Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 23:32
  • Data zakończenia: 24 maja 2025 23:51

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z poniższych działań jest częścią procesu programowania sterowników PLC?

A. Smarowanie ruchomych części mechanicznych
B. Wymiana filtrów powietrza
C. Kalibracja czujników ciśnienia
D. Tworzenie i testowanie logiki sterowania
Programowanie sterowników PLC to kluczowy etap w procesie automatyzacji systemów mechatronicznych. Tworzenie i testowanie logiki sterowania to fundamentalne działania w tym procesie. Logika sterowania polega na definiowaniu sekwencji działań, które sterownik musi wykonać, aby osiągnąć zamierzony efekt. Na przykład, w aplikacjach przemysłowych PLC kontrolują pracę maszyn, zarządzając sygnałami wejściowymi i wyjściowymi. Tworzenie logiki sterowania wymaga zrozumienia procesu, który ma być automatyzowany, oraz umiejętności programowania w językach takich jak Ladder Diagram, Function Block Diagram czy Structured Text. Testowanie jest równie ważne, ponieważ pomaga wykryć błędy i upewnić się, że system działa zgodnie z oczekiwaniami. Często stosuje się symulacje, aby przetestować program przed jego wdrożeniem na rzeczywistym sprzęcie, co minimalizuje ryzyko awarii. Praktyczne zastosowanie tej wiedzy obejmuje szeroką gamę branż od produkcji, przez motoryzację, aż po systemy HVAC. Dobre praktyki w programowaniu PLC obejmują również dokumentowanie kodu, co ułatwia przyszłe modyfikacje i konserwację.

Pytanie 2

Które z poniższych stwierdzeń na temat przeprowadzania inspekcji urządzeń elektrycznych jest fałszywe?

A. Podczas inspekcji dozwolone jest zbliżanie się do nieosłoniętych wirujących elementów urządzenia
B. Celem inspekcji jest identyfikacja nieprawidłowości w działaniu urządzenia
C. Inspekcje są dokonywane z wykorzystaniem zmysłów wzroku, słuchu i węchu
D. W trakcie inspekcji dopuszczalne jest, aby urządzenia elektryczne pozostały pod napięciem
Odpowiedź, że podczas oględzin dopuszczalne jest zbliżanie się do nieosłoniętych wirujących części urządzenia, jest nieprawidłowa, ponieważ zbliżanie się do takich elementów stwarza poważne zagrożenie dla zdrowia i życia osoby przeprowadzającej oględziny. Zgodnie z normami bezpieczeństwa, każda procedura związana z obsługą urządzeń elektrycznych powinna być przeprowadzana zgodnie z zasadami BHP oraz normami IEC 60364, które obejmują m.in. wymagania dotyczące zachowania bezpiecznej odległości od ruchomych części. Przykładowo, w przypadku maszyn wirujących, użytkownicy powinni być świadomi ryzyka związanego z przypadkowym dotknięciem wirujących elementów, co może prowadzić do poważnych urazów. Oględziny powinny być prowadzone w sposób zapewniający bezpieczeństwo, a w przypadku stwierdzenia jakichkolwiek nieprawidłowości, należy niezwłocznie podjąć działania w celu ich usunięcia. Użycie odpowiednich narzędzi ochronnych oraz przestrzeganie zasad BHP w praktyce przekłada się na redukcję ryzyka wypadków i poprawę ogólnego bezpieczeństwa pracy w obszarze technologii elektrycznych.

Pytanie 3

Na diagramach systemów hydraulicznych przyłącze rury odpływowej rozdzielacza oznacza się symbolem literowym

A. P
B. A
C. T
D. B
Odpowiedź T jest poprawna, ponieważ w symbolice hydraulicznej oznaczenie literowe T odnosi się do przyłącza przewodu odpływowego w układach hydraulicznych. T jest skrótem od angielskiego terminu 'tank line', co wskazuje na przewód, którym olej hydrauliczny wraca do zbiornika. To kluczowe w projektowaniu układów hydraulicznych, ponieważ odpowiednie oznaczenia zapewniają właściwą identyfikację linii oraz ich funkcji w systemie. Używanie standardowych symboli, takich jak T dla linii powrotnej, jest istotne dla zrozumienia schematów przez techników i inżynierów, co przyczynia się do minimalizacji błędów w instalacjach. W praktyce, znajomość tych oznaczeń jest niezbędna podczas serwisowania i diagnozowania układów hydraulicznych, co wpływa na efektywność i bezpieczeństwo ich użytkowania. Standardy branżowe, takie jak ISO 1219, określają zasady oznaczania komponentów hydraulicznych, co ułatwia komunikację i współpracę w ramach zespołów projektowych.

Pytanie 4

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 650 kPa
B. 630 000 Pa
C. 0,58 MPa
D. 600 kPa
Analizując pozostałe odpowiedzi, kluczowe jest zrozumienie, jak odczyty ciśnienia przekładają się na rzeczywiste normy operacyjne. Odpowiedzi takie jak 630 000 Pa i 600 kPa mieszczą się w dopuszczalnym zakresie, co oznacza, że nie stanowią zagrożenia dla urządzenia. Ważne jest, aby pamiętać, że 1 MPa odpowiada 1 000 kPa, więc 0,6 MPa to 600 kPa, a 0,58 MPa to zaledwie 580 kPa, które również są akceptowalne. Często pojawia się błąd myślowy związany z interpretacją jednostek miary, co prowadzi do nieprawidłowych wyborów. Na przykład, niektórzy użytkownicy mogą mylnie sądzić, że ciśnienia bliskie wartości nominalnej są zawsze właściwe, zaniedbując znaczenie określonego zakresu tolerancji. Wartości ciśnienia powinny być regularnie monitorowane i dostosowywane w zależności od warunków pracy, aby zapewnić bezpieczeństwo i efektywność operacyjną. Standardy branżowe podkreślają konieczność stosowania odpowiednich narzędzi pomiarowych oraz procedur kontrolnych, aby uniknąć sytuacji, które mogą prowadzić do uszkodzenia sprzętu lub zagrożenia dla personelu. Właściwe zrozumienie wartości ciśnienia zasilania jest kluczowe dla efektywnej eksploatacji systemów pneumatycznych.

Pytanie 5

W przypadku, gdy w obwodzie wymagany jest kondensator o pojemności rzędu kilku tysięcy µF, należy wybrać kondensator

A. elektrolityczny
B. powietrzny
C. ceramiczny
D. foliowy
Kondensator elektrolityczny to komponent, który wyróżnia się wysoką pojemnością, co czyni go idealnym rozwiązaniem w układach wymagających wartości rzędu kilku tysięcy µF. W odróżnieniu od innych typów kondensatorów, takich jak kondensatory ceramiczne czy foliowe, kondensatory elektrolityczne są zdolne do przechowywania dużych ładunków elektrycznych w stosunkowo niewielkiej objętości. Dzięki temu są szeroko stosowane w zasilaczach impulsowych, filtrach dławikowych oraz w aplikacjach związanych z stabilizacją napięcia. Warto również zwrócić uwagę na ich niską wartość oporu szeregowego, co sprawia, że minimalizują straty energii w układzie, co jest kluczowe przy dużych prądach. Zgodność z normami, takimi jak IEC 60384, gwarantuje, że kondensatory elektrolityczne spełniają odpowiednie wymagania jakościowe i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 6

Jakie informacje powinien zawierać raport z realizowanych prac konserwacyjnych frezarki numerycznej?

A. Miejsce i datę oraz kosztorys przeprowadzonej konserwacji
B. Miejsce i datę, a także czas realizacji prac konserwacyjnych
C. Kosztorys oraz opis przeprowadzonych działań, a także podpis osoby odpowiedzialnej za konserwację
D. Datę i opis wykonanych prac oraz podpis osoby odpowiedzialnej za konserwację
Protokół z prac konserwacyjnych frezarki numerycznej to coś, co musi mieć kilka ważnych rzeczy. Po pierwsze, musi być w nim data i opis tego, co dokładnie zrobiono. To jest mega ważne, żeby wiedzieć, co się działo z maszyną w czasie jej użytkowania. Dzięki temu łatwiej ogarnąć, kiedy powinny być następne przeglądy. A opis prac pozwala zobaczyć, co się zmieniło, co jest kluczowe, gdy planujemy przyszłe naprawy. I jeszcze podpis wykonawcy – to też istotne, bo jeśli coś się stanie, to wiemy, że to robił ktoś kompetentny. I wiesz, w kontekście norm ISO, taki protokół jest podstawą do audytów i kontroli jakości, co w produkcji ma ogromne znaczenie. Kiedy urządzenie się psuje, dobrze napisana dokumentacja ułatwia szybką diagnozę problemu, co jest bardzo pomocne.

Pytanie 7

Aby zmierzyć wartość napięcia zmiennego, pokrętło multimetru powinno być ustawione na pozycję oznaczoną

A. ACA
B. DCV
C. DCA
D. ACV
Ustawienie multimetru na pozycji "ACV" jest kluczowe dla pomiaru napięcia zmiennego, które zmienia swoją wartość w czasie. W tej pozycji multimetr mierzy skuteczną wartość napięcia sinusoidalnego, co jest istotne w praktycznych zastosowaniach, takich jak pomiary w sieciach elektrycznych. Napięcie zmienne jest powszechnie używane w domowych instalacjach elektrycznych, a także w wielu urządzeniach elektronicznych. Użycie odpowiedniego ustawienia na multimetrze zapewnia dokładność pomiaru oraz umożliwia analizę parametrów napięcia, co jest zgodne z najlepszymi praktykami w zakresie elektroniki i elektryki. Warto również pamiętać, że niewłaściwe ustawienie multimetru, na przykład na "DCV" (napięcie stałe), może prowadzić do błędnych odczytów, co w dalszej perspektywie może skutkować uszkodzeniem urządzenia lub niewłaściwym działaniem instalacji. Dlatego tak ważne jest, aby przed wykonaniem pomiaru zawsze upewnić się, że multimetr jest ustawiony na odpowiedni zakres i typ pomiaru.

Pytanie 8

W jakiej kondycji powinny być przedstawiane styki przekaźników oraz styczników w schematach ideowych układów sterowania stycznikowo-przekaźnikowego?

A. Wzbudzonym
B. Wyłączania
C. Przełączania
D. Niewzbudzonym
Styki przekaźników i styczników na schematach ideowych układów sterowania stycznikowo-przekaźnikowego powinny być przedstawione w stanie niewzbudzonym, ponieważ jest to stan domyślny, który odzwierciedla, że dany element nie jest w chwili obecnej aktywowany. Prezentowanie styków w tym stanie pozwala na jasne zrozumienie schematu przez techników oraz inżynierów, którzy mogą na pierwszy rzut oka ocenić, jakie elementy są włączone lub wyłączone w danym układzie. W praktyce, identyfikacja stanu niewzbudzonego jest kluczowa w projektowaniu oraz diagnostyce systemów automatyki, ponieważ umożliwia szybkie zlokalizowanie potencjalnych problemów. Na przykład, podczas analizy schematu, technik może natrafić na elementy, które powinny być w stanie nieaktywnym, co wskazuje na konieczność ich uruchomienia w kontekście rozwiązywania usterek. Przestrzeganie tej zasady jest zgodne z międzynarodowymi standardami, takimi jak IEC 60617, które definiują sposób przedstawiania symboli w dokumentacji elektronicznej. Warto także wspomnieć, że niewłaściwe oznaczenie stanu styków może prowadzić do błędów w montażu i programowaniu, co w konsekwencji wpłynie na bezpieczeństwo i efektywność działania instalacji.

Pytanie 9

Jakie czynności należy wykonać tuż przed przesłaniem programu sterującego z komputera do pamięci sterownika PLC?

A. Ustawić sterownik w trybie STOP
B. Odłączyć kabel zasilający
C. Przełączyć sterownik w tryb RUN
D. Odłączyć kabel komunikacyjny
Ustawienie sterownika PLC w trybie STOP przed przesłaniem programu sterowniczego jest kluczowym krokiem, który należy podjąć dla zapewnienia bezpieczeństwa operacji. Tryb STOP pozwala na wgranie nowego programu bez ryzyka, że bieżące operacje będą kontynuowane, co mogłoby prowadzić do nieprzewidzianych sytuacji, jak np. uszkodzenie sprzętu czy naruszenie zasad bezpieczeństwa. W praktyce, w trybie STOP użytkownik ma pełną kontrolę nad procesem programowania, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, gdzie bezpieczeństwo i integralność systemów są priorytetem. Zgodnie z normami, takimi jak IEC 61131-3, przed każdą modyfikacją programu, zaleca się, aby systemy były w trybie, który nie pozwala na ich aktywne działanie, co znacznie redukuje ryzyko błędów. Po pomyślnym przesłaniu programu, można przełączyć sterownik z powrotem w tryb RUN, co pozwala na uruchomienie nowych funkcji programu.

Pytanie 10

Które z poniższych narzędzi CAD pozwala na wykonanie analizy wytrzymałościowej korbowodu podczas etapu projektowania?

A. DWG
B. PMI
C. MES
D. ERA
Metoda Elementów Skończonych, czyli MES, to naprawdę fajna technika, która inżynierom pozwala na dokładne modelowanie i symulację tego, jak różne obiekty będą się zachowywać pod różnymi obciążeniami. W przypadku analizy korbowodu, MES jest super przydatne, bo możesz określić geometrię i materiały, co jest mega ważne, by ocenić, jak dobrze ten korbowód będzie działał, a przede wszystkim czy będzie bezpieczny. Rozdzielając skomplikowany obiekt na mniejsze fragmenty, można dokładnie obliczyć, jakie siły na niego działają. Przykładowo, inżynierowie mogą sprawdzić, jak korbowód zniesie obciążenia dynamiczne, które pojawiają się podczas pracy silnika. To pomaga znaleźć te newralgiczne punkty, które mogą się uszkodzić. W inżynierii MES to standard, który naprawdę ułatwia projektowanie i zmniejsza ryzyko, że coś pójdzie nie tak z ostatecznym produktem. To jest zgodne z najlepszymi praktykami w inżynierii mechanicznej.

Pytanie 11

W jaki sposób należy ująć w spisie elementów zamieszczonym na schemacie montażowym mechanizmu informację o śrubie z gwintem metrycznym drobnozwojowym o średnicy 10 mm?

A. S20
B. TR10
C. M10
D. M10x1
Odpowiedź M10x1 jest prawidłowa, ponieważ spełnia standardy oznaczania śrub z gwintem metrycznym drobnozwojowym, które są powszechnie stosowane w przemyśle. Oznaczenie 'M10' wskazuje na średnicę zewnętrzną śruby wynoszącą 10 mm, co jest kluczowym parametrem dla zapewnienia odpowiedniego dopasowania w połączeniach mechanicznych. Dodatkowo, liczba '1' w oznaczeniu oznacza liczbę zwojów na milimetr, co jest istotną informacją dla oceny siły połączenia i możliwości użycia w konkretnych aplikacjach. Gwinty drobnozwojowe są szczególnie użyteczne w zastosowaniach wymagających większej precyzji, takich jak w precyzyjnych mechanizmach czy w przemyśle lotniczym i motoryzacyjnym. Warto również pamiętać, że standardy ISO 261 oraz ISO 965 definiują szczegółowe zasady dotyczące oznaczania gwintów metrycznych, co podkreśla znaczenie poprawnego zapisu w dokumentacji technicznej.

Pytanie 12

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. usuwania kurzu
B. dokonywania regulacji
C. sprawdzania dokręcenia śrub zacisków
D. oceny zużycia styków
Regulacje to nie to samo co konserwacja układu stycznikowo-przekaźnikowego. Konserwacja skupia się na tym, żeby sprzęt działał dobrze i był w dobrym stanie. Do tego potrzebne są takie rzeczy jak sprawdzenie dokręcenia śrub czy czyszczenie, co jest super ważne dla stabilnych połączeń elektrycznych. Regularne czyszczenie sprzętu z kurzu jest też kluczowe, bo zapobiega przegrzewaniu się i uszkodzeniom. Musimy też pilnować, co się dzieje ze stykami, bo jak są zużyte, to mogą nas na przykład zaskoczyć jakimś zwarciem, a to już grozi bezpieczeństwu. Dobrze jest też znać normy, na przykład PN-EN 60204-1, które mówią, że trzeba regularnie przeglądać i dbać o nasze urządzenia elektryczne, żeby zapewnić ich niezawodność i bezpieczeństwo w pracy.

Pytanie 13

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Malowanie rurociągów
B. Sprawdzenie jakości farby na urządzeniach
C. Sprawdzenie szczelności połączeń
D. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 14

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. silnika hydraulicznego
B. siłownika pneumatycznego
C. sprężarki tłokowej
D. pompy hydraulicznej
Błędne odpowiedzi wskazują na pewne nieporozumienia dotyczące tego, jak różne urządzenia działają w kontekście sprężania i hydrauliki. Na przykład, pompy hydrauliczne są inne niż sprężarki tłokowe, bo one głównie przesyłają cieczy pod ciśnieniem. Nie korzystają z takich parametrów jak liczba cylindrów czy stopnie sprężania, które są istotne dla sprężarek. Silniki hydrauliczne zamieniają energię hydrauliczną na mechaniczną, więc też nie obejmują parametrów sprężających. Siłowniki pneumatyczne z kolei używają ciśnienia powietrza do ruchu, co sprawia, że też nie wpisują się w ten temat. Często popełniamy błąd, myląc funkcje tych urządzeń oraz nie dostrzegamy ich specyficznych wymagań technicznych. Zrozumienie tych różnic jest naprawdę ważne, żeby dobrze dobierać sprzęt w przemyśle oraz skutecznie pracować w bardziej skomplikowanych systemach hydraulicznych i pneumatycznych.

Pytanie 15

Wartość parametru 20 V/1000 obr/min jest charakterystyczna dla

A. resolvera
B. prądnicy tachometrycznej
C. sprzęgła elektromagnetycznego
D. induktosyna
Parametr 20 V/1000 obr/min to typowa wartość dla prądnicy tachometrycznej, która służy do pomiaru prędkości obrotowej różnych maszyn, w tym silników. W praktyce oznacza to, że im szybciej coś się kręci, tym większe napięcie generuje ta prądnica. W przypadku, który mamy, to 20 V przy 1000 obrotach na minutę. To naprawdę przydatne w automatyce i kontrolowaniu procesów. Spotykamy je często w aplikacjach związanych z kontrolą prędkości silników elektrycznych i w systemach serwonapędów. Dlatego dobry wybór prądnicy tachometrycznej jest mega ważny, żeby pomiary były dokładne i stabilne. Z doświadczenia wiem, że to kluczowy element w nowoczesnych technologiach przemysłowych.

Pytanie 16

Jakie z poniższych działań może być realizowane podczas eksploatacji pompy hydroforowej?

A. Kilka razy włączenie pompy w celu eliminacji powietrza z wirnika
B. Usuwanie osłon w trakcie funkcjonowania urządzenia
C. Smarowanie elementów poruszających się
D. Czyszczenie elementów poruszających się
Kilkukrotne uruchomienie pompy hydroforowej w celu usunięcia powietrza z wirnika jest kluczowym działaniem, które zapewnia jej prawidłową pracę i wydajność. W przypadku pompy hydroforowej, obecność powietrza w układzie może prowadzić do tzw. "kawitacji", która z kolei może spowodować uszkodzenia wirnika oraz obniżenie efektywności pompy. Regularne uruchamianie pompy w celu usunięcia powietrza jest częścią rutynowej konserwacji, zalecanej przez producentów urządzeń oraz zgodnej z najlepszymi praktykami w branży hydraulicznej. W praktyce oznacza to, że przed rozpoczęciem długoterminowego użytkowania pompy warto przeprowadzić kilka cykli rozruchowych, aby upewnić się, że układ jest całkowicie napełniony wodą, co pozwoli uniknąć problemów w trakcie eksploatacji. Ponadto, warto monitorować ciśnienie w instalacji, aby zidentyfikować ewentualne nieprawidłowości, które mogą wskazywać na obecność powietrza w systemie. Tego rodzaju praktyki pozwalają na maksymalizację wydajności i żywotności pompy hydroforowej.

Pytanie 17

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. sprawdzania napięć silnika
B. wymiany zabrudzonego komutatora wirnika
C. sprawdzania połączeń elektrycznych
D. czyszczenia żeber radiatorów
Dobra decyzja, wybierając odpowiedź o wymianie zabrudzonego komutatora wirnika. Wiesz, przegląd konserwacyjny napędów elektrycznych to głównie rutynowe zadania, jak czyszczenie czy kontrola, a nie jakieś skomplikowane prace wymagające rozkręcania całego silnika. Robimy takie rzeczy jak sprawdzanie napięć silnika czy czyszczenie radiatorów, które są fundamentalne dla tego, żeby wszystko działało jak należy. Wymiana komutatora wirnika to już inna bajka – trzeba mieć specjalistyczne umiejętności, narzędzia i trochę więcej czasu. Takie konkretne wymiany najlepiej załatwiać w ramach większych przeglądów serwisowych, a nie przy każdej rutynowej kontroli, żeby nie marnować czasu i zachować sprawność urządzeń.

Pytanie 18

W jednofazowym silniku indukcyjnym napędzającym urządzenie mechatroniczne uszkodzeniu uległ kondensator pracy o parametrach znamionowych 2,5 uF / 450 V. Którym z wymienionych kondensatorów należy zastąpić uszkodzony, aby naprawić urządzenie?

Dane techniczne:
Napięcie znamionowe450 V
Częstotliwość znamionowa50 ÷ 60 Hz
Tolerancja pojemności±5%
Oczekiwana żywotność10 000 h (HPFNT)
Stopień ochronyIP00
ModelPojemność [μF]Wymiary D x H [mm]
MK 450-1130 x 57
MK 450-1,51,530 x 57
MK 450-2230 x 57
MK 450-2,52,530 x 57
MK 450-101035 x 57
MK 450-12,512,535 x 70
MK 450-202040 x 70
MK 450-252540 x 70
MK 450-505040 x 70

A. MK 450-25
B. MK 450-2,5
C. MK 450-2
D. MK 450-20
Kondensator oznaczony jako 'MK 450-2,5' jest poprawnym zamiennikiem uszkodzonego kondensatora o parametrach 2,5 uF / 450 V. Kluczowym czynnikiem przy doborze kondensatora jest zgodność zarówno z pojemnością, jak i napięciem znamionowym. W przypadku silników indukcyjnych, kondensatory są niezbędne do poprawnego rozruchu i funkcjonowania silnika, dlatego ich wybór ma fundamentalne znaczenie. Zastosowanie kondensatora o niewłaściwej pojemności może prowadzić do obniżenia wydajności silnika lub jego uszkodzenia. W praktyce, zastosowanie kondensatora MK 450-2,5, który spełnia te wymagania, zapewnia optymalną pracę silnika oraz minimalizuje ryzyko awarii. Warto również pamiętać, że stosowanie kondensatorów o wyższej pojemności lub napięciu może nie być zalecane, gdyż może to prowadzić do nieprawidłowego działania systemu. Zgodnie z normami branżowymi, należy zawsze dobierać komponenty zgodnie z ich specyfikacją techniczną. W przypadku wątpliwości, warto konsultować się z dokumentacją producenta lub specjalistą.

Pytanie 19

W dokumentacji dotyczącej obsługi i konserwacji sieci komunikacyjnej sterowników PLC, które współpracują z urządzeniami mechatronicznymi, powinno się zawrzeć zalecenie dotyczące

A. dodawania dodatkowego przewodu do wyrównywania potencjałów pomiędzy żyłami
B. wykorzystania przewodów o dużej pojemności wzajemnej żył
C. stosowania tylko przewodów nieekranowanych
D. układania przewodów komunikacyjnych równolegle do przewodów zasilających
Prowadzenie przewodów komunikacyjnych równolegle do przewodów zasilających jest kluczowym zaleceniem w kontekście minimalizacji zakłóceń elektromagnetycznych. Takie podejście pozwala na skuteczne oddzielanie sygnałów komunikacyjnych od potencjalnych źródeł zakłóceń, co jest szczególnie istotne w aplikacjach mechatronicznych, gdzie stabilność działania urządzeń ma kluczowe znaczenie. W praktyce, stosowanie tej metody przyczynia się do zwiększenia jakości przesyłu danych i zmniejszenia ryzyka błędów komunikacyjnych. W branży automatyki istnieje wiele standardów, takich jak IEC 61158, które podkreślają znaczenie odpowiedniego prowadzenia przewodów w kontekście interoperacyjności i niezawodności systemów. Warto również pamiętać, że zgodnie z wytycznymi producentów, stosowanie tej techniki w instalacjach przemysłowych umożliwia lepsze dostosowanie do zmieniających się warunków pracy oraz poprawia ogólną wydajność systemów. Dlatego właściwe prowadzenie przewodów komunikacyjnych powinno być integralnym elementem projektowania i implementacji systemów mechatronicznych.

Pytanie 20

Jakie powinno być natężenie przepływu oleju dla silnika hydraulicznego o pojemności jednostkowej 5 cm3/obr., aby wałek wyjściowy osiągnął prędkość 1200 obr./min?

A. 1,2 dm3/min
B. 0,6 dm3/min
C. 0,1 dm3/min
D. 6,0 dm3/min
Aby zrozumieć, dlaczego odpowiedź 6,0 dm3/min jest poprawna, musimy uwzględnić zarówno chłonność jednostkową silnika hydraulicznego, jak i prędkość obrotową wałka. Chłonność jednostkowa wynosząca 5 cm³/obr. oznacza, że na każdy obrót wałka silnik potrzebuje 5 cm³ oleju. Przy prędkości 1200 obr./min, całkowite zapotrzebowanie na olej można obliczyć, mnożąc chłonność przez prędkość obrotową: 5 cm³/obr. * 1200 obr./min = 6000 cm³/min. Konwertując to na dm³/min (1 dm³ = 1000 cm³), otrzymujemy 6,0 dm³/min. Taka wiedza jest kluczowa w praktyce inżynierskiej, gdzie precyzyjne obliczenia przepływu oleju są niezbędne do zapewnienia optymalnej wydajności systemów hydraulicznych. Niewłaściwe natężenie przepływu może prowadzić do uszkodzenia silnika lub niewłaściwego działania układu hydraulicznego, co podkreśla znaczenie starannych obliczeń w projektowaniu układów hydraulicznych oraz zgodności z normami branżowymi dotyczącymi systemów hydraulicznych.

Pytanie 21

Na podstawie przedstawionej noty katalogowej czujników indukcyjnych dobierz sensor spełniający wytyczne do doboru czujnika.

Nota katalogowa czujników indukcyjnych
ModelJM12L – F2NHJM12L – F2PHJM12L – Y4NHJM12L – Y4PH
TypNPN, NO/NCPNP, NO/NCNPN, NO/NCPNP, NO
Napięcie zasilania10÷30 V DC10÷30 V AC10÷30 V DC10÷30 V DC
Pobór prądu100 mA200 mA300 mA200 mA
Robocza strefa działania2 mm2 mm4 mm4 mm
WymiaryM12 / 60 mmM12 / 60 mmM12 / 59,5 mmM18 / 60,5 mm
Sposób podłączeniakabelkabelkabelkabel
Czołozabudowanezabudowaneodkryteodkryte


Wytyczne do doboru czujnika:

  • pobór prądu – nie większy niż 250 mA,
  • średnica obudowy czujnika – 12 mm,
  • po aktywowaniu czujnika jego wyjście powinno zostać zwarte do potencjału dodatniego zasilania.

A. JM12L – Y4NH
B. JM12L – F2PH
C. JM12L – F2NH
D. JM12L – Y4PH
Model JM12L – F2PH został właściwie dobrany zgodnie z zasadami doboru czujników indukcyjnych. Pobór prądu tego czujnika wynosi 200 mA, co jest poniżej maksymalnego dopuszczalnego limitu 250 mA, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa w instalacjach elektronicznych. Średnica obudowy wynosząca 12 mm (M12) jest odpowiednia dla różnorodnych aplikacji przemysłowych, co czyni ten czujnik uniwersalnym rozwiązaniem. Typ PNP oznacza, że po aktywacji czujnika jego wyjście łączy się z dodatnim potencjałem zasilania, co jest istotne w kontekście integracji z innymi komponentami systemów automatyki. Zastosowanie takich czujników obejmuje m.in. detekcję obecności obiektów w liniach produkcyjnych, kontrolę położenia w mechanizmach oraz monitorowanie procesów, co zwiększa efektywność i precyzję działania maszyn. Warto również zauważyć, że przy wyborze czujników warto kierować się normami IEC oraz ISO, co zapewnia zgodność i bezpieczeństwo w aplikacjach przemysłowych.

Pytanie 22

Jakim oznaczeniem literowym nazywa się zmienne wewnętrzne kontrolera, które są używane w programie jako styki i cewki?

A. C
B. M
C. T
D. Q
Odpowiedź "M" jest poprawna, ponieważ symbol ten odnosi się do zmiennych wewnętrznych sterownika, które pełnią rolę cewek i styków w programowaniu PLC. Zmienne te są związane z pamięcią sterownika, co znajduje odzwierciedlenie w angielskim słowie "memory". W praktyce zmienne typu M są wykorzystywane do przechowywania stanów logicznych, które mogą być używane w różnych częściach programu, co zapewnia elastyczność i możliwość łatwego zarządzania danymi. Dobrą praktyką jest przydzielanie zmiennych pamięciowych do konkretnych funkcji, co ułatwia późniejsze debugowanie oraz utrzymanie programu. W kontekście standardów, w wielu systemach automatyki przemysłowej, takich jak Siemens TIA Portal czy Allen-Bradley, zmienne pamięciowe są kluczowym elementem programowania, ponieważ umożliwiają manipulację danymi oraz interakcję z fizycznymi urządzeniami. Warto także zaznaczyć, że zrozumienie i umiejętność wykorzystania zmiennych M ma istotne znaczenie w kontekście pisania efektywnych i bezpiecznych programów automatyki.

Pytanie 23

Jakiej czynności nie wykonuje się podczas odbioru maszyny po przeprowadzeniu przeglądu technicznego?

A. Przeprowadzenia testowego uruchomienia maszyny pod obciążeniem znamionowym
B. Weryfikacji działania maszyny bez obciążenia
C. Określenia zakresu następnego przeglądu technicznego
D. Sprawdzenia kondycji oraz poprawności działania urządzeń zabezpieczających
Analizując pozostałe odpowiedzi, można zauważyć, że wszystkie one dotyczą kluczowych aspektów odbioru obrabiarki po przeglądzie technicznym, ale nie są one czynnościami które można pominąć. Testowe uruchomienie obrabiarki pod obciążeniem znamionowym ma fundamentalne znaczenie dla sprawdzenia prawidłowego funkcjonowania maszyny w warunkach zbliżonych do rzeczywistych. Przeprowadzenie takiego testu pozwala zidentyfikować ewentualne problemy związane z wydajnością oraz stabilnością urządzenia, co jest kluczowe dla zapewnienia jego efektywności. Sprawdzanie działania obrabiarki bez obciążenia także nie powinno być lekceważone, gdyż umożliwia wykrycie podstawowych usterek i nieprawidłowości w działaniu systemów sterujących. Ponadto, weryfikacja stanu oraz prawidłowości działania urządzeń zabezpieczających jest niezbędna do zapewnienia bezpieczeństwa operatorów i otoczenia. Zaniedbanie któregokolwiek z tych kroków może prowadzić do poważnych konsekwencji, takich jak awarie, wypadki przy pracy, czy znaczne straty finansowe związane z przestojami produkcyjnymi. Dlatego ważne jest, aby każdy proces odbioru obrabiarek po przeglądzie był dokładnie zaplanowany i realizowany zgodnie z ustalonymi standardami oraz najlepszymi praktykami branżowymi.

Pytanie 24

Jaki program służy do gromadzenia informacji o procesie przemysłowym, ich przedstawiania oraz archiwizacji?

A. Linker
B. SCADA
C. CAD/CAM
D. Kompilator
SCADA, czyli System Control and Data Acquisition, to kluczowy program używany w przemyśle do zbierania, monitorowania oraz archiwizacji danych procesowych. Dzięki SCADA operatorzy mogą uzyskiwać w czasie rzeczywistym informacje na temat pracy maszyn oraz efektywności procesów przemysłowych. System ten umożliwia wizualizację danych w formie graficznych interfejsów, co ułatwia identyfikację problemów i szybką reakcję na nie. Przykładem zastosowania SCADA może być zarządzanie systemem wodociągowym, gdzie program monitoruje ciśnienie, przepływ wody oraz stan zbiorników. Standardy takie jak ISA-95 czy ISA-88 definiują ramy, w których SCADA operuje, co zapewnia interoperacyjność z innymi systemami automatyki przemysłowej. Wiele nowoczesnych instalacji przemysłowych korzysta z SCADA, aby zwiększyć efektywność operacyjną, poprawić jakość produkcji oraz zminimalizować przestoje, co przekłada się na oszczędności finansowe i lepszą jakość produktów.

Pytanie 25

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
B. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
C. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
D. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
Wybór odpowiedzi "zabezpieczyć je przed włączeniem i sprawdzić brak napięcia" jest kluczowy dla zapewnienia bezpieczeństwa podczas konserwacji silników elektrycznych. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 60204-1, przed przystąpieniem do jakichkolwiek prac konserwacyjnych należy zawsze odłączyć zasilanie. Zabezpieczenie obwodów przed włączeniem jest podstawowym krokiem, który minimalizuje ryzyko przypadkowego uruchomienia maszyny. Proces sprawdzania braku napięcia, na przykład za pomocą wskaźnika napięcia, jest niezbędny, aby upewnić się, że obwód jest całkowicie bezpieczny do pracy. Tego rodzaju procedury są standardowymi praktykami w przemyśle, które zapewniają nie tylko bezpieczeństwo technika, ale także zapobiegają uszkodzeniu sprzętu. Oprócz tego, stosowanie odpowiednich osłon i oznakowań ostrzegawczych jest również ważne, aby informować innych pracowników o prowadzonych pracach konserwacyjnych, co dodatkowo zwiększa poziom bezpieczeństwa w miejscu pracy.

Pytanie 26

W jakim celu przeprowadza się diagnostykę systemów mechatronicznych?

A. Zwiększenie złożoności systemu
B. Optymalizacja kosztów produkcji
C. Zmniejszenie wymiarów urządzeń
D. Identyfikacja i usuwanie usterek
Diagnostyka systemów mechatronicznych jest kluczowym elementem ich eksploatacji. Głównym celem przeprowadzania diagnostyki jest identyfikacja i usuwanie usterek. W kontekście urządzeń mechatronicznych, które składają się z elementów mechanicznych, elektronicznych oraz informatycznych, szybka i precyzyjna identyfikacja awarii jest nieoceniona. Dzięki niej możemy nie tylko wykryć istniejące problemy, ale także zapobiec przyszłym awariom poprzez monitorowanie stanu systemu. Nowoczesne systemy diagnostyczne często korzystają z zaawansowanych technik, takich jak analiza drgań czy termografia, które pozwalają na nieinwazyjne wykrywanie problemów. Praktyczne zastosowanie tej wiedzy można dostrzec w przemyśle motoryzacyjnym, gdzie diagnostyka pozwala na bieżąco monitorować stan pojazdu i zapobiegać awariom na drodze. Warto również wspomnieć o standardach branżowych, takich jak ISO 13379, które opisują metody diagnostyki systemów mechanicznych. Prawidłowo przeprowadzona diagnostyka zwiększa niezawodność i bezpieczeństwo systemów, co jest kluczowe w wielu aplikacjach przemysłowych.

Pytanie 27

Selsyn trygonometryczny (resolver) wykorzystywany w serwomechanizmach ma na celu pomiar

A. szybkości liniowej
B. przemieszczeń liniowych
C. szybkości kątowej
D. przemieszczeń kątowych
Selsyn trygonometryczny, znany również jako resolver, jest kluczowym elementem w serwomechanizmach, który służy do pomiaru przemieszczeń kątowych. Jego działanie opiera się na przekształceniu ruchu obrotowego na sygnał elektryczny, co pozwala na dokładne określenie kąta obrotu wału. Przykładowo, w automatycznych systemach sterowania, takich jak roboty przemysłowe czy systemy CNC, selsyny są używane do monitorowania pozycji narzędzi i ich precyzyjnego ustalania. Zastosowanie selsynów w takich aplikacjach jest zgodne z najlepszymi praktykami w zakresie automatyzacji, zapewniając nieprzerwaną i dokładną informację zwrotną o położeniu. Z perspektywy inżynieryjnej, pomiar przemieszczeń kątowych jest niezbędny do precyzyjnego sterowania ruchem, co wpływa na efektywność i jakość produkcji. Warto zaznaczyć, że standardy branżowe, takie jak ISO 9409, definiują wymagania dotyczące takich systemów, co świadczy o ich znaczeniu w nowoczesnych technologiach automatyzacji.

Pytanie 28

W systemach hydraulicznych, jaki jest główny powód stosowania zaworów bezpieczeństwa?

A. Poprawa jakości filtracji
B. Zmniejszenie kosztów eksploatacji
C. Ochrona układu przed nadmiernym ciśnieniem
D. Zwiększenie przepływu cieczy roboczej
Zawory bezpieczeństwa w systemach hydraulicznych pełnią kluczową rolę w ochronie układów przed nadmiernym ciśnieniem. Ich podstawowym zadaniem jest zapobieganie uszkodzeniom elementów układu, które mogą prowadzić do awarii czy niebezpiecznych sytuacji. Zawory te działają na zasadzie odprowadzania nadmiaru ciśnienia, gdy przekroczy ono określoną wartość, co w praktyce zapobiega eksplozji przewodów czy uszkodzeniu pomp. Wyobraź sobie, że ciśnienie w układzie zaczyna gwałtownie rosnąć - w tym momencie zawór bezpieczeństwa otwiera się i pozwala na ucieczkę nadmiaru płynu, przywracając bezpieczne warunki pracy. Jest to standardowe rozwiązanie zgodne z normami bezpieczeństwa, które znacznie przedłuża żywotność systemu i chroni pracowników oraz urządzenia. W branży mechatronicznej jest to szczególnie ważne, ponieważ układy hydrauliczne są często używane w maszynach i urządzeniach, które muszą działać niezawodnie w trudnych warunkach. Zastosowanie zaworów bezpieczeństwa jest powszechną praktyką i stanowi podstawę projektowania bezpiecznych systemów hydraulicznych, co jest kluczowym elementem wiedzy w kwalifikacji ELM.06.

Pytanie 29

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. mieszanki wody i olejów roślinnych
B. mieszanki wody oraz olejów mineralnych
C. oleje pochodzenia roślinnego
D. oleje mineralne oraz ciecze niepalne
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.

Pytanie 30

Jaki z wymienionych sposobów powinien być zastosowany podczas przeprowadzania początkowego testowania programu stworzonego dla robota przemysłowego?

A. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 100%
B. Automatyczne powtarzanie ruchów, z prędkością ustawioną na 20%
C. Automatyczne powtarzanie ruchów z prędkością ustawioną na 100%
D. Ręczne powtarzanie ruchów, etap po etapie z prędkością ustawioną na 20%
Ręczne odtwarzanie ruchów robota przemysłowego, krok po kroku, z prędkością ustawioną na 20% jest kluczowym podejściem podczas wstępnego testowania programów. Takie podejście zapewnia możliwość szczegółowego monitorowania każdego etapu ruchu robota, co jest niezbędne w kontekście analizy poprawności funkcjonowania zaprogramowanych sekwencji. Prędkość 20% umożliwia dokładne obserwowanie zachowań robota, co jest szczególnie istotne przy pierwszych testach, kiedy to jeszcze nie ma pełnej pewności co do stabilności i bezpieczeństwa działania robota. Działania te są zgodne z najlepszymi praktykami w obszarze automatyzacji i robotyki, gdzie bezpieczeństwo użytkowników i sprzętu ma kluczowe znaczenie. W praktyce, zarówno w laboratoriach jak i w środowiskach przemysłowych, zaleca się wprowadzenie stopniowego zwiększania prędkości po pomyślnym zakończeniu testów przy niskiej prędkości, co pozwala na minimalizację ryzyka uszkodzeń oraz błędów w działaniu systemu.

Pytanie 31

Jakiego symbolu literowego zgodnego z normą IEC 61131 używa się w programie sterującym do wskazywania komórek pamięci danych w programowalnym sterowniku?

A. Q
B. M
C. I
D. W
Poprawna odpowiedź to 'M', ponieważ symbol ten w normie IEC 61131-3 odnosi się do komórek pamięci danych w programowalnych sterownikach logicznych (PLC). Komórki pamięci są kluczowe dla działania PLC, gdyż umożliwiają przechowywanie tymczasowych i trwałych danych, które są niezbędne do prawidłowego działania aplikacji automatyki. W przypadku programowania PLC, ważne jest zrozumienie różnorodności typów danych oraz ich adresowania. Przykładowo, w aplikacjach automatyki przemysłowej często wykorzystuje się pamięć do przechowywania stanów, danych procesowych oraz wyników obliczeń. Odpowiednie zarządzanie pamięcią jest kluczowe dla wydajności aplikacji oraz ich bezpieczeństwa. Zastosowanie symboli literowych zgodnie z normą IEC 61131-3 jest nie tylko praktyką standardową, ale również przyczynia się do łatwiejszej interpretacji kodu przez innych programistów, co jest istotne w kontekście współpracy w zespole oraz przyszłej konserwacji systemów.

Pytanie 32

Aby zweryfikować, czy w uzwojeniu cewki nie wystąpiła przerwa, należy przeprowadzić pomiar

A. rezystancji izolacji cewki
B. napięcia na zaciskach cewki
C. rezystancji uzwojenia cewki
D. dobroci cewki
Pomiar rezystancji w cewce to naprawdę ważna sprawa, jeśli chodzi o sprawdzanie, w jakim stanie ona jest. Kiedy cewka działa jak powinna, to rezystancja uzwojenia powinna pokazywać określoną wartość, zgodną z tym, co podaje producent. Jeśli natomiast cewka ma przerwę, to ta rezystancja może być bliska zeru albo nawet bardzo niska, co oznacza, że coś jest nie tak z obwodem. Z mojego doświadczenia, technicy często robią takie pomiary w trakcie rutynowych kontroli, żeby mieć pewność, że wszystko działa jak należy, zanim się zacznie używać cewki. Normy branżowe, jak IEC 60076, sugerują, że testowanie rezystancji uzwojenia powinno być stałym punktem w procedurach konserwacyjnych sprzętu elektrycznego. Te działania naprawdę mogą pomóc uniknąć poważniejszych problemów, które mogłyby prowadzić do awarii i kosztownych przestojów w pracy.

Pytanie 33

Jak określa się cechę sterownika PLC, która umożliwia zachowanie aktualnych wartości operandów użytych w programie podczas przełączania z trybu RUN na STOP lub po utracie zasilania?

A. Synchronizacja
B. Redundancja
C. Remanencja
D. Strobowanie
Remanencja jest fundamentalną właściwością sterowników PLC, która umożliwia zachowanie wartości operacyjnych w przypadku zmian trybu pracy systemu. Kiedy sterownik przechodzi z trybu RUN do STOP lub zostaje odłączony od zasilania, remanencja pozwala na zachowanie aktualnych stanów wejść i wyjść oraz wartości zmiennych. W praktyce oznacza to, że po ponownym włączeniu zasilania lub przełączeniu na tryb RUN, system kontynuuje pracę od miejsca, w którym został zatrzymany, co jest kluczowe dla wielu aplikacji przemysłowych. Przykładem może być linia produkcyjna, na której przerwanie zasilania nie powinno skutkować utratą danych o stanie maszyn, co mogłoby prowadzić do przestojów i strat finansowych. Standardy takie jak IEC 61131-3 definiują sposób implementacji remanencji w programowaniu PLC, co gwarantuje zgodność i bezpieczeństwo operacji w systemach automatyki.

Pytanie 34

Konwersja programu napisanego w języku LD na kod maszynowy, który jest zrozumiały dla jednostki centralnej PLC, odbywa się w środowisku narzędziowym PLC przy użyciu polecenia

A. save as
B. compile
C. download
D. upload
Odpowiedź 'compile' jest trafna, bo kompilacja to istotny proces, który zamienia kod źródłowy w języku LD (Ladder Diagram) na kod maszynowy. Tylko maszyna rozumie ten kod, więc jest to kluczowe, żeby program mógł działać. W praktyce, gdy korzystamy z narzędzi PLC, komenda 'compile' uruchamia kompilator, który sprawdza, czy składnia i logika programu są właściwe, a potem generuje ten niezbędny kod maszynowy. Zrozumienie tego wszystkiego jest mega ważne dla inżynierów automatyki, bo pozwala im optymalizować programy i znajdywać błędy zanim jeszcze wrzucą kod do PLC. W branży automatyki mamy też standardy jak IEC 61131-3, które mówią o językach programowania PLC, a kompilacja to kluczowy element, żeby wdrożenia były jakościowo na dobrym poziomie. Przykładowo, przed uruchomieniem programu, inżynierowie często sprawdzają wyniki kompilacji, by przekonać się, że wszystko działa jak trzeba i nie ma błędów, co mogłoby wpłynąć na bezpieczeństwo lub działanie systemu.

Pytanie 35

Jaki program jest używany do projektowania obiektów w 3D?

A. Paint
B. PCschematic
C. AutoCad
D. FluidSim
AutoCad to zaawansowane oprogramowanie CAD (Computer-Aided Design), które jest szeroko stosowane w branżach inżynieryjnych oraz architektonicznych do tworzenia rysunków technicznych, projektów oraz modelowania 3D. Dzięki rozbudowanej funkcjonalności, AutoCad umożliwia nie tylko rysowanie obiektów w przestrzeni trójwymiarowej, ale także ich edytowanie i wizualizację. W praktyce, architekci wykorzystują AutoCad do projektowania budynków, co pozwala im na łatwe wprowadzanie zmian oraz generowanie szczegółowych rysunków wykonawczych. Inżynierowie mechanicy mogą używać tego programu do projektowania skomplikowanych mechanizmów czy urządzeń, co wymaga precyzyjnego modelowania i analizy. Warto również zaznaczyć, że AutoCad dorównuje międzynarodowym standardom branżowym, co czyni go niezastąpionym narzędziem w profesjonalnym projektowaniu oraz dokumentacji technicznej, a jego umiejętności są wysoko cenione na rynku pracy.

Pytanie 36

Jaką z wymienionych czynności można przeprowadzić podczas pracy silnika prądu stałego?

A. Wyczyścić łopatki wentylatora
B. Dokręcić śruby mocujące silnik do podłoża
C. Przeczyścić odpowiednimi środkami elementy wirujące silnika
D. Wymienić szczotki komutatora
Dokręcanie śrub mocujących silnik do podłoża w czasie pracy silnika prądu stałego jest czynnością bezpieczną, ponieważ nie wpływa na działanie samego silnika ani nie zagraża jego integralności. W praktyce, silnik powinien być odpowiednio zamocowany, aby uniknąć drgań i potencjalnych uszkodzeń. W sytuacjach, gdy silnik pracuje, można przeprowadzać różne czynności, które nie ingerują w jego układ elektryczny czy mechaniczny. W przypadku niewłaściwego zamocowania, silnik może ulegać uszkodzeniom mechanicznym, co w dłuższej perspektywie prowadzi do awarii. Dlatego dobrym zwyczajem jest regularne sprawdzanie mocowania silnika oraz ich stanu, co jest zgodne z najlepszymi praktykami w zakresie konserwacji. Warto również zaznaczyć, że zgodnie z normami bezpieczeństwa, wszelkie inne prace elektryczne powinny być wykonywane wyłącznie po odłączeniu urządzenia od zasilania, co pozwala uniknąć poważnych wypadków.

Pytanie 37

Silniki komutatorowe jako urządzenia napędowe w urządzeniach mechatronicznych nie powinny być stosowane w

A. pomieszczeniach klimatyzowanych
B. pomieszczeniach o niskiej temperaturze
C. zadaszonej hali produkcyjnej
D. pomieszczeniach zagrożonych wybuchem
Silniki komutatorowe to urządzenia, które w procesie pracy generują łuk elektryczny. Ten zjawisko jest szczególnie niebezpieczne w warunkach, gdzie obecne są substancje łatwopalne lub wybuchowe. W pomieszczeniach zagrożonych wybuchem, takich jak te, w których magazynowane są gazy, opary palnych cieczy lub pyły, użycie silników komutatorowych może prowadzić do poważnych wypadków. Standardy i wytyczne, takie jak ATEX (dyrektywa Unii Europejskiej dotycząca urządzeń przeznaczonych do stosowania w atmosferach wybuchowych), jednoznacznie wskazują na konieczność stosowania alternatywnych napędów, które nie generują łuków elektrycznych. W praktyce w takich środowiskach zaleca się użycie silników bezkomutatorowych lub innych technologii, które eliminują ryzyko zapłonu. Dlatego ważne jest, aby projektanci i inżynierowie, którzy pracują w obszarach zagrożonych wybuchem, dokładnie przestrzegali norm i standardów bezpieczeństwa, aby zminimalizować ryzyko wypadków.

Pytanie 38

Którego z przetworników temperatury należy użyć w układzie mechatronicznym, jeżeli:
- elementem sensorycznym w układzie jest czujnik Pt 100,
- przetwornik będzie zasilany z zasilacza wewnętrznego sterownika PLC (24 V DC),
- wyjście przetwornika podłączone będzie do wejścia analogowego 4 do 20 mA sterownika,
- układ pomiarowy będzie zamontowany na zewnątrz hali produkcyjnej?

Typ czujnika
parametr
7NG3211-PNC007NG3211-PT1007NG3211-PKL007NG3211-PN100
WejścieCzujniki
rezystancyjne
półprzewodnikowe
Czujniki
rezystancyjne
TermoparyCzujniki
rezystancyjne
Wyjście0 ÷ 20 mA0 ÷ 20 mA4 ÷ 20 mA4 ÷ 20 mA
Zasilanie8,5 ÷ 36 V DC8,5 ÷ 30 V DC8,5 ÷ 30 V DC8,5 ÷ 36 V DC
Stopień
ochrony
IP 40IP 40IP 40IP 40
Temperatura
otoczenia
0 ÷ 40°C0 ÷ 40°C-40 ÷ 80°C-40 ÷ 80°C

A. 7NG3211-PN100
B. 7NG3211-PNC00
C. 7NG3211-PT100
D. 7NG3211-PKL00
Odpowiedź 7NG3211-PN100 jest całkiem dobra. Ten przetwornik to naprawdę fajny wybór, bo obsługuje czujniki rezystancyjne Pt 100, co jest bardzo ważne, gdy mówimy o pomiarze temperatury. Pracuje na napięciu 24 V DC, więc spokojnie można go podłączyć do typowych zasilaczy, które znajdziesz w systemach PLC. No i to wyjście analogowe 4-20 mA to standard w przemyśle, co oznacza, że dane są przesyłane dokładnie i stabilnie. Dodatkowo, przetwornik został zaprojektowany do montażu na zewnątrz, co jest super, bo w przemysłowych instalacjach często trzeba mieć do czynienia z różnymi warunkami pogodowymi. Zakres temperatury od -40 do 80°C to duży plus, bo pozwala na jego wszechstronność. Ogólnie rzecz biorąc, to dobry wybór i na pewno spełni swoje zadanie w różnych sytuacjach.

Pytanie 39

Który z literowych identyfikatorów powinien być wykorzystany w poleceniu odnoszącym się do analogowych wyjść?

A. AQ
B. AI
C. MW
D. SM
Wybór identyfikatora "AQ" jako poprawnej odpowiedzi jest w pełni uzasadniony w kontekście systemów automatyki i sterowania. Skrót ten oznacza "Analog Output", co bezpośrednio odnosi się do wyjść analogowych w urządzeniach automatyki. Wyjścia analogowe są kluczowym elementem w procesach kontrolnych, ponieważ umożliwiają przekazywanie sygnałów w formie ciągłej, co jest istotne w przypadku aplikacji wymagających precyzyjnej regulacji, takich jak sterowanie silnikami czy regulacja temperatury. Zrozumienie roli identyfikatorów literowych, takich jak "AQ", jest fundamentalne dla projektantów systemów automatyki, gdyż pozwala na poprawne rozróżnienie między różnymi typami sygnałów. W praktyce identyfikatory te są niezbędne do programowania i konfigurowania urządzeń, co ma kluczowe znaczenie dla efektywności i niezawodności systemów. Zgodność z normami branżowymi, takimi jak IEC 61131-3, również podkreśla znaczenie stosowania odpowiednich identyfikatorów dla różnych typów I/O, co zapewnia spójność oraz prawidłowe działanie systemów w automatyce przemysłowej.

Pytanie 40

Obserwując zarejestrowany przebieg wartości regulowanej w systemie regulacji dwustanowej, dostrzeżono zbyt silne oscylacje wokół wartości docelowej. W celu zredukowania amplitudy tych oscylacji, należy w regulatorze cyfrowym

A. zwiększyć amplitudę sygnału kontrolującego
B. powiększyć szerokość histerezy
C. zmniejszyć wartość sygnału ustawiającego
D. zmniejszyć szerokość histerezy
Zmniejszenie szerokości histerezy w regulatorze cyfrowym to kluczowy krok w procesie redukcji oscylacji wokół wartości zadanej. Histereza jest zjawiskiem, które polega na tym, że wartość, przy której następuje przełączenie stanu, różni się w zależności od kierunku odchylenia od wartości zadanej. Zmniejszenie szerokości histerezy powoduje szybszą reakcję regulatora na niewielkie odchylenia, co w praktyce oznacza, że system będzie przełączał się pomiędzy stanami w krótszym czasie i z mniejszymi opóźnieniami. W zastosowaniach przemysłowych, gdzie precyzja i stabilność są kluczowe, takie podejście jest zgodne z najlepszymi praktykami w inżynierii automatyki, co przekłada się na większą efektywność i mniejsze ryzyko awarii. W systemach HVAC czy w regulacji temperatury, precyzyjne dostosowanie histerezy pozwala na optymalne zarządzanie zużyciem energii oraz komfortem użytkowników. Dobrze dobrana histereza pozwala nie tylko na stabilizację, ale również na poprawę responsywności systemu, co jest niezwykle istotne w złożonych układach regulacji.