowy, a drugi jako adres rozgłoszeniowy. Klasa C umożliwia również sieciowanie w sposób umożliwiający efektywne zarządzanie dużymi grupami urządzeń, co jest kluczowe w dzisiejszym świecie, gdzie złożoność sieci wzrasta. Dodatkowo, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), adresy klasy C mogą być elastycznie podzielone na mniejsze podsieci, co pozwala na lepsze wykorzystanie dostępnych zasobów IP. W praktyce, adresy klasy C są często używane w biurach i małych firmach, gdzie liczba urządzeń końcowych nie przekracza 254.

Pytanie 3

W systemie Linux komenda chown pozwala na

A. zmianę parametrów pliku
B. zmianę właściciela pliku
C. naprawę systemu plików
D. przeniesienie pliku
Polecenie chown (change owner) w systemie Linux służy do zmiany właściciela pliku lub katalogu. Właściciel pliku ma prawo do zarządzania nim, co obejmuje możliwość jego edytowania, przesuwania czy usuwania. W praktyce, polecenie to jest kluczowe w kontekście zarządzania uprawnieniami w systemach wieloużytkownikowych, gdzie różni użytkownicy mogą potrzebować dostępu do różnych zasobów. Na przykład, aby zmienić właściciela pliku na użytkownika 'janek', użyjemy polecenia: `chown janek plik.txt`. Ważne jest, aby użytkownik wykonujący to polecenie miał odpowiednie uprawnienia, najczęściej wymaga to posiadania roli administratora (root). Zmiana właściciela pliku jest również stosowana w przypadku przenoszenia plików pomiędzy różnymi użytkownikami, co pozwala na odpowiednią kontrolę nad danymi. W kontekście bezpieczeństwa IT, właściwe zarządzanie właścicielami plików jest istotne dla ochrony danych i zapobiegania nieautoryzowanemu dostępowi.

Pytanie 4

Który z protokołów jest wykorzystywany w telefonii VoIP?

A. FTP
B. NetBEUI
C. HTTP
D. H.323
Protokół FTP (File Transfer Protocol) jest przeznaczony głównie do przesyłania plików w sieciach komputerowych. Nie ma zastosowania w telefonii internetowej, ponieważ nie obsługuje transmisji głosu ani wideo w czasie rzeczywistym. Jego zastosowanie koncentruje się na transferze danych, a nie na komunikacji głosowej. HTTP (Hypertext Transfer Protocol) jest używany do przesyłania dokumentów w sieci WWW, co także nie ma związku z telefonami internetowymi. Z kolei NetBEUI (NetBIOS Extended User Interface) to protokół transportowy, który nie ma zastosowania w kontekście komunikacji głosowej, a jego użycie jest ograniczone do lokalnych sieci komputerowych, co czyni go nieadekwatnym do telefonii internetowej. Wybór niewłaściwego protokołu może prowadzić do nieporozumień dotyczących ich funkcji. Typowym błędem jest założenie, że wszystkie protokoły sieciowe mogą być stosowane zamiennie, co jest nieprawdziwe. Każdy protokół ma swoje specyficzne zastosowania i ograniczenia, dlatego ważne jest, aby zrozumieć różnice między nimi. Wiedza o właściwym doborze protokołów jest kluczowa dla efektywnej implementacji technologii komunikacyjnych w firmach, co może wpływać na jakość świadczonych usług oraz ich niezawodność.

Pytanie 5

Na przedstawionym zdjęciu widoczna jest

Ilustracja do pytania
A. modem kablowy
B. karta sieci bezprzewodowej
C. moduł łączący komputer z UPS
D. karta telewizyjna
Karta sieci bezprzewodowej, jak ta przedstawiona na zdjęciu, jest kluczowym komponentem umożliwiającym komputerom łączenie się z sieciami Wi-Fi. Działa ona poprzez odbieranie i wysyłanie sygnałów radiowych między komputerem a routerem bezprzewodowym. Typowa karta sieciowa PCI, jak ta na obrazku, jest instalowana bezpośrednio na płycie głównej komputera i zapewnia znacznie większą stabilność połączenia w porównaniu do kart podłączanych przez USB. Wspiera różne standardy transmisji, takie jak IEEE 802.11n czy 802.11ac, które określają prędkość i zasięg połączenia. Dzięki zastosowaniu technologii MIMO (Multiple Input Multiple Output), takie karty mogą jednocześnie korzystać z wielu anten, co zwiększa przepustowość i jakość połączenia. W kontekście praktycznym, karty sieciowe bezprzewodowe są powszechnie stosowane w biurach i domach, gdzie rozbudowa infrastruktury kablowej jest niepraktyczna lub kosztowna. Znajomość działania takich kart jest istotna z punktu widzenia zarządzania sieciami lokalnymi, konfiguracji routerów oraz rozwiązywania problemów z łącznością. Dobre praktyki branżowe zalecają regularną aktualizację sterowników karty, aby zapewnić optymalną wydajność i bezpieczeństwo połączenia.

Pytanie 6

Aby chronić sieć WiFi przed nieautoryzowanym dostępem, należy między innymi

A. dezaktywować szyfrowanie informacji
B. wybrać nazwę identyfikatora sieci SSID o długości co najmniej 16 znaków
C. włączyć filtrowanie adresów MAC
D. korzystać tylko z kanałów wykorzystywanych przez inne sieci WiFi
Włączenie filtrowania adresów MAC jest skuteczną metodą zabezpieczania sieci bezprzewodowej przed nieautoryzowanym dostępem. Filtrowanie adresów MAC polega na zezwalaniu na dostęp do sieci wyłącznie urządzeniom, których unikalne adresy fizyczne (MAC) zostały wcześniej zapisane w urządzeniu routera lub punktu dostępowego. Dzięki temu, nawet jeśli potencjalny intruz zna nazwę SSID i hasło do sieci, nie będzie mógł uzyskać dostępu, jeśli jego adres MAC nie znajduje się na liście dozwolonych. Praktyczne zastosowanie tej metody polega na regularnej aktualizacji listy dozwolonych adresów, szczególnie po dodaniu nowych urządzeń. Warto jednak pamiętać, że filtrowanie adresów MAC nie jest niezawodną metodą, ponieważ adresy MAC mogą być fałszowane przez bardziej zaawansowanych hakerów. Dlatego zaleca się stosowanie tej techniki w połączeniu z innymi metodami zabezpieczania, takimi jak silne szyfrowanie WPA3, które oferuje lepszą ochronę danych przesyłanych przez sieć. Filtrowanie adresów MAC jest zgodne z dobrymi praktykami bezpieczeństwa w sieciach lokalnych i jest szeroko stosowane w środowiskach zarówno domowych, jak i biznesowych.

Pytanie 7

Użytkownik drukarki samodzielnie i poprawnie napełnił pojemnik z tonerem. Po jego zamontowaniu drukarka nie podejmuje się próby drukowania. Co może być przyczyną tej usterki?

A. niewymieniony chip zliczający, znajdujący się na pojemniku z tonerem
B. zabrudzony wałek magnetyczny
C. nieodpowiednia jakość użytego tonera do uzupełnienia pojemnika
D. niewłaściwie dobrany toner
Jak dobrze wiemy, przy napełnianiu tonera jest jeden element, który często umyka ludziom - to chip zliczający. To taki mały układ, który siedzi na pojemniku i monitoruje, ile tonera tam w ogóle jest. Kiedy napełniasz toner, a zapomnisz wymienić chip albo go zresetować, to drukarka nie dostaje właściwych informacji o poziomie tonera. I co się wtedy dzieje? Mimo że toner fizycznie jest, drukarka może myśleć, że pojemnik jest pusty i nie zacznie drukować. Dlatego warto pamiętać, by zawsze sprawdzić, czy chip został wymieniony lub zresetowany podczas napełniania. Dobrym pomysłem jest używanie zestawów do napełniania, które zawierają nowe chipy - pomagają uniknąć sytuacji z błędnymi informacjami. Regularne kontrolowanie stanu tonerów i ich wymiana w odpowiednim czasie to klucz do jakości wydruków oraz sprawności urządzenia. Prawidłowy dobór materiałów eksploatacyjnych naprawdę wpływa na długość życia drukarki i jej wydajność.

Pytanie 8

Osoba pragnąca wydrukować dokumenty w oryginale oraz w trzech egzemplarzach na papierze samokopiującym powinna zainwestować w drukarkę

A. igłową
B. laserową
C. atramentową
D. termotransferową
Drukarka igłowa jest idealnym rozwiązaniem do drukowania dokumentów na papierze samokopiującym, ponieważ wykorzystuje mechanizm uderzeń igieł w taśmę barwiącą, co pozwala na jednoczesne tworzenie kopii. Dzięki tej technologii użytkownik może uzyskać oryginał oraz trzy kopie w jednym cyklu drukowania, co znacznie przyspiesza proces. Drukarki igłowe są szczególnie popularne w biurach oraz w miejscach, gdzie wymagana jest wysoka jakość kopii oraz ich jednoczesne drukowanie, takich jak faktury, umowy czy inne dokumenty urzędowe. Warto również zwrócić uwagę na ich trwałość oraz niskie koszty eksploatacji, co czyni je praktycznym wyborem dla firm. Dodatkowo, standard ISO 9001 zaleca stosowanie odpowiednich technologii drukarskich w zależności od potrzeb, co w przypadku dokumentów samokopiujących jednoznacznie wskazuje na drukarki igłowe jako najbardziej efektywne rozwiązanie.

Pytanie 9

Urządzenie komputerowe, które powinno być koniecznie podłączone do zasilania za pomocą UPS, to

A. ploter
B. dysk zewnętrzny
C. drukarka atramentowa
D. serwer sieciowy
Serwer sieciowy jest kluczowym elementem infrastruktury IT, odpowiedzialnym za przechowywanie i udostępnianie zasobów oraz usług w sieci. Z racji na swoją rolę, serwery muszą być nieprzerwanie dostępne, a ich nagłe wyłączenie z powodu przerwy w dostawie energii może prowadzić do poważnych problemów, takich jak utrata danych, przerwanie usług czy obniżenie wydajności całego systemu. Zastosowanie zasilacza awaryjnego (UPS) zapewnia dodatkowy czas na bezpieczne wyłączenie serwera oraz ochronę przed uszkodzeniami spowodowanymi przepięciami. W praktyce, standardy branżowe, takie jak Uptime Institute, zalecają stosowanie UPS dla serwerów, aby zwiększyć ich niezawodność i dostępność. Dodatkowo, odpowiednia konfiguracja UPS z monitoringiem stanu akumulatorów może zapobiegać sytuacjom awaryjnym i wspierać zarządzanie ryzykiem w infrastrukturze IT, co jest kluczowe dla organizacji operujących w oparciu o technologie informacyjne.

Pytanie 10

Zidentyfikuj najprawdopodobniejszą przyczynę pojawienia się komunikatu "CMOS checksum error press F1 to continue press DEL to setup" podczas uruchamiania systemu komputerowego?

A. Zniknięty plik konfiguracyjny.
B. Rozładowana bateria podtrzymująca ustawienia BIOS-u
C. Wyczyszczona pamięć CMOS.
D. Uszkodzona karta graficzna.
Komunikat "CMOS checksum error press F1 to continue press DEL to setup" często wskazuje na problemy związane z pamięcią CMOS, która jest odpowiedzialna za przechowywanie ustawień BIOS-u, takich jak data, godzina oraz konfiguracja sprzętowa. Gdy bateria CMOS, najczęściej typu CR2032, jest rozładowana, pamięć ta nie jest w stanie zachować danych po wyłączeniu komputera, co prowadzi do błędów przy uruchamianiu. W praktyce, aby rozwiązać problem, należy wymienić baterię na nową, co jest prostą i standardową procedurą w konserwacji sprzętu komputerowego. Prawidłowe funkcjonowanie baterii CMOS jest kluczowe dla stabilności systemu; bez niej BIOS nie może poprawnie odczytać ustawień, co skutkuje błędami. Zrozumienie tego procesu jest istotne dla każdego użytkownika komputera, szczególnie dla osób zajmujących się serwisowaniem sprzętu, ponieważ pozwala na szybkie diagnozowanie i naprawę problemów sprzętowych, zgodnie z zaleceniami producentów i najlepszymi praktykami branżowymi.

Pytanie 11

Menadżer rozruchu, który umożliwia wybór systemu operacyjnego Linux do załadowania, to

A. Boot Magic
B. Ranish Partition Manager
C. Grub
D. Smart Boot Manager
Grub (GRand Unified Bootloader) to jeden z najpopularniejszych bootloaderów używanych w systemach operacyjnych Linux. Jest to elastyczne i potężne narzędzie, które pozwala na uruchamianie różnych systemów operacyjnych z jednego menu startowego. Grub obsługuje różnorodne pliki systemowe i formaty partycji, co czyni go wszechstronnym rozwiązaniem dla użytkowników, którzy mogą mieć zainstalowane wiele dystrybucji Linuxa oraz inne systemy operacyjne (np. Windows). Przykładowo, jeśli posiadasz zarówno Ubuntu, jak i Fedora na tym samym komputerze, Grub umożliwi Ci wybór, który system chcesz uruchomić podczas startu komputera. Grub jest również zgodny z różnymi architekturami sprzętowymi i potrafi wykrywać i konfigurować systemy operacyjne automatycznie. Warto również zauważyć, że Grub jest zgodny z najlepszymi praktykami branżowymi, umożliwiając użytkownikom edytowanie wpisów w czasie rzeczywistym oraz korzystanie z zaawansowanych opcji konfiguracyjnych, co zwiększa jego funkcjonalność i elastyczność.

Pytanie 12

Jaką topologię fizyczną wykorzystuje się w sieciach o logice Token Ring?

A. Siatki
B. Pierścienia
C. Magistrali
D. Gwiazdy
Topologia fizyczna pierścienia jest kluczowym elementem w sieciach wykorzystujących topologię logiczną Token Ring. W tej architekturze, dane są przesyłane w formie tokenów, które krążą wokół zamkniętego pierścienia. Każde urządzenie w sieci ma dostęp do tokena, co zapewnia kontrolę nad transmisją danych i eliminację kolizji. To podejście jest szczególnie efektywne w środowiskach, gdzie wymagana jest stabilność i deterministyczny czas przesyłania danych, na przykład w aplikacjach przemysłowych i systemach automatyki. Standardy IEEE 802.5 definiują zasady działania sieci Token Ring, co czyni tę technologię zgodną z najlepszymi praktykami w zakresie projektowania sieci. Stosowanie topologii pierścienia sprawia, że sieć jest odporna na błędy; jeśli jedno urządzenie ulegnie awarii, pozostałe mogą nadal komunikować się, co jest kluczowe dla wysokiej dostępności systemów. W praktyce, sieci Token Ring znajdowały zastosowanie w różnych branżach, w tym w bankowości i telekomunikacji, gdzie niezawodność i bezpieczeństwo danych są priorytetowe.

Pytanie 13

Urządzenie przedstawione na rysunku

Ilustracja do pytania
A. pełni rolę w przesyłaniu ramki pomiędzy segmentami sieci, dobierając port, na który jest ona kierowana
B. jest wykorzystywane do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
C. umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe
D. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który stanowi wzmocniony sygnał wejściowy, kosztem energii pobieranej ze źródła prądu
Urządzenie przedstawione na rysunku to konwerter mediów, który umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe. Konwertery tego typu są powszechnie stosowane w sieciach komputerowych do rozszerzania zasięgu sygnałów sieciowych za pomocą światłowodów, które oferują znacznie większe odległości transmisji niż tradycyjne kable miedziane. Dzięki wykorzystaniu technologii światłowodowej możliwe jest zmniejszenie strat sygnału i zakłóceń elektromagnetycznych, co jest szczególnie ważne w miejscach o dużym zanieczyszczeniu elektromagnetycznym. Zastosowanie konwerterów mediów jest również zgodne z dobrymi praktykami projektowania nowoczesnych sieci, gdzie dostępność i niezawodność mają kluczowe znaczenie. Urządzenia te wspierają różne typy połączeń, na przykład 1000BASE-T dla Ethernetu po kablach miedzianych i moduły SFP dla sygnałów światłowodowych. Wykorzystując konwertery mediów, można efektywnie integrować różne technologie w sieciach, zapewniając ich elastyczność i skalowalność, co jest zgodne ze standardami IEEE dotyczącymi sieci lokalnych.

Pytanie 14

Jaką operację należy wykonać, aby chronić dane przesyłane w sieci przed działaniem sniffera?

A. szyfrowanie danych w sieci
B. użycie antydialera
C. zmiana hasła konta użytkownika
D. przeskanowanie systemu programem antywirusowym
Szyfrowanie danych w sieci jest kluczową metodą ochrony informacji przesyłanych między urządzeniami. Dzięki szyfrowaniu, dane stają się nieczytelne dla osób trzecich, takich jak snifferzy, którzy mogą próbować przechwycić ruch sieciowy. Szyfrowanie odbywa się za pomocą algorytmów kryptograficznych, które transformują dane w sposób uniemożliwiający ich odczytanie bez odpowiedniego klucza. Przykładem popularnych protokołów szyfrowania jest TLS (Transport Layer Security), który jest powszechnie stosowany w zabezpieczaniu połączeń internetowych, takich jak te wykonywane w przeglądarkach pod adresem HTTPS. W praktyce, korzystając z szyfrowania, organizacje nie tylko zabezpieczają swoje dane, ale również spełniają wymogi regulacyjne dotyczące ochrony informacji, takie jak RODO w Europie. Warto zauważyć, że szyfrowanie nie tylko chroni dane w stanie przesyłanym, ale także zabezpiecza je w spoczynku, co jest istotne w kontekście przechowywania wrażliwych informacji.

Pytanie 15

W systemie Linux plik posiada uprawnienia ustawione na 541. Właściciel ma możliwość pliku

A. odczytać, zapisać oraz wykonać
B. zmieniać
C. odczytać oraz wykonać
D. wyłącznie wykonać
Uprawnienia pliku w systemie Linux są określane za pomocą trzech cyfr, gdzie każda cyfra reprezentuje różne uprawnienia dla właściciela, grupy i innych użytkowników. Wartość 541 oznacza, że właściciel ma uprawnienia do odczytu (4) i wykonania (1), ale nie ma uprawnień do zapisu (0). Z tego względu poprawna odpowiedź to możliwość odczytu i wykonania. Uprawnienia te są kluczowe w zarządzaniu bezpieczeństwem systemu, ponieważ pozwalają na kontrolowanie, kto ma dostęp do plików i jak może z nich korzystać. Na przykład, jeśli właściciel pliku chce, aby inni użytkownicy mogli go uruchomić, ale nie modyfikować, ustawienie uprawnień na 541 jest odpowiednie. Dobre praktyki w zarządzaniu uprawnieniami obejmują minimalizowanie dostępu do plików, a także używanie polecenia 'chmod' do precyzyjnego ustawiania tych uprawnień, co jest niezbędne w środowiskach produkcyjnych dla utrzymania bezpieczeństwa i integralności danych.

Pytanie 16

Jakiego parametru wymaga konfiguracja serwera DHCP?

A. Czas trwania dzierżawy adresu IP
B. Czas trwania dzierżawy adresu MAC
C. Poziom zabezpieczeń IPSec (ang. Internet Protocol Security)
D. Adres MAC karty sieciowej serwera DHCP
Jak się nad tym zastanowić, to inne opcje nie bardzo pasują do tematu konfiguracji serwera DHCP. Na przykład poziom zabezpieczeń IPSec jest ważny dla bezpieczeństwa, ale nie ma bezpośredniego związku z DHCP. IPSec to protokoły, które zabezpieczają komunikację IP, a nie coś, co ustalamy na serwerze DHCP. Adres MAC serwera też nie jest potrzebny w kontekście jego konfiguracji. Adres MAC to właściwie coś, co przypisane jest do interfejsu sieciowego, a serwer DHCP nie potrzebuje go, żeby przydzielać adresy IP. I jeszcze jedno - mówienie o czasie dzierżawy adresu MAC to mylny trop, bo DHCP zajmuje się dzierżawą adresów IP, nie MAC. Tego typu nieporozumienia mogą prowadzić do błędów w interpretacji tego, do czego DHCP służy, co potem może skutkować złym ustawieniem i problemami w sieci. Ważne jest, aby zrozumieć, że DHCP to protokół, który ma na celu automatyczne przydzielanie adresów IP i zarządzanie ich dzierżawą, a nie coś z adresami MAC czy sprawami bezpieczeństwa.

Pytanie 17

W przypadku dłuższych przestojów drukarki atramentowej, pojemniki z tuszem powinny

A. pozostać w drukarce, bez konieczności podejmowania dodatkowych działań
B. pozostać w drukarce, którą należy osłonić folią
C. być zabezpieczone w specjalnych pudełkach, które zapobiegają zasychaniu dysz
D. zostać wyjęte z drukarki i umieszczone w szafie, bez dodatkowych zabezpieczeń
Zabezpieczenie pojemników z tuszem w specjalnych pudełkach uniemożliwiających zasychanie dysz jest kluczowym krokiem w utrzymaniu prawidłowej funkcjonalności drukarki atramentowej. Przy dłuższych przestojach tusz może wysychać, co prowadzi do zatykania dysz głowicy drukującej, a w konsekwencji do obniżenia jakości druku. Przykładem skutecznego rozwiązania jest stosowanie pojemników z tuszem, które są zaprojektowane z myślą o minimalizacji kontaktu z powietrzem. Dobre praktyki wskazują również, że należy unikać pozostawiania tuszu w otwartych opakowaniach, gdyż ekspozycja na wilgoć i zanieczyszczenia może znacznie obniżyć jego jakość. Ponadto, warto regularnie przeprowadzać czyszczenie głowicy drukującej, aby zapobiegać osadzaniu się tuszu w dyszach, zwłaszcza po dłuższych przerwach w użytkowaniu. Właściwe przechowywanie tuszu przyczynia się do wydłużenia jego trwałości i poprawy efektywności drukowania, co jest zgodne z rekomendacjami producentów sprzętu biurowego.

Pytanie 18

Napięcie dostarczane przez płytę główną dla pamięci typu SDRAM DDR3 może wynosić

A. 3,3 V
B. 2,5 V
C. 1,2 V
D. 1,5 V
Prawidłową wartością zasilania dla pamięci typu SDRAM DDR3 jest 1,5 V. Ta specyfikacja jest wynikiem postępu technologicznego w dziedzinie pamięci komputerowych, w której dąży się do zmniejszenia zużycia energii, przy jednoczesnym zwiększeniu wydajności. DDR3, w porównaniu do swojego poprzednika DDR2, oferuje znacznie wyższe prędkości transferu danych, a także zmniejszoną wartość napięcia, co przekłada się na mniejsze zużycie energii i niższe wydzielanie ciepła. W praktyce, niższe napięcie zasilania pozwala na bardziej efektywne działanie systemów komputerowych, co jest istotne nie tylko w przypadku komputerów stacjonarnych, ale także urządzeń mobilnych, gdzie oszczędność energii jest kluczowa. Ponadto, stosowanie pamięci DDR3 w nowoczesnych komputerach stacjonarnych i laptopach jest zgodne z zaleceniami organizacji takich jak JEDEC, która ustanawia standardy dla pamięci DRAM. Warto również zauważyć, że pamięci DDR3 są często wykorzystywane w kontekście gier komputerowych i aplikacji wymagających dużej wydajności, gdzie stabilność i szybkość transferu danych mają kluczowe znaczenie.

Pytanie 19

Które z poniższych poleceń systemu Windows generuje wynik przedstawiony na rysunku?

Ilustracja do pytania
A. ipconfig
B. msconfig
C. tracert
D. netstat
Polecenie tracert w systemie Windows służy do śledzenia trasy pakietów sieciowych z komputera do docelowego serwera. Daje wgląd w każdy przeskok w sieci co jest pomocne przy identyfikacji miejsc gdzie może dochodzić do opóźnień. Jednak nie dostarcza informacji o aktualnych połączeniach sieciowych jak netstat. Polecenie ipconfig jest przeznaczone do wyświetlania konfiguracji sieciowej interfejsów na komputerze. Pozwala użytkownikowi zobaczyć adres IP maskę podsieci i bramę domyślną ale nie pokazuje aktywnych połączeń co czyni je nieodpowiednim wyborem w tym kontekście. Z kolei msconfig to narzędzie konfiguracyjne które umożliwia zarządzanie uruchamianiem systemu i usługami. Jest użyteczne dla optymalizacji procesu startu systemu ale nie ma żadnego związku z monitorowaniem połączeń sieciowych. Częstym błędem jest mylenie funkcji poszczególnych poleceń co prowadzi do niepoprawnego postrzegania ich zastosowań. Zrozumienie właściwości każdego polecenia jest kluczem do prawidłowego ich użycia w kontekście zarządzania systemem i siecią. Dlatego ważnym jest aby znać specyfikę i zastosowanie każdego z narzędzi aby efektywnie z nich korzystać i rozwiązywać problemy związane z działaniem systemu czy sieci. Właściwe użycie polecenia w zależności od potrzeb pozwala na skuteczne zarządzanie komputerem i siecią co jest fundamentem dobrych praktyk w administracji systemowej i sieciowej.

Pytanie 20

Kluczowy sposób zabezpieczenia danych w sieci komputerowej przed nieautoryzowanym dostępem to

A. tworzenie sum kontrolnych plików
B. użycie macierzy dyskowych
C. realizacja kopii danych
D. autoryzacja dostępu do zasobów serwera
Autoryzacja dostępu do zasobów serwera jest kluczowym mechanizmem ochrony danych w sieci komputerowej, ponieważ zapewnia, że tylko uprawnione osoby mogą uzyskać dostęp do wrażliwych informacji i systemów. Proces ten polega na weryfikacji tożsamości użytkowników oraz przypisywaniu im odpowiednich uprawnień do korzystania z zasobów. W praktyce, autoryzacja często wykorzystuje różne metody, takie jak hasła, kody PIN, tokeny czy biometrię. Na przykład, w wielu organizacjach stosuje się systemy zarządzania tożsamością (IAM), które centralizują proces autoryzacji, umożliwiając kontrolę nad dostępem do różnych systemów i aplikacji. Dobre praktyki branżowe, takie jak stosowanie minimalnych uprawnień (principle of least privilege), pomagają ograniczyć ryzyko nieautoryzowanego dostępu oraz naruszenia danych. Standardy, takie jak ISO/IEC 27001, podkreślają znaczenie zarządzania dostępem w kontekście ogólnej strategii ochrony information security.

Pytanie 21

W komputerowych stacjach roboczych zainstalowane są karty sieciowe Ethernet 10/100/1000 z interfejsem RJ45. Jakie medium transmisyjne powinno być zastosowane do budowy sieci komputerowej, aby osiągnąć maksymalną przepustowość?

A. Kabel UTP kategorii 5e
B. Światłowód jednomodowy
C. Kabel UTP kategorii 5
D. Światłowód wielomodowy
Kabel UTP kategorii 5e jest właściwym wyborem do budowy sieci komputerowej, gdyż oferuje poprawioną wydajność w porównaniu do kategorii 5. Standard ten jest zaprojektowany do obsługi prędkości do 1 Gbit/s na odległości do 100 metrów, co idealnie odpowiada wymaganiom kart sieciowych Ethernet 10/100/1000. W praktyce, kable UTP kategorii 5e zawierają ulepszony system ekranowania, co minimalizuje zakłócenia elektromagnetyczne oraz przesłuchy, co jest kluczowe w gęsto zaludnionych środowiskach biurowych. Warto również zauważyć, że standardy IEEE 802.3ab dla Ethernetu 1000BASE-T wymagają użycia co najmniej kabla kategorii 5e, aby zapewnić pełną funkcjonalność. Dzięki temu, w zastosowaniach takich jak systemy VoIP, transmisja danych oraz multimedia, kabel UTP kategorii 5e dostarcza nie tylko wysoką przepustowość, ale również stabilność i niezawodność połączeń sieciowych.

Pytanie 22

Minimalna odległość toru nieekranowanego kabla sieciowego od instalacji oświetleniowej powinna wynosić

A. 30cm
B. 50cm
C. 40cm
D. 20cm
Odległość 30 cm pomiędzy torami nieekranowanych kabli sieciowych a instalacjami elektrycznymi jest zgodna z ogólnie przyjętymi normami dotyczącymi instalacji telekomunikacyjnych i elektrycznych, w tym z wytycznymi określonymi w normie PN-EN 50174-2. Ta odległość ma kluczowe znaczenie dla zapewnienia ochrony przed zakłóceniami elektromagnetycznymi, które mogą negatywnie wpływać na jakość sygnału przesyłanego przez kable sieciowe. Przykładowo, w przypadku instalacji w biurze, gdzie przewody sieciowe są często prowadzone w pobliżu instalacji oświetleniowych, odpowiednia separacja zmniejsza ryzyko wpływu zakłóceń, co przekłada się na stabilność połączeń internetowych. Utrzymanie minimalnej odległości 30 cm zapewnia również zgodność z wymaganiami bezpieczeństwa, co jest istotne dla długoterminowej niezawodności systemów komunikacyjnych.

Pytanie 23

Jakie jest usytuowanie przewodów w złączu RJ45 według schematu T568A?

Ilustracja do pytania
A. B
B. D
C. C
D. A
Sekwencja połączeń T568A dla wtyku RJ45 jest normowana przez standardy telekomunikacyjne, a dokładnie przez normę TIA/EIA-568. Poprawna kolejność przewodów we wtyku RJ45 zgodnie z tym standardem to: 1) Biało-zielony 2) Zielony 3) Biało-pomarańczowy 4) Niebieski 5) Biało-niebieski 6) Pomarańczowy 7) Biało-brązowy 8) Brązowy. Taka kolejność ma na celu zapewnienie kompatybilności i efektywności połączeń sieciowych, przede wszystkim w systemach Ethernet. W praktyce zastosowanie tej sekwencji jest kluczowe w instalacjach sieciowych, gdzie wymagane jest zachowanie standardów, aby urządzenia różnych producentów mogły ze sobą współpracować bez problemów. Dostosowanie się do normy T568A jest powszechnie stosowane w instalacjach w budynkach mieszkalnych i biurowych. Poprawne okablowanie wg tego standardu minimalizuje zakłócenia sygnału i zwiększa niezawodność transmisji danych, co jest szczególnie istotne w środowiskach biurowych, gdzie wymagana jest wysoka przepustowość i stabilność połączeń.

Pytanie 24

Na zdjęciu widoczny jest

Ilustracja do pytania
A. zaciskarka do wtyków.
B. reflektor.
C. zaciskarkę wtyków RJ45
D. tester kablowy.
Zaciskarka do wtyków RJ45 jest narzędziem niezbędnym w telekomunikacji i instalacjach sieciowych. Służy do montażu końcówek na kablach sieciowych kategorii 5e, 6 i wyższych, co jest kluczowe dla zapewnienia stabilnego połączenia sieciowego. To narzędzie umożliwia precyzyjne zaciskanie żył wtyku, co jest nieodzowne dla utrzymania integralności sygnału. W praktyce, zaciskarka jest wykorzystywana podczas tworzenia okablowania strukturalnego w budynkach biurowych, domach oraz centrach danych. Standardy takie jak TIA/EIA-568 wskazują na konieczność precyzyjnego zaciskania, aby uniknąć problemów z przesyłem danych. Użycie zaciskarki do wtyków RJ45 jest nie tylko praktyczne, ale i ekonomiczne, umożliwiając dostosowanie długości kabli do specyficznych potrzeb instalacyjnych, co redukuje odpady i koszty. Warto również zauważyć, że prawidłowe użycie tego narzędzia wymaga pewnej wprawy, a także wiedzy na temat układu przewodów we wtykach, co jest regulowane przez standardy kolorystyczne, takie jak T568A i T568B.

Pytanie 25

Narzędzie pokazane na ilustracji służy do

Ilustracja do pytania
A. ściągania izolacji z kabla
B. weryfikacji poprawności połączenia
C. instalacji przewodów w złączach LSA
D. zaciskania wtyków RJ45
Narzędzie przedstawione na rysunku to tzw. punch down tool, które jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami telekomunikacyjnymi i sieciowymi. Służy ono do montażu przewodów w złączach typu LSA, które są standardem w gniazdach sieciowych i panelach krosowych. Złącza LSA, nazywane również złączami IDC (Insulation Displacement Connector), umożliwiają szybkie i pewne połączenie przewodów bez konieczności zdejmowania izolacji. Punch down tool umożliwia wciśnięcie przewodu w złącze, zapewniając trwały i niezawodny kontakt. Narzędzie to jest wyposażone w ostrze, które automatycznie przycina nadmiar przewodu, co minimalizuje ryzyko zwarć i zapewnia estetykę instalacji. Zastosowanie punch down tool jest zgodne ze standardami telekomunikacji, takimi jak TIA/EIA-568, które określają zasady poprawnej instalacji kabli i urządzeń sieciowych. Dzięki temu narzędziu można szybko skalibrować i zoptymalizować działanie sieci, co jest kluczowe w nowoczesnych rozwiązaniach IT, gdzie niezawodność połączeń jest priorytetem. Stosowanie punch down tool jest zalecane szczególnie w miejscach o dużym natężeniu ruchu sieciowego, gdzie jakość połączeń ma bezpośredni wpływ na wydajność całego systemu.

Pytanie 26

Jakim skrótem określane są czynności samokontroli komputera po uruchomieniu zasilania?

A. BIOS
B. CPU
C. POST
D. MBR
Wybór BIOS, MBR lub CPU pokazuje, że coś tu jest nie tak zrozumiane. BIOS, czyli Basic Input/Output System, to oprogramowanie układowe, które startuje po POST, żeby ogarnąć sprzęt i wczytać system. Jasne, że BIOS jest ważny, ale to nie on robi tę samokontrolę – to robotę wykonuje POST. MBR, czyli Master Boot Record, to miejsce na dysku twardym, które ma info o partycjach i kod do rozruchu systemu. Jest używany po POST, więc jego rola to uruchamianie systemu, a nie sprawdzanie sprzętu. A CPU, czyli jednostka centralna, jest niezbędna do działania komputera, ale sama w sobie nie decyduje o testach przy włączaniu. Takie niejasności mogą sugerować, że umiejętności w rozumieniu budowy komputerów są jeszcze do dopracowania, co może prowadzić do problemów z diagnozowaniem usterek i zarządzaniem sprzętem. Warto zrozumieć, jak te wszystkie elementy współpracują podczas uruchamiania, żeby lepiej się tym zajmować.

Pytanie 27

Interfejs SATA 2 (3 Gb/s) gwarantuje prędkość transferu

A. 750 MB/s
B. 300 MB/s
C. 375 MB/s
D. 150 MB/s
Wszystkie niepoprawne odpowiedzi wynikają z nieprawidłowego zrozumienia zasad obliczania przepustowości interfejsu SATA 2. Odpowiedź sugerująca 150 MB/s jest znacząco zaniżona, co może wynikać z błędnego przeliczenia jednostek lub zrozumienia maksymalnej przepustowości. W przypadku SATA 2, teoretyczna maksymalna przepustowość wynosi 3 Gb/s, co przekłada się na 375 MB/s, a nie 150 MB/s. Odpowiedź 300 MB/s również jest błędna, ponieważ sugeruje, że istnieje limit wydajności pomiędzy 150 MB/s a 375 MB/s, co jest mylne. Przepustowość SATA 2 wynika z zastosowania technologii, która umożliwia transmitowanie danych w większych blokach, a także z zastosowania zaawansowanych protokołów przesyłania danych. Wreszcie odpowiedź 750 MB/s jest niepoprawna, ponieważ odnosi się do standardu SATA III, który podwaja przepustowość w porównaniu do SATA II. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków mogą obejmować pomylenie wersji interfejsu oraz niewłaściwe przeliczenie jednostek, co podkreśla znaczenie dokładnego zrozumienia specyfikacji technicznych urządzeń oraz ich zastosowań w praktyce.

Pytanie 28

Który z protokołów w systemach operacyjnych Linux jest używany w sieciach lokalnych?

A. NetBEUI
B. IPX
C. IP
D. AppleTalk
Protokół IP (Internet Protocol) jest podstawowym protokołem komunikacyjnym w sieciach komputerowych, w tym w systemach operacyjnych Linux, który jest wykorzystywany głównie w sieciach LAN (Local Area Network). IP umożliwia przesyłanie danych między różnymi urządzeniami w sieci poprzez nadawanie im unikalnych adresów IP, co pozwala na ich identyfikację i lokalizację w sieci. Protokół IP działa na warstwie sieciowej modelu OSI, co oznacza, że jest odpowiedzialny za trasowanie pakietów danych z jednego miejsca do innego. W praktyce, implementacja protokołu IP w systemach Linux obejmuje zarówno IPv4, jak i nowszy IPv6, co jest zgodne z obecnymi standardami branżowymi i dobrymi praktykami w zakresie zarządzania adresacją sieciową. Użytkownicy Linuxa mogą konfigurować ustawienia IP poprzez różne narzędzia, takie jak 'ip' lub 'ifconfig', co daje im możliwość dostosowania parametrów sieciowych do swoich potrzeb. Protokół IP jest również fundamentem dla wielu innych protokołów, takich jak TCP (Transmission Control Protocol), co czyni go kluczowym elementem w kontekście komunikacji sieciowej.

Pytanie 29

Na diagramie mikroprocesora blok wskazany strzałką pełni rolę

Ilustracja do pytania
A. przechowywania aktualnie przetwarzanej instrukcji
B. zapisywania kolejnych adresów pamięci zawierających rozkazy
C. przetwarzania wskaźnika do następnej instrukcji programu
D. wykonywania operacji arytmetycznych i logicznych na liczbach
W mikroprocesorze blok ALU (Arithmetic Logic Unit) jest odpowiedzialny za wykonywanie operacji arytmetycznych i logicznych na liczbach. Jest to kluczowy element jednostki wykonawczej procesora, który umożliwia realizację podstawowych działań matematycznych, takich jak dodawanie, odejmowanie, mnożenie i dzielenie. Oprócz operacji arytmetycznych ALU wykonuje także operacje logiczne, takie jak AND, OR, NOT oraz XOR, które są fundamentalne w procesach decyzyjnych i manipulacji danymi w systemie binarnym. Współczesne procesory mogą zawierać zaawansowane jednostki ALU, które pozwalają na równoległe przetwarzanie danych, co zwiększa ich wydajność i efektywność w realizacji złożonych algorytmów. Zastosowanie ALU obejmuje szeroko pojętą informatykę i przemysł technologiczny, od prostych kalkulacji w aplikacjach biurowych po skomplikowane obliczenia w symulacjach naukowych i grach komputerowych. W projektowaniu mikroprocesorów ALU jest projektowane z uwzględnieniem standardów takich jak IEEE dla operacji zmiennoprzecinkowych co gwarantuje dokładność i spójność obliczeń w różnych systemach komputerowych.

Pytanie 30

Jaka liczba hostów może być podłączona w sieci o adresie 192.168.1.128/29?

A. 16 hostów
B. 12 hostów
C. 8 hostów
D. 6 hostów
Żeby dobrze zrozumieć liczbę hostów w sieci, trzeba znać zasady adresacji IP i maskowania podsieci. W przypadku 192.168.1.128/29 maksymalnie możesz mieć 8 adresów. Jeśli wybierasz 12, 16 czy nawet 8 hostów, to możesz źle rozumieć, jak się oblicza dostępne adresy. Często zapomina się o tym, że w każdej podsieci musisz zarezerwować jeden adres dla samej sieci, a drugi na rozgłoszenie. Jak wybierasz 8 hostów, to nie pamiętasz, że dwa adresy są zajęte, co tak naprawdę daje ci 6 dostępnych. A jak myślisz, że masz 12 czy 16 hostów, to tak, jakbyś widział więcej adresów, niż w ogóle możesz mieć przy tej masce, co nie jest możliwe. Ważne jest, by wiedzieć, że liczba hostów to 2^(liczba bitów hosta) - 2. To odejmowanie dwóch adresów jest kluczowe. Umiejętność prawidłowego obliczania liczby hostów jest super ważna w pracy sieciowca oraz w projektowaniu sieci, ma to spore znaczenie dla efektywności i bezpieczeństwa.

Pytanie 31

NAT64 (Network Address Translation 64) to proces, który dokonuje mapowania adresów

A. MAC na adresy IPv4
B. IPv4 na adresy IPv6
C. prywatne na adresy publiczne
D. IPv4 na adresy MAC
NAT64 jest technologią translacji adresów, która umożliwia komunikację między sieciami IPv4 i IPv6, co jest niezbędne w dobie przechodzenia na nowy protokół. NAT64 realizuje mapowanie adresów IPv4 na adresy IPv6, co pozwala na wykorzystanie istniejącej infrastruktury IPv4 w środowisku IPv6. Przykładem zastosowania NAT64 może być sytuacja, gdy organizacja posiada zasoby dostępne tylko w IPv4, ale użytkownicy korzystają z sieci IPv6. Umożliwiając dostęp do tych zasobów, NAT64 przyczynia się do płynnej migracji i współistnienia obu protokołów. Technologia ta jest zgodna z wytycznymi IETF, które podkreślają znaczenie interoperacyjności między różnymi protokołami. Ponadto, NAT64 współpracuje z mechanizmem DNS64, który mapuje zapytania DNS IPv6 na odpowiednie adresy IPv4, co stanowi ważny element ekosystemu sieciowego. Dzięki NAT64 administratorzy sieci mogą efektywnie zarządzać przejściem z IPv4 na IPv6, co jest kluczowe w kontekście globalnego wyczerpywania się adresów IPv4.

Pytanie 32

Okablowanie wertykalne w sieci strukturalnej łączy

A. dwa gniazda abonentów
B. pośredni punkt dystrybucji z gniazdem abonenta
C. główny punkt dystrybucji z gniazdem abonenta
D. główny punkt dystrybucji z pośrednimi punktami dystrybucji
Wybór opcji, która łączy dwa gniazda abonenckie, jest nieprawidłowy, ponieważ nie uwzględnia istoty okablowania pionowego, które ma na celu połączenie różnych segmentów sieci w bardziej złożoną strukturę. Okablowanie pionowe nie jest jedynie łączeniem gniazd, lecz tworzy ramy dla całej architektury sieci, umożliwiając przesyłanie danych między głównymi i pośrednimi punktami rozdzielczymi. Wybór opcji łączącej główny punkt rozdzielczy z gniazdem abonenckim pomija kluczowe elementy struktury sieci, które są niezbędne do efektywnego zarządzania i organizacji infrastruktury. Ta odpowiedź nie uwzględnia również faktu, że gniazda abonenckie są zazwyczaj końcowymi punktami, a ich bezpośrednie połączenie z głównymi punktami rozdzielczymi nie zapewnia odpowiedniego zarządzania siecią ani nie wsparcia dla ewentualnych rozbudów. Z kolei łączenie głównego punktu rozdzielczego z pośrednimi punktami umożliwia skalowanie i integrację różnych technologii, co jest zgodne z dobrymi praktykami branżowymi. Ignorowanie tego aspektu prowadzi do konstrukcji sieci, która nie jest elastyczna ani dostosowana do potrzeb użytkowników. Dlatego ważne jest, aby dobrze zrozumieć hierarchię i strukturę okablowania, aby stworzyć wydajną i przyszłościową sieć.

Pytanie 33

Usługa odpowiedzialna za konwersję nazw domen na adresy sieciowe to

A. DNS
B. SMTP
C. DHCP
D. SNMP
Odpowiedź, że DNS (System Nazw Domenowych) jest poprawna. To dzięki tej usłudze możemy zamieniać nazwy domen na adresy IP, co jest kluczowe do komunikacji w Internecie. DNS działa jak rozproszony system baz danych, który gromadzi informacje o nazwach domen i odpowiada na pytania, jakie adresy IP są im przypisane. Przykładowo, kiedy wpisujesz w przeglądarkę adres, taki jak www.example.com, komputer wysyła pytanie do serwera DNS i ten odsyła odpowiedni adres IP, co pozwala na połączenie z serwerem. W zarządzaniu DNS warto pamiętać o dobrych praktykach, jak używanie rekordów CNAME do aliasowania nazw czy rekordów MX do obsługi poczty. O bezpieczeństwo także powinno się zadbać, używając DNSSEC, które chroni przed atakami. Warto też wiedzieć, że rozwój Internetu i wprowadzenie IPv6 wymusiło pewne zmiany w DNS, co pozwoliło lepiej radzić sobie z coraz większą liczbą urządzeń w sieci.

Pytanie 34

Do jakiego typu wtyków przeznaczona jest zaciskarka pokazana na ilustracji?

Ilustracja do pytania
A. SC/PC
B. BNC
C. E2000
D. RJ45
Zaciskarka, którą widzisz na zdjęciu, to naprawdę fajne narzędzie do montażu złącz BNC. Te złącza, znane jako BNC (Bayonet Neill-Concelman), są używane wszędzie, gdzie mamy do czynienia z telekomunikacją i wideo, zwłaszcza w systemach CCTV czy profesjonalnym sprzęcie audio-wideo. Dzięki swojemu bagnetowemu mechanizmowi te złącza montuje się bardzo szybko i pewnie. Zaciskarka jest zaprojektowana, żeby dobrze zacisnąć metalowe elementy złącza na kablu koncentrycznym, co z kolei daje nam trwałe połączenie. Ważne, aby dobrze skalibrować narzędzie, bo inaczej możemy uszkodzić złącze. Podczas montażu złączy BNC musimy też dbać o integralność dielektryka w kablu, bo to wpływa na jakość sygnału. Praca z tym narzędziem wymaga, żeby technik znał standardy dotyczące kabli koncentrycznych i wiedział, jakich narzędzi i procedur używać, jak opisano w normach EIA/TIA. Ta wiedza jest naprawdę kluczowa, żeby instalacje działały prawidłowo i były trwałe.

Pytanie 35

Kabel pokazany na ilustracji może być zastosowany do realizacji okablowania sieci o standardzie

Ilustracja do pytania
A. 10Base-T
B. 100Base-TX
C. 10Base2
D. 100Base-SX
10Base2 to standard korzystający z kabla koncentrycznego, znanego również jako Thin Ethernet lub Cheapernet. Jest to starsza technologia, która nie jest już powszechnie używana ze względu na ograniczenia w szybkości transmisji oraz trudności w instalacji i konserwacji w porównaniu do nowoczesnych standardów, takich jak Ethernet na skrętce czy światłowodzie. 10Base-T oraz 100Base-TX są standardami wykorzystującymi skrętkę miedzianą. 10Base-T operuje z prędkością do 10 Mb/s, natomiast 100Base-TX umożliwia transmisję danych z prędkością do 100 Mb/s, co czyni go częścią Fast Ethernet. Te standardy są powszechnie używane w sieciach lokalnych, zwłaszcza w domach i małych biurach, ze względu na ich łatwość wdrożenia i niskie koszty. Niemniej jednak, w środowiskach, gdzie wymagane są wyższe prędkości oraz większa niezawodność, światłowody, takie jak 100Base-SX, stają się bardziej odpowiednim wyborem. Wybór niepoprawnych odpowiedzi często wynika z niewłaściwego rozpoznania typu kabla i jego zastosowania. Kluczowe jest zrozumienie, jakie medium transmisji jest używane w danym standardzie oraz jakie są jego specyficzne zalety i wady. Dzięki temu można dokładnie określić, jaki typ okablowania jest wymagany w określonych sytuacjach sieciowych. Ponadto, znajomość różnic między miedzią a światłowodem pomaga w wyborze odpowiedniego rozwiązania dla konkretnych potrzeb sieciowych, biorąc pod uwagę takie czynniki jak zasięg, przepustowość oraz odporność na zakłócenia. Dlatego ważne jest, aby w pełni zrozumieć zastosowania i ograniczenia każdej technologii, co pozwoli na lepsze podejmowanie decyzji projektowych w dziedzinie infrastruktury sieciowej. Podsumowując, wybór odpowiedniego standardu sieciowego powinien być oparty na specyficznych wymaganiach danej aplikacji oraz na właściwym dopasowaniu medium transmisji do tych wymagań.

Pytanie 36

Na ilustracji zaprezentowano porty, które są częścią karty

Ilustracja do pytania
A. sieciowej
B. telewizyjnej
C. faksmodemowej
D. dźwiękowej
Gniazda przedstawione na zdjęciu to typowe porty RJ-45, które są powszechnie stosowane w kartach sieciowych. Karty sieciowe (NIC - Network Interface Card) to urządzenia, które umożliwiają komputerowi komunikację z siecią komputerową, zarówno przewodową jak i bezprzewodową. Standardowe gniazdo RJ-45 jest używane do podłączania kabla Ethernet, który jest najczęściej używanym medium transmisyjnym w sieciach lokalnych (LAN). Dzięki temu połączeniu możemy uzyskać dostęp do internetu lub innych zasobów sieciowych, co jest kluczowe w wielu zastosowaniach, takich jak praca zdalna, dostęp do baz danych czy przesyłanie plików. W nowoczesnych kartach sieciowych, oprócz standardowego portu RJ-45, mogą być także dostępne diody LED informujące o statusie połączenia, co pozwala na szybkie zdiagnozowanie problemów z siecią. Karty sieciowe mogą obsługiwać różne prędkości transmisji, takie jak 100 Mbps, 1 Gbps, czy nawet 10 Gbps, co pozwala na dostosowanie się do wymagań użytkownika i infrastruktury sieciowej. Poprawne zrozumienie funkcji i zastosowania kart sieciowych jest kluczowe dla każdego specjalisty IT, ponieważ sieć jest fundamentem współczesnej komunikacji cyfrowej.

Pytanie 37

Protokół User Datagram Protocol (UDP) należy do

A. transportowych protokołów bezpołączeniowych w modelu TCP/IP
B. połączeniowych protokołów warstwy łącza danych w ISO/OSI
C. warstwy transportowej z połączeniem w modelu TCP/IP
D. warstwy łącza danych bezpołączeniowej w modelu ISO/OSI
Zrozumienie, że User Datagram Protocol (UDP) jest bezpołączeniowym protokołem warstwy transportowej modelu TCP/IP, jest kluczowe dla analizy danych przesyłanych w sieci. Protokół UDP, w przeciwieństwie do TCP, który jest protokołem połączeniowym, nie wymaga zestawienia sesji przed wysłaniem danych, co prowadzi do większej efektywności w transmisji, ale kosztem niezawodności. Odpowiedzi sugerujące, że UDP jest protokołem bezpołączeniowym warstwy łącza danych modelu ISO/OSI, mylą pojęcia dotyczące warstw modelu. Warstwa łącza danych odpowiada za przesyłanie ramek między urządzeniami w tej samej sieci, co nie jest zadaniem UDP, który działa na wyższej warstwie transportowej, odpowiadając za przesyłanie datagramów pomiędzy aplikacjami. Protokół TCP/IP i model ISO/OSI różnią się w kontekście warstw i funkcji, co często prowadzi do nieporozumień. Ponadto, pomysł, że UDP jest połączeniowym protokołem transportowym, jest błędny, ponieważ nie oferuje on kontroli błędów ani potwierdzeń przesyłania danych. Protokół TCP, z kolei, zapewnia te mechanizmy, co jest kluczowe dla aplikacji wymagających niezawodności. Błędy te mogą wynikać z mylnego zrozumienia podstawowych zasad działania protokołów i ich zastosowania w praktyce, co jest istotne w kontekście projektowania i implementacji systemów komunikacyjnych.

Pytanie 38

W systemie Windows, który obsługuje przydziały dyskowe, użytkownik o nazwie Gość

A. może być członkiem jedynie grupy o nazwie Goście
B. nie może być członkiem żadnej grupy
C. może być członkiem grup lokalnych oraz grup globalnych
D. może być członkiem jedynie grupy globalnej
Odpowiedzi sugerujące, że użytkownik Gość może należeć tylko do grupy o nazwie Goście, do grupy globalnej lub nie może należeć do żadnej grupy, opierają się na niepełnym zrozumieniu zasad działania systemów operacyjnych Windows oraz zarządzania użytkownikami. Użytkownik Gość, będący standardowym kontem w systemach Windows, ma ograniczone uprawnienia, ale nie jest to równoznaczne z niemożnością przynależności do grup. Stwierdzenie, że użytkownik może należeć tylko do grupy Goście, nie uwzględnia faktu, że w systemach Windows możliwe jest dodawanie użytkowników do lokalnych grup, co jest istotne dla przydzielania określonych uprawnień w obrębie danego komputera. Z kolei stwierdzenie, że użytkownik może należeć tylko do grupy globalnej, jest mylne, ponieważ grupy globalne są zazwyczaj używane do zarządzania dostępem do zasobów w całej organizacji, co nie wyklucza przynależności do grup lokalnych. Utrata możliwości przynależności do grup lokalnych w przypadku użytkownika Gość ograniczałaby jego funkcjonalność i dostęp do lokalnych zasobów. Ponadto, przekonanie, że użytkownik Gość nie może należeć do żadnej grupy, jest fundamentalnie błędne, ponieważ użytkownicy w systemach Windows zawsze muszą być przypisani do co najmniej jednej grupy, aby mogli uzyskać odpowiednie uprawnienia. Takie nieporozumienia mogą prowadzić do nieefektywnego zarządzania użytkownikami oraz zagrożeń dla bezpieczeństwa, gdyż niewłaściwe przypisanie uprawnień może skutkować nieautoryzowanym dostępem do danych.

Pytanie 39

Aby zrealizować sieć komputerową w pomieszczeniu zastosowano 25 metrów skrętki UTP, 5 gniazd RJ45 oraz odpowiednią ilość wtyków RJ45 niezbędnych do stworzenia 5 kabli połączeniowych typu patchcord. Jaki jest całkowity koszt użytych materiałów do budowy sieci? Ceny jednostkowe stosowanych materiałów można znaleźć w tabeli.

MateriałCena jednostkowaKoszt
Skrętka UTP1,00 zł/m25 zł
Gniazdo RJ455,00 zł/szt.25 zł
Wtyk RJ453,00 zł/szt.30 zł

A. 50 zl
B. 80 zł
C. 90 zł
D. 75 zł
Wybór błędnych odpowiedzi wynika najczęściej z nieprawidłowego obliczenia kosztów poszczególnych komponentów sieci. Na przykład, jeśli ktoś obliczy koszt skrętki UTP jako 25 zł, ale zignoruje inne elementy, takie jak gniazda RJ45 i wtyki, dochodzi do niedoszacowania całkowitego kosztu. Wynik 50 zł może sugerować, że osoba ta uwzględniła tylko skrętkę, a nie dodała kosztów gniazd i wtyków. Podobnie, jeżeli ktoś zsumuje koszt gniazd (50 zł) z czymś innym, a nie ze skrętką, to również prowadzi do błędnych wniosków. Przykład 90 zł potencjalnie mógłby wynikać z nieprawidłowego policzenia kosztów na poziomie gniazd i wtyków, co jest częstym błędem. Należy zwrócić uwagę, że wtyki RJ45 kosztują 0,50 zł za sztukę, a nie 1 zł, co może prowadzić do daleko idących pomyłek. Ważne jest, aby podczas obliczeń kosztów materiałów w projektach sieciowych szczegółowo analizować każdy element, aby uniknąć takich błędów. Praktyczne umiejętności związane z precyzyjnym szacowaniem i planowaniem budżetu są kluczowe w branży IT, dlatego warto zwracać uwagę na szczegóły i właściwe kalkulacje.

Pytanie 40

Jak nazywa się standard podstawki procesora bez nóżek?

A. PGA
B. LGA
C. CPGA
D. SPGA
Standard LGA (Land Grid Array) to nowoczesna konstrukcja podstawki procesora, która nie wykorzystuje nóżek, co odróżnia ją od innych standardów, takich jak PGA (Pin Grid Array) czy CPGA (Ceramic Pin Grid Array). W LGA procesor ma na swojej spodniej stronie siatkę metalowych styków, które łączą się z odpowiednimi punktami na podstawce. Dzięki temu, LGA oferuje lepszą stabilność mechaniczną i umożliwia większą gęstość połączeń. Przykładem zastosowania standardu LGA są procesory Intel, takie jak rodzina Core i7, które są wykorzystywane w komputerach stacjonarnych oraz laptopach. LGA umożliwia również lepsze chłodzenie, ponieważ płaska powierzchnia procesora pozwala na efektywniejsze dopasowanie chłodzenia. Przy projektowaniu nowoczesnych płyt głównych stosuje się LGA jako standard, co jest zgodne z najlepszymi praktykami w zakresie projektowania systemów komputerowych.