Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 maja 2025 08:27
  • Data zakończenia: 8 maja 2025 08:45

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B

A. Transformatorów.
B. Styczników.
C. Wyłączników różnicowoprądowych.
D. Wyłączników nadprądowych.
Odpowiedzi o transformatorach i wyłącznikach różnicowoprądowych są nietrafione, bo to zupełnie inne urządzenia z innymi zastosowaniami. Transformatory zmieniają napięcie w obwodach elektrycznych, a nie są montowane na szynie TH 35, więc porównywanie ich do wyłączników nadprądowych nie ma sensu. Co do wyłączników różnicowoprądowych, to one też chronią, ale działają na innej zasadzie - wykrywają różnicę prądów między fazą a przewodem neutralnym, co jest kluczowe, żeby uniknąć porażenia prądem, jak coś się uszkodzi. W praktyce często mylimy różne typy urządzeń, co prowadzi do błędnych wniosków. A styczniki, które też były wspomniane, są do załączania i wyłączania obwodów, ale nie mają funkcji zabezpieczającej jak wyłączniki nadprądowe. Dobrze jest znać różnice między tymi urządzeniami i wiedzieć, kiedy ich używać, bo to ma spore znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 2

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 6 szt.
B. 3 szt.
C. 10 szt.
D. 13 szt.
Zarówno niższe, jak i wyższe wartości liczby gniazd wtykowych na jednym obwodzie, mogą prowadzić do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. W przypadku odpowiedzi sugerujących 6, 3 lub 13 gniazd, warto zwrócić uwagę na kilka kluczowych aspektów. Wybierając 6 lub 3 gniazda, można sądzić, że ograniczenie liczby gniazd zwiększa bezpieczeństwo, jednak w rzeczywistości nie jest to zgodne z zaleceniami norm. Instalacja zbyt małej liczby gniazd może prowadzić do nadmiernego użytkowania i przeciążania dostępnych gniazd, co z kolei zwiększa ryzyko awarii lub pożaru. Z kolei sugerowanie wartości 13 gniazd na jednym obwodzie przesadza z ilością, co może prowadzić do przekroczenia dopuszczalnego obciążenia prądowego obwodu. Instalacje elektryczne muszą być projektowane z uwzględnieniem nie tylko liczby gniazd, ale także ich przewidywanego obciążenia oraz typowych urządzeń, jakie będą do nich podłączane. Powinno się kierować zasadą, że każda instalacja musi być bezpieczna i funkcjonalna, dlatego normy oraz wytyczne powinny być przestrzegane. Użycie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, jest kluczowe dla zabezpieczenia instalacji, ale podstawą jest odpowiednia liczba gniazd na obwodzie, aby zminimalizować ryzyko przeciążeń. Ostatecznie, nieprzestrzeganie zasad dotyczących liczby gniazd prowadzi do potencjalnych zagrożeń dla użytkowników i zwiększenia kosztów eksploatacyjnych w dłuższym okresie.

Pytanie 3

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Przerwa w obwodzie lampy
B. Luźny przewód w przełączniku
C. Zbyt niska moc żarówki
D. Zwarcie w obwodzie lampy
Poluzowany przewód w wyłączniku może być odpowiedzialny za nagrzewanie się łącznika puszkowego, ponieważ prowadzi do zwiększonego oporu elektrycznego w miejscu połączenia. Gdy przewód nie jest odpowiednio dokręcony, pojawia się luz, co skutkuje niewłaściwym kontaktem i generowaniem ciepła. Zjawisko to jest zgodne z zasadą Joule'a, według której moc wydzielająca się na oporze jest proporcjonalna do kwadratu natężenia prądu i oporu. Przykłady zastosowania tej wiedzy można znaleźć w praktykach instalacyjnych, gdzie stosuje się odpowiednie narzędzia do dokręcania połączeń, co minimalizuje ryzyko nagrzewania się. Dobre praktyki branżowe zalecają regularne przeglądy połączeń elektrycznych oraz zastosowanie elementów zabezpieczających, takich jak złączki z funkcją blokady, aby uniknąć luzów w instalacjach elektrycznych.

Pytanie 4

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt wysoka wartość prądu długotrwałego
B. Poluzowanie śruby mocującej w puszce
C. Zbyt mały przekrój użytego przewodu
D. Wzrost napięcia zasilającego spowodowany przepięciem
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 5

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, lutownica, tester
B. Ściągacz izolacji, wkrętak, próbnik
C. Szczypce, wkrętak, lutownica
D. Tester, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 6

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie probiercze i prąd zadziałania.
B. Napięcie znamionowe i prąd znamionowy.
C. Napięcie probiercze i prąd znamionowy.
D. Napięcie znamionowe i prąd zadziałania.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 7

Przewód oznaczony symbolem PEN to przewód

A. wyrównawczy
B. ochronno-neutralny
C. uziemiający
D. ochronny
Wybór błędnych odpowiedzi może wynikać z niepełnego zrozumienia roli różnych typów przewodów w instalacjach elektrycznych. Przewód ochronno-neutralny, oznaczony jako PEN, nie jest tożsamy z przewodem uziemiającym (PE), który ma na celu jedynie ochronę przed porażeniem elektrycznym, łącząc obudowy urządzeń elektrycznych z ziemią. Z kolei przewód neutralny (N) służy do prowadzenia prądu roboczego, a jego funkcje nie obejmują zabezpieczeń przed awariami elektrycznymi. Odpowiedź wskazująca przewód ochronny (PE) jest również błędna, ponieważ przewód ochronny nie przewodzi prądu roboczego, lecz jedynie zapewnia uziemienie. Oznaczenie przewodu wyrównawczego, które również jest błędne, odnosi się do przewodów łączących różne części instalacji w celu zminimalizowania różnic potencjałów, ale nie wypełnia funkcji przewodu PEN. Często błędne odpowiedzi wynikają z mylenia funkcji przewodów w systemach TN, TT i IT, co składa się na brak zrozumienia zasad projektowania instalacji elektrycznych. Właściwe rozróżnienie między tymi przewodami jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Zrozumienie ich funkcji pozwala nie tylko na poprawne projektowanie, ale także na skuteczne przeprowadzanie audytów i konserwacji instalacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 8

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie drutu
B. Z aluminium w formie linki
C. Z aluminium w formie drutu
D. Z miedzi w formie linki
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 9

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy instalacyjny nadprądowy
B. Dwubiegunowy przepięciowy
C. Dwubiegunowy różnicowoprądowy
D. Dwubiegunowy podnapięciowy
Wybór jednego z pozostałych wyłączników, takich jak różnicowoprądowy, podnapięciowy lub przepięciowy, wynika z nieporozumienia dotyczącego ich podstawowych funkcji i zastosowań. Różnicowoprądowy wyłącznik dwubiegunowy jest używany do detekcji różnicy prądów między przewodem fazowym a neutralnym, co zapobiega porażeniom elektrycznym, ale nie chroni przed przeciążeniem. Z kolei podnapięciowy wyłącznik jest odpowiedzialny za automatyczne odłączenie obwodu w przypadku zbyt niskiego napięcia, co w praktyce może być użyteczne w systemach wymagających stabilności zasilania, ale nie ma zastosowania do ochrony przed nadprądami. Przepięciowy wyłącznik dwubiegunowy służy do ochrony przed przepięciami, takimi jak te wywołane uderzeniem pioruna, jednak nie pełni funkcji ochrony przed przeciążeniem. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru zabezpieczeń w instalacjach elektrycznych. Typowe błędy myślowe prowadzące do wybory niewłaściwego wyłącznika obejmują mylenie funkcji ochronnych oraz brak znajomości specyfikacji technicznych danego urządzenia. Dlatego też konieczne jest zapoznanie się z dokumentacją oraz normami regulującymi te urządzenia, aby zapewnić bezpieczeństwo i efektywność instalacji elektrycznej.

Pytanie 10

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. ustawienia zabezpieczeń i stanu osłon części wirujących
B. stanu przewodów ochronnych oraz ich połączeń
C. stanu pierścieni ślizgowych oraz komutatorów
D. poziomu drgań i skuteczności układu chłodzenia
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 11

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
Jak się przygotowujesz do wymiany uszkodzonego odcinka przewodu w rurach peszla, to trzeba dobrze przemyśleć, co robisz. Najpierw ważne jest, żeby odłączyć napięcie zasilania – to wiadomo, ale niektórzy zapominają o otwarciu puszek instalacyjnych. Bez tego dostanie się do przewodów to jak szukanie igły w stogu siana. Następnie, jak mówisz o wymianie rury peszla, nie można tego robić bez odkręcenia końców uszkodzonego przewodu. W praktyce najlepiej jest analizować całą instalację w puszkach, a nie grzebać tam, gdzie nie potrzeba, żeby nie komplikować sobie życia. Gdzieś mi się wydaje, że niektórzy też zapominają o ponownym sprawdzeniu działania instalacji po włączeniu napięcia, co jest naprawdę istotne, żeby mieć pewność, że wszystko działa jak powinno. Czasem zrywanie tynku bez przemyślenia to totalna strata czasu, a później uzupełnianie go bez sensu jest niepotrzebne, jeśli nie wykonasz odpowiedniego dostępu do przewodów. Dlatego lepiej działać według norm i standardów, które mówią, że wszystko trzeba robić z głową i w bezpieczny sposób.

Pytanie 12

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie miejsca pracy
B. izolowanie części czynnych
C. urządzenia II klasy ochronności
D. połączenia wyrównawcze
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 13

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. pomiar rezystancji uziemienia
B. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
C. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Ocena dostępu do urządzeń, sprawdzenie oznaczenia obwodów i zabezpieczeń oraz sprawdzenie poprawności oznaczenia przewodów neutralnych i ochronnych to istotne elementy oględzin instalacji elektrycznej, które powinny być wykonywane regularnie. Ocena dostępu do urządzeń jest kluczowa, ponieważ zapewnia, że personel może wygodnie i bezpiecznie pracować z instalacją, a także szybko reagować w przypadku awarii. Sprawdzanie oznaczenia obwodów i zabezpieczeń oraz przewodów neutralnych i ochronnych pozwala na identyfikację potencjalnych problemów oraz zrozumienie struktury instalacji, co jest niezbędne do skutecznego zarządzania nią. Problemy takie jak niewłaściwe oznaczenie mogą prowadzić do poważnych zagrożeń, w tym do niebezpieczeństwa porażenia prądem lub uszkodzenia sprzętu. Powszechnym błędem jest mylenie tych elementów z pomiarem rezystancji uziemienia. Wiedza o różnicy między tymi czynnościami jest kluczowa, ponieważ każde z nich ma swoje unikalne cele i metody, a ich pomylenie może prowadzić do niewłaściwych wniosków co do stanu instalacji. Istotne jest, aby każda z tych czynności była przeprowadzana zgodnie z obowiązującymi normami i standardami, co gwarantuje bezpieczeństwo i efektywność systemu elektrycznego.

Pytanie 14

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.

A. 6,10%
B. 0,74%
C. 0,62%
D. 0,07%
Istnieje kilka kluczowych aspektów, które mogą prowadzić do błędnych wniosków przy obliczaniu względnego błędu pomiarowego. Przede wszystkim, jedna z powszechnych pułapek polega na nieprawidłowym dodaniu błędu stałego do błędu procentowego. Różne odpowiedzi wskazujące na niewłaściwe wartości mogą wynikać z nieuwzględnienia rzeczywistej wartości zmierzonej przy obliczeniach. Na przykład, korzystając z nieprawidłowego wzoru lub błędnych wartości, można dojść do mylnej konkluzji, że błąd wynosi 0,07% lub 0,74%, co jest dalekie od rzeczywistości. Kolejnym typowym błędem jest pomijanie kontekstu pomiarów, takich jak tolerancje urządzenia czy jego kalibracja, co prowadzi do nieprawidłowego oszacowania dokładności. Należy również pamiętać, że różne urządzenia pomiarowe mają swoje specyfikacje dotyczące błędów. Na przykład, jeśli nie uwzględnimy pełnych danych dotyczących błędu procentowego, nasza ocena pomiaru może być znacząco zaniżona lub zawyżona. Zrozumienie tych aspektów jest niezwykle istotne w kontekście uzyskiwania rzetelnych wyników pomiarowych i podejmowania właściwych decyzji inżynieryjnych. Bez tych umiejętności, można w łatwy sposób wprowadzić się w błąd, co może mieć poważne konsekwencje w praktycznych zastosowaniach elektrotechnicznych.

Pytanie 15

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik kolejności faz.
B. Regulator temperatury.
C. Przekaźnik czasowy.
D. Lampkę sygnalizacyjną trójfazową.
W przypadku niepoprawnych odpowiedzi, warto przyjrzeć się merytorycznym podstawom, które prowadzą do błędnych konkluzji. Czujnik kolejności faz, mimo że również znajduje zastosowanie w instalacjach elektrycznych, ma zupełnie inny cel niż lampka sygnalizacyjna. Jego zadaniem jest monitorowanie i zabezpieczanie urządzeń przed nieprawidłowym działaniem wynikającym z błędnej sekwencji zasilania. Dlatego, chociaż obydwa urządzenia są istotne dla prawidłowego funkcjonowania instalacji, to ich funkcjonalność i zastosowanie są różne. Przekaźnik czasowy z kolei służy do automatyzacji procesów załączania i wyłączania urządzeń w określonym czasie, co również nie ma związku z sygnalizowaniem stanu zasilania. Regulator temperatury, choć istotny w kontekście bezpieczeństwa urządzeń elektrycznych, nie ma żadnego związku z monitorowaniem napięcia w fazach. Typowym błędem myślowym jest mylenie funkcji różnych urządzeń w rozdzielnicach elektrycznych, co może prowadzić do niewłaściwego doboru sprzętu i w konsekwencji do awarii instalacji. Wiedza o funkcjonalności poszczególnych elementów wyposażenia rozdzielnicy jest kluczowa, aby stosować je w sposób efektywny i zgodny z obowiązującymi normami branżowymi.

Pytanie 16

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 16 mm2
B. 10 mm2
C. 25 mm2
D. 4,0 mm2
Odpowiedź 16 mm² jest poprawna, ponieważ zgodnie z normami dotyczącymi instalacji elektrycznych, zwłaszcza z normą PN-IEC 60364, przekrój przewodu ochronnego PE (przewód uziemiający) powinien być równy przekrojowi przewodów fazowych w przypadku ich równego przekroju. W tym wypadku, gdzie przewody fazowe mają przekrój 16 mm², przewód PE powinien mieć identyczny przekrój, aby zapewnić odpowiednią ochronę i minimalizować ryzyko uszkodzeń oraz zagrożeń elektrycznych. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, przewód ochronny w stanie przeciążenia jest w stanie przewodzić prąd, który jest równy prądowi fazowemu, co zapewnia skuteczne zabezpieczenie przed porażeniem prądem. Stosując się do tych zasad, można też zminimalizować straty energii oraz poprawić niezawodność całego systemu elektroenergetycznego, co jest kluczowe w projektowaniu instalacji przemysłowych oraz budynków użyteczności publicznej.

Pytanie 17

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 18

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 4,6 Ω
B. 7,7 Ω
C. 8,0 Ω
D. 2,3 Ω
Wartości takie jak 7,7 Ω, 4,6 Ω czy 8,0 Ω są zbyt wysokie, aby zapewnić skuteczną ochronę przed porażeniem prądem w obwodzie z wyłącznikiem nadprądowym C10. Przy zbyt wysokiej impedancji pętli zwarcia czas wyzwolenia wyłącznika może być niewystarczający, co prowadzi do ryzyka poważnego porażenia prądem elektrycznym w przypadku uszkodzenia izolacji. Na przykład, z wartością 4,6 Ω, przy zwarciu, prąd może być na tyle niski, że wyłącznik nie zareaguje w odpowiednim czasie, co jest niezgodne z zasadami ochrony. Należy pamiętać, że aby wyłącznik nadprądowy zadziałał poprawnie, musi zostać dostarczony odpowiedni prąd zwarcia, który zależy od impedancji pętli. W praktyce, przy projektowaniu instalacji elektrycznych, inżynierowie często popełniają błąd, nie uwzględniając wszystkich elementów obwodu, takich jak długość przewodów czy ich przekroje, co wpływa na całkowitą impedancję. Zatem dobór odpowiednich parametrów instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa oraz zgodności z normami, takimi jak PN-EN 60364, które dokładnie określają wymagania dotyczące ochrony przed skutkami porażenia prądem.

Pytanie 19

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,5 MΩ
B. 0,5 MΩ
C. 1,0 MΩ
D. 2,0 MΩ
Odpowiedź 1,0 MΩ jest poprawna, ponieważ zgodnie z normami dotyczącymi izolacji przewodów, minimalna wymagana wartość rezystancji izolacji dla instalacji na napięcie znamionowe do 500 V, w tym dla systemów FELV, powinna wynosić co najmniej 1,0 MΩ. Wysoka wartość rezystancji izolacji jest kluczowa dla zapewnienia bezpieczeństwa operacyjnego instalacji, minimalizując ryzyko porażenia prądem oraz uszkodzenia sprzętu spowodowanego przebiciem. Przykładowo, w praktyce, przeprowadzanie regularnych pomiarów rezystancji izolacji w instalacjach elektrycznych może pomóc w wczesnym wykryciu problemów, takich jak degradacja izolacji z powodu starzenia, wilgoci czy uszkodzeń mechanicznych. Wartości poniżej 1,0 MΩ mogą wskazywać na konieczność wymiany przewodów lub przeprowadzenia naprawy. Dobre praktyki branżowe zalecają, aby przed oddaniem do użytku nowej instalacji przeprowadzić pomiary rezystancji izolacji oraz regularnie je kontrolować, aby zapewnić, że nie spadnie poniżej tej wartości.

Pytanie 20

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 3 do 5
B. 2 do 3
C. 10 do 20
D. 5 do 10
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 21

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Warunki zewnętrzne, którym instalacja jest poddawana
B. Kształt budynku w przestrzeni
C. Metoda montażu instalacji
D. Liczba urządzeń zasilanych z tej instalacji
Koncepcje związane z innymi czynnikami, takimi jak liczba odbiorników zasilanych z instalacji, kształt przestrzenny budynku czy sposób montażu instalacji, nie mają decydującego wpływu na częstotliwość okresowych kontroli instalacji elektrycznej. Liczba odbiorników, mimo że wpływa na obciążenie systemu, nie przekłada się bezpośrednio na warunki, które mogą prowadzić do uszkodzeń instalacji. Zwiększona liczba urządzeń nie oznacza, że instalacja będzie bardziej narażona na awarie. Natomiast kształt budynku, chociaż może wpływać na dystrybucję energii i projekt instalacji, nie jest czynnikiem wpływającym na de facto potrzebę częstszych kontroli, ponieważ nie zmienia on warunków eksploatacyjnych, w jakich znajduje się instalacja. Z kolei sposób montażu instalacji, chociaż istotny dla bezpieczeństwa i funkcjonalności systemu, nie determinujący częstotliwości przeglądów. Często spotykanym błędem jest mylenie częstotliwości przeglądów z jakością wykonania instalacji. Dlatego tak ważne jest, aby skupić się na warunkach, w jakich instalacja pracuje, ponieważ to one ostatecznie wpływają na jej trwałość i bezpieczeństwo. Przykłady z praktyki pokazują, że instalacje narażone na trudne warunki atmosferyczne, takie jak wilgoć czy zanieczyszczenia, muszą być szczególnie regularnie kontrolowane, aby zminimalizować ryzyko awarii, co nie może być zrealizowane przez analizowanie tylko innych wymienionych czynników.

Pytanie 22

Jakie akcesoria, oprócz szczypiec, powinien mieć monter do podłączenia kabla YnKY5x120 w rozdzielnicy?

A. Nóż monterski, praskę, ściągacz izolacji
B. Ściągacz izolacji, nóż monterski, wkrętak
C. Lutownicę, zestaw wkrętaków, ściągacz izolacji
D. Nóż monterski, praskę, zestaw kluczy
Kiedy wybierasz narzędzia do podłączenia kabla YnKY5x120 do rozdzielnicy, warto chwilę się zastanowić, co jest najpotrzebniejsze. Jeśli myślałeś o ściągaczu izolacji czy lutownicy, to pamiętaj, że ściągacz, choć przydatny, nie jest najważniejszy w tej sytuacji. Jasne, że ściągacz się przydaje, gdy trzeba zedrzeć izolację z końców przewodów, ale przy kablach o dużym przekroju, jak YnKY5x120, praska jest o wiele bardziej istotna. Lutownica? Hmm, w nowoczesnych instalacjach elektrycznych, to niezbyt dobry pomysł, bo lutowanie może osłabić połączenia i sprawić, że będą mniej trwałe oraz mniej bezpieczne. Prościej mówiąc, teraz standardem są złącza mechaniczne, które zapewniają lepszą jakość połączeń na dłuższą metę. Nóż monterski, praska i komplet kluczy to są te narzędzia, które według norm branżowych naprawdę powinny znaleźć się w twoim wyposażeniu, bo solidne połączenia to podstawa. Często ludziom zdarza się polegać na narzędziach, które nie pasują do konkretnej instalacji, a to może skutkować różnymi awariami. Żeby zapewnić bezpieczeństwo i niezawodność podłączeń, monterzy muszą znać swoje materiały i narzędzia, kierując się najlepszymi praktykami oraz zaleceniami technicznymi.

Pytanie 23

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70

Ilustracja do pytania
A. zwarcie międzyprzewodowe między punktami 5 – 6.
B. uszkodzenie przewodu między punktami 2 – 3.
C. niepewne zamocowanie puszki rozgałęźnej do podłoża.
D. przerwa w przewodzie neutralnym.
Wybór odpowiedzi dotyczącej uszkodzenia przewodu między punktami 2 – 3 jest często wynikiem błędnego rozumienia pojęcia obwodu elektrycznego oraz sposobu działania łączników. Użytkownicy mogą myśleć, że każde uszkodzenie przewodu prowadzi do braku działania urządzenia, jednak w przypadku otwartego obwodu żarówka nie świeci. Z drugiej strony, niepewne zamocowanie puszki rozgałęźnej do podłoża nie ma wpływu na działanie obwodu elektrycznego, gdyż fizyczne położenie nie wpływa na przewodnictwo elektryczne, o ile połączenia są właściwie wykonane. Podobnie, przerwa w przewodzie neutralnym może wydawać się problematyczna, jednak w przypadku obwodu z żarówką i wyłącznikiem nie spowoduje stałego świecenia. Kluczowym błędem myślowym jest przypisywanie problemów z oświetleniem do uszkodzeń przewodów, gdy w rzeczywistości może to być efekt zwarcia, jak wskazuje analiza pomiarów. Takie myślenie wprowadza w błąd i może prowadzić do nieprawidłowych diagnoz oraz nieefektywnego usuwania usterek w instalacji elektrycznej. W celu uniknięcia takich pomyłek, ważne jest zrozumienie działania obwodów oraz umiejętność analizy wyników pomiarów, co powinno być częścią każdych badań nad układami elektrycznymi.

Pytanie 24

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Krzyżowy
B. Schodowy
C. Dwubiegunowy
D. Świecznikowy
Odpowiedzi takie jak 'Dwubiegunowy', 'Schodowy' czy 'Krzyżowy' nie są odpowiednie w kontekście pytania o sterowanie dwoma sekcjami źródeł światła w żyrandolu. Łącznik dwubiegunowy, choć umożliwia włączanie i wyłączanie obwodów, nie jest przeznaczony do niezależnego sterowania różnymi sekcjami tego samego źródła światła. Zazwyczaj stosuje się go do prostych obwodów, gdzie jedynie kontroluje zasilanie jednego obwodu. Łącznik schodowy jest używany głównie w instalacjach, gdzie potrzebne jest kontrolowanie jednego źródła światła z dwóch różnych miejsc, co z kolei nie ma zastosowania w przypadku żyrandola z wieloma sekcjami. Łącznik krzyżowy służy do rozszerzenia możliwości już istniejącego układu schodowego, umożliwiając sterowanie jednym źródłem światła z więcej niż dwóch miejsc, ale także nie jest odpowiedni dla żyrandola, gdzie potrzebne jest niezależne włączanie poszczególnych sekcji. Typowe błędy myślowe mogą obejmować założenie, że każdy rodzaj łącznika posiada uniwersalne zastosowanie, co nie jest zgodne z rzeczywistością instalacyjną i wymaga szczególnej uwagi przy wyborze odpowiedniego typu łącznika do konkretnej aplikacji oświetleniowej.

Pytanie 25

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 500 V
B. 750 V
C. 1 000 V
D. 250 V
Wybór napięcia testowego 250 V, 1 000 V lub 750 V na przykład podczas pomiaru rezystancji izolacji maszyn elektrycznych o napięciu znamionowym 230/400 V jest niewłaściwy i może prowadzić do mylnych wniosków. Napięcie 250 V jest zbyt niskie, aby skutecznie ocenić stan izolacji w warunkach pracy. Pomiar przy zbyt niskim napięciu może nie wykryć ukrytych defektów, takich jak mikropęknięcia lub degradacja materiału izolacyjnego, co zwiększa ryzyko awarii w przyszłości. Z kolei napięcia 1 000 V lub 750 V są zbyt wysokie dla tych zastosowań, co stwarza ryzyko uszkodzenia elementów o niższej odporności na napięcie. Takie podejście może prowadzić do nadmiernego obciążenia izolacji, co z kolei może skutkować jej zniszczeniem i w konsekwencji zwiększać niebezpieczeństwo porażenia prądem elektrycznym. W praktyce, pomiary powinny być dostosowywane do rodzaju i napięcia znamionowego urządzenia, w oparciu o standardy takie jak IEC 60364, które określają odpowiednie procedury i napięcia testowe dla różnych klas sprzętu. Właściwe dobranie napięcia testowego jest kluczowe dla zapewnienia bezpieczeństwa oraz długowieczności sprzętu.

Pytanie 26

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Waromierza
B. Reflektometru
C. Watomierza
D. Woltomierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 27

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Za pomocą kombinerek w braku napięcia
B. Uchwytem izolacyjnym bez obciążenia
C. Uchwytem izolacyjnym pod obciążeniem
D. Przy użyciu kombinerek, pod napięciem
Wymiana nożowych wkładek topikowych przy użyciu kombinerek lub innych narzędzi metalowych pod napięciem jest skrajnie niebezpieczna i niezgodna z zasadami bezpieczeństwa. W przypadku pierwszej opcji, korzystanie z kombinerek pod napięciem naraża technika na ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia metalowe, gdy są używane w obecności napięcia, stają się przewodnikami prądu, co zwiększa ryzyko kontaktu z przewodami pod napięciem. Z kolei wymiana wkładek pod obciążeniem również jest niewłaściwa, ponieważ prowadzi do potencjalnych krótkich spięć, które mogą uszkodzić instalację elektryczną oraz zagrażać życiu ludzi. Dodatkowo, próba pracy pod obciążeniem może powodować iskrzenie i inne nieprzewidywalne zjawiska, co znacznie podnosi stopień ryzyka. W kontekście wymiany wkładek topikowych, kluczowym punktem jest upewnienie się, że obwód jest wolny od obciążenia oraz że używa się odpowiednich narzędzi, jak uchwyty izolacyjne, które zapobiegają przypadkowemu kontaktowi z energią elektryczną. Takie podejście jest zgodne z praktykami bezpieczeństwa w pracy ze sprzętem elektrycznym, które są opisane w normach branżowych, jak na przykład IEC 60364, które podkreślają znaczenie pracy w bezpiecznych warunkach.

Pytanie 28

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Jednobiegunowy
B. Świecznikowy
C. Krzyżowy
D. Dwubiegunowy
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 29

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do formowania oczek na końcach żył jednodrutowych.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do montażu zacisków zakleszczających.
D. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
Kleszcze do przewodów elektrycznych mają różne zastosowania, ale nie każde narzędzie pasuje do wszystkich połączeń. Jak patrzymy na te odpowiedzi, ważne, żeby zrozumieć, że zaciskanie końcówek tulejkowych na żyłach wielodrutowych, montowanie zacisków zakleszczających czy zaprasowywanie końców przewodów wymagają różnych narzędzi i metod. Zaciskanie tulejek najczęściej robimy kleszczami, które mają szczęki przystosowane do tego, żeby dobrze uformować końcówki. Natomiast w przypadku zacisków zakleszczających potrzebne są kleszcze, które mają odpowiedni kształt, żeby wszystko pasowało idealnie i nie uszkodziło materiału. A zaprasowywanie końców przewodów w połączeniach wsuwanych to już inna bajka, bo potrzeba do tego specjalnych narzędzi, które są do tego stworzone, żeby połączenia były szczelne i stabilne. Wybierając złe narzędzia czy metody, można popełnić błędy, które później mogą prowadzić do awarii elektrycznych, więc warto trzymać się tych dobrych praktyk i norm. Zwracaj uwagę na specyfikacje narzędzi i ich zastosowania, bo to naprawdę istotne dla bezpieczeństwa i efektywności pracy z elektryką.

Pytanie 30

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,1 A
B. 10,5 A
C. 11,7 A
D. 12,2 A
Ustawienie wyłącznika silnikowego na wartość niższą od znamionowego prądu silnika, jak 10,5 A czy 11,1 A, prowadzi do nieprawidłowego działania całego układu. Tego rodzaju decyzje są często wynikiem błędnego rozumienia zasad działania wyłączników silnikowych i ich roli w systemach zabezpieczeń. Ustawienie na 10,5 A spowoduje, że silnik będzie narażony na częste wyłączenia w momentach przeciążenia, co może prowadzić do nadmiernego zużycia podzespołów, a ostatecznie do awarii. Ponadto, prąd znamionowy 11,1 A nie powinien być wykorzystywany jako maksymalna wartość dla wyłącznika. Zastosowanie tej wartości może zaszkodzić silnikowi, ponieważ nie da mu możliwości pracy w pełnym zakresie obciążenia. Wyłącznik nastawiony na 11,7 A wciąż nie zapewni wystarczającej ochrony, ponieważ jego wartość bliska prądowi znamionowemu nie uwzględnia bezpiecznego marginesu dla chwilowych obciążeń. W praktyce powinno się zawsze przewidywać krótkotrwałe wzrosty prądu, co wiąże się z potrzebą ustawienia wyłącznika na poziomie o 10% wyższym niż prąd znamionowy. Dlatego kluczowe jest zrozumienie, że zabezpieczeń nie można ustawiać na wartościach zbyt niskich, ponieważ prowadzi to do nieefektywnej pracy silnika oraz zwiększa ryzyko jego uszkodzenia.

Pytanie 31

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Rozłącznik
B. Odłącznik
C. Stycznik
D. Wyłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 32

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 2,9 kW
B. 9,6 kW
C. 6,9 kW
D. 3,9 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 33

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. YDY
B. OMY
C. YAKY
D. LY
Oznaczenia LY, YDY oraz YAKY, mimo że są powszechnie stosowane w branży elektroinstalacyjnej, nie są odpowiednie do zastosowań zasilania odbiorników przenośnych. Oznaczenie LY odnosi się do przewodów o niskiej elastyczności, przeznaczonych głównie do instalacji stałych, co czyni je nieodpowiednimi do aplikacji, w których wymagana jest mobilność. Takie przewody mogą być podatne na uszkodzenia mechaniczne i nie są dostosowane do dynamicznych warunków pracy. Oznaczenie YDY odnosi się do przewodów instalacyjnych, które również nie zapewniają wystarczającej elastyczności i odporności na mechaniczne uszkodzenia w warunkach mobilnych. Z kolei YAKY to przewód, który może być stosowany w instalacjach stałych, często wykorzystywany w budynkach, ale nie spełnia standardów dla urządzeń przenośnych. Wybór niewłaściwego przewodu do zasilania przenośnych odbiorników elektrycznych może prowadzić do ryzykownych sytuacji, takich jak zwarcia, uszkodzenia sprzętu, a nawet pożary. Dlatego kluczowe jest stosowanie przewodów oznaczonych odpowiednio do specyfiki aplikacji, co jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności energetycznej.

Pytanie 34

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 50 V
B. AC 500 V i DC 10 V
C. DC 500 V i AC 100 V
D. DC 500 V i AC 50 V
Podstawowym błędem w rozważanych opcjach jest nieodpowiednie dopasowanie zakresów pomiarowych do specyfiki zasilania w systemie sterowania bramą garażową. W przypadku, gdy silniki pracują na napięciu stałym 24 V, zakres DC powinien być wystarczająco niski, aby precyzyjnie mierzyć to napięcie. Odpowiedzi sugerujące zakres DC 10 V są niewystarczające, ponieważ nie pozwolą na dokładne pomiary w obrębie 24 V. Z kolei wybór zakresu AC 50 V w innych odpowiedziach również nie jest odpowiedni, biorąc pod uwagę, że zasilanie układu sterowania wynosi 230 V. Bezpieczne pomiary napięcia zmiennego w takich warunkach wymagają zakresu co najmniej 500 V. Użytkownicy, którzy wybierają te nieodpowiednie zakresy mogą być narażeni na ryzyko pomiaru, które może skutkować uszkodzeniem sprzętu lub błędnymi diagnozami. Ważne jest, aby technicy pamiętali o tym, że pomiary napięcia powinny być dokonywane w sposób zgodny z normami elektrycznymi i dobrymi praktykami, aby zapewnić zarówno dokładność wyników, jak i bezpieczeństwo pracy. Właściwy dobór zakresów pomiarowych jest kluczowy i nie można go zbagatelizować, gdyż ma to wpływ na efektywność konserwacji i bezpieczeństwo operacji elektrycznych.

Pytanie 35

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
B. Naciskając przycisk TEST na wyłączonym wyłączniku
C. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
D. Naciskając przycisk TEST na załączonym wyłączniku
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 36

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. średnią napięcia
B. skuteczną napięcia
C. znamionową napięcia
D. chwilową napięcia
Wybór odpowiedzi dotyczącej skutecznej, chwilowej lub znamionowej wartości napięcia w kontekście tego pytania wskazuje na niepełne zrozumienie zasad działania woltomierzy magnetoelektrycznych oraz różnic pomiędzy różnymi typami pomiarów napięcia. Skuteczna wartość napięcia, często używana w analizach obwodów prądu przemiennego, odnosi się do wartości rms (root mean square), która jest miarą dostarczanej energii. Mimo że pomiar skuteczny jest istotny w kontekście obliczeń związanych z mocą, woltomierz magnetoelektryczny w tym przypadku nie wskazuje tej wartości w przypadku napięcia sinusoidalnego ze składową stałą. Z kolei chwilowa wartość napięcia odnosi się do pomiaru w danym momencie czasu, co nie jest praktycznym zastosowaniem w przypadku długoterminowego pomiaru napięcia, a ponadto nie uwzględnia składowej stałej. Odpowiedź dotycząca znamionowej wartości napięcia także nie jest właściwa, gdyż wartość znamionowa jest określona dla określonych warunków pracy urządzenia i służy do oceny jego specyfikacji, co również nie jest tożsame z pomiarem rzeczywistym. W efekcie, wybierając nieprawidłowe odpowiedzi, można nieświadomie wpłynąć na skuteczność i bezpieczeństwo aplikacji elektrycznych, co jest sprzeczne z dobrą praktyką inżynieryjną oraz standardami branżowymi.

Pytanie 37

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193B25
B. S191B25
C. S193C25
D. S191C25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 38

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 5-10 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 10-20 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 39

Aby zmierzyć częstotliwość, należy użyć

A. watomierza
B. częstościomierza
C. waromierza
D. fazomierza
Wybór waromierza, watomierza czy fazomierza jako narzędzi do pomiaru częstotliwości jest nieodpowiedni z kilku powodów. Waromierz, który jest używany do pomiaru napięcia w obwodach elektrycznych, nie jest przeznaczony do analizy częstotliwości sygnałów. Jego zastosowanie ogranicza się do oceny wartości napięcia, co czyni go niewłaściwym narzędziem w kontekście pomiarów częstotliwości. Z kolei watomierz, który mierzy moc elektryczną, również nie jest przystosowany do tego typu analizy, ponieważ koncentruje się na wytwarzanej energii, a nie na jej częstotliwości. Może wystąpić mylne przekonanie, że pomiar mocy może dostarczyć informacji o częstotliwości, co jest jednak nieprawdziwe. Fazomierz, który określa różnicę fazową między dwoma sygnałami, również nie dostarcza bezpośrednich informacji o ich częstotliwości. W praktyce, użycie tych urządzeń w kontekście pomiaru częstotliwości może prowadzić do błędnych wniosków oraz nieefektywnego diagnozowania problemów w układach elektronicznych. Kluczowe jest, aby wybierać narzędzia odpowiednie do specyficznych zastosowań, zgodnie z normami i zaleceniami branżowymi, aby uniknąć błędów w analizie i interpretacji wyników.

Pytanie 40

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.

A. C.
B. A.
C. B.
D. D.
Odpowiedź C jest prawidłowa, ponieważ odnosi się do kluczowego parametru wyłącznika silnikowego, jakim jest maksymalna moc silnika, która wynosi 1,5 kW. Wyłączniki silnikowe są stosowane w celu ochrony silników przed przeciążeniem oraz zwarciem, a dokładna znajomość ich parametrów jest niezbędna do zapewnienia bezpieczeństwa i efektywności pracy urządzeń elektrycznych. Wyłączniki te są projektowane zgodnie z normami, takimi jak IEC 60947-4-1, które definiują wymagania dotyczące budowy oraz testowania tych urządzeń. W praktyce, wybór odpowiedniego wyłącznika silnikowego jest kluczowy dla zapewnienia optymalnej ochrony silnika, co pozwala uniknąć kosztownych awarii oraz przestojów w produkcji. W przypadku silników o mocy przekraczającej 1,5 kW, konieczne jest zastosowanie innego wyłącznika, który dostosowany jest do wyższych wartości, co podkreśla znaczenie znajomości specyfikacji technicznych w pracy z instalacjami elektrycznymi.