Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 28 kwietnia 2025 08:21
  • Data zakończenia: 28 kwietnia 2025 08:35

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Do obserwacji stanu urządzeń w sieci wykorzystywane jest oprogramowanie operujące na podstawie protokołu

A. STP (SpanningTreeProtocol)
B. SMTP (Simple Mail Transport Protocol)
C. SNMP (Simple Network Management Protocol)
D. FTP (File Transfer Protocol)
FTP (File Transfer Protocol) to protokół używany do przesyłania plików pomiędzy komputerami w sieci. Jego podstawowym celem jest umożliwienie użytkownikom przesyłania i pobierania plików, a nie zarządzanie stanem urządzeń sieciowych. Stosowanie FTP do monitorowania urządzeń byłoby nieefektywne, ponieważ nie oferuje on funkcji związanych z zbieraniem danych o stanie sprzętu czy jego wydajności. STP (Spanning Tree Protocol) jest protokołem używanym do zapobiegania pętlom w sieciach Ethernet, co jest zupełnie innym zagadnieniem niż monitorowanie stanu urządzeń. STP dba o to, aby w sieci nie powstały cykle, a nie zbiera dane o urządzeniach. SMTP (Simple Mail Transport Protocol) to protokół odpowiedzialny za wysyłanie wiadomości e-mail, co również nie ma związku z monitorowaniem stanu urządzeń. Te odpowiedzi mogą prowadzić do nieporozumień, ponieważ w kontekście zarządzania siecią istotne jest zrozumienie, które protokoły są przeznaczone do określonych zadań. Typowe błędy myślowe obejmują mylenie protokołów komunikacyjnych z protokołami zarządzania, co prowadzi do nieprawidłowych wniosków i wyborów. W praktyce, znajomość odpowiednich protokołów jest kluczowa dla efektywnego zarządzania infrastrukturą sieciową.

Pytanie 2

Aby poprawić bezpieczeństwo zasobów sieciowych, administrator sieci komputerowej w firmie został zobowiązany do podziału istniejącej lokalnej sieci komputerowej na 16 podsieci. Pierwotna sieć miała adres IP 192.168.20.0 z maską 255.255.255.0. Jaką maskę sieci powinien zastosować administrator?

A. 255.255.255.224
B. 255.255.255.248
C. 255.255.255.192
D. 255.255.255.240
Wybór nieprawidłowych masek, takich jak 255.255.255.192, 255.255.255.224 czy 255.255.255.248, wynika z braku zrozumienia zasad podziału sieci i koncepcji maski podsieci. Maska 255.255.255.192 (CIDR /26) dzieli oryginalną sieć na 4 podsieci, co nie spełnia wymogu stworzenia 16 podsieci, a to prowadzi do nieefektywności w wykorzystaniu adresów IP. Z kolei maska 255.255.255.224 (CIDR /27) tworzy 8 podsieci, co również jest niewystarczające. Maska 255.255.255.248 (CIDR /29) generuje 32 podsieci, ale każda z nich ma jedynie 6 dostępnych adresów dla hostów, co może być zbyt ograniczające dla większości zastosowań. Typowe błędy związane z wyborem maski wynikają z niepełnego zrozumienia, jak bity w masce wpływają na liczbę dostępnych podsieci i hostów. Kluczowe w tym kontekście jest właściwe obliczenie liczby potrzebnych podsieci oraz hostów, aby wybrać odpowiednią maskę sieci. Zrozumienie tych zasad jest fundamentalne dla efektywnej administracji i projektowania sieci, co jest zgodne z zasadami inżynierii sieci oraz standardami branżowymi.

Pytanie 3

W jakich jednostkach opisuje się przesłuch zbliżny NEXT?

A. w decybelach
B. w dżulach
C. w amperach
D. w omach
Jednostki omy, ampery oraz dżule nie są właściwe do wyrażania przesłuchu zbliżnego NEXT. Omy to jednostka oporu elektrycznego, która odnosi się do tego, jak trudno jest przepuścić prąd przez materiał. W kontekście crosstalk, omy nie mają zastosowania, ponieważ nie odnoszą się bezpośrednio do zakłóceń sygnału, lecz do oporu przewodnika. Z kolei ampery to jednostka miary natężenia prądu, która reprezentuje ilość ładunku elektrycznego przepływającego przez przewodnik w jednostce czasu. Oczywiście, natężenie prądu ma znaczenie w kontekście ogólnej analizy sieci, ale nie jest miarą zakłóceń, które dotyczą interakcji pomiędzy różnymi sygnałami w przewodach. Dżule są jednostką energii, co jest całkowicie innym zagadnieniem, ponieważ koncentrują się na pracy wykonanej przez dany prąd elektryczny w określonym czasie. Pomieszanie tych pojęć prowadzi do nieprawidłowych wniosków w zakresie analizy sieci. Każda z tych jednostek pełni swoją rolę w różnych aspektach elektrotechniki, jednak nie są one odpowiednie do oceny przesłuchu zbliżnego, który wymaga innej perspektywy pomiarowej. Dlatego kluczowe jest zrozumienie specyfiki zakłóceń sygnału oraz ich wpływu na funkcjonowanie systemów komunikacyjnych, aby uniknąć błędów w analizie i projektowaniu sieci.

Pytanie 4

Jakie oznaczenie na schematach sieci LAN przypisuje się punktom rozdzielczym dystrybucyjnym znajdującym się na różnych kondygnacjach budynku według normy PN-EN 50173?

A. CD (Campus Distribution)
B. MDF (Main Distribution Frame)
C. BD (BuildingDistributor)
D. FD (Floor Distribution)
Odpowiedzi BD (Building Distributor), CD (Campus Distribution) oraz MDF (Main Distribution Frame) są nieprawidłowe w kontekście oznaczeń punktów rozdzielczych dystrybucyjnych na poszczególnych piętrach budynku. BD odnosi się do głównego punktu dystrybucyjnego w obrębie całego budynku, który obsługuje kilka pięter lub stref, ale nie jest precyzyjnie związany z lokalizacją na każdym piętrze. CD dotyczy z kolei bardziej rozległych instalacji, takich jak kampusy uniwersyteckie, gdzie sieci rozciągają się na wiele budynków, a ich struktura jest zorganizowana na poziomie kampusu, co nie odpowiada lokalnym potrzebom pięter. MDF to główny punkt rozdzielczy, który zazwyczaj znajduje się w pomieszczeniach technicznych lub serwerowniach, a jego rola polega na agregacji sygnałów z różnych FD i BD, a nie na ich dystrybucji na poziomie piętra. Te błędne odpowiedzi mogą wynikać z mylnego pojmowania struktury sieci oraz funkcji poszczególnych punktów dystrybucyjnych. Właściwe rozumienie klasyfikacji i funkcji w sieciach LAN jest kluczowe do efektywnego projektowania oraz zarządzania infrastrukturą, co z kolei wpływa na wydajność oraz niezawodność całego systemu. Zrozumienie tych różnic jest niezbędne dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 5

W dokumentacji technicznej procesora Intel Xeon Processor E3-1220, producent przedstawia następujące dane: # rdzeni: 4 # wątków: 4 Częstotliwość zegara: 3.1 GHz Maksymalna częstotliwość Turbo: 3.4 GHz Intel Smart Cache: 8 MB DMI: 5 GT/s Zestaw instrukcji: 64 bit Rozszerzenia zestawu instrukcji: SSE4.1/4.2, AVX Opcje wbudowane: Nie Litografia: 32 nm Maksymalne TDP: 80 W. Co to oznacza dla Menedżera zadań systemu Windows, jeśli chodzi o historię użycia?

# of Cores:4
# of Threads:4
Clock Speed:3.1 GHz
Max Turbo Frequency:3.4 GHz
Intel® Smart Cache:8 MB
DMI:5 GT/s
Instruction Set:64-bit
Instruction Set Extensions:SSE4.1/4.2, AVX
Embedded Options Available:No
Lithography:32 nm
Max TDP:80 W

A. 16 rdzeni
B. 8 rdzeni
C. 4 rdzenie
D. 2 rdzenie
Rozważając odpowiedź odnoszącą się do 8 procesorów można błędnie zakładać że każdy rdzeń wspiera dwa wątki co jest charakterystyczne dla technologii Hyper-Threading Intela. Jednakże procesor Intel Xeon E3-1220 nie wykorzystuje tej technologii co oznacza że każdy z czterech rdzeni obsługuje jedynie pojedynczy wątek. Jest to istotne rozróżnienie ponieważ procesory z Hyper-Threading pokazują w Menedżerze zadań większą liczbę logicznych procesorów niż fizycznych rdzeni co stanowić może źródło nieporozumień. Odpowiedź wskazująca na 2 procesory ignoruje specyfikację procesora która wyraźnie określa liczbę rdzeni oraz wątków podkreślając że każdy rdzeń działa niezależnie co jest podstawą do zrozumienia architektury wielordzeniowej. Z kolei wybór 16 procesorów sugeruje fundamentalne niezrozumienie zarówno specyfikacji konkretnego modelu procesora jak i ogólnych zasad działania wielowątkowości co wymaga dogłębniejszego przestudiowania technologii CPU. Typowe błędy myślenia w tym kontekście wynikają z założenia że liczba wątków zawsze odpowiada liczbie logicznych procesorów w systemie co może prowadzić do niepoprawnych interpretacji interfejsów takich jak Menedżer zadań. Kluczowe jest rozróżnienie technologii związanych z wielowątkowością oraz zrozumienie wpływu jakie mają one na raportowanie zużycia zasobów przez system operacyjny co pozwala na bardziej trafne wykorzystanie zasobów obliczeniowych w praktycznych zastosowaniach informatycznych.

Pytanie 6

Która edycja systemu operacyjnego Windows Server 2008 charakteryzuje się najuboższym interfejsem graficznym?

A. Enterprise
B. Datacenter
C. Server Core
D. Standard Edition
Server Core to minimalna wersja systemu operacyjnego Windows Server 2008, która oferuje znacznie ograniczony interfejs graficzny w porównaniu do innych edycji, takich jak Standard Edition, Enterprise czy Datacenter. Została zaprojektowana z myślą o maksymalnej wydajności i bezpieczeństwie, eliminując zbędne komponenty graficzne i funkcje interfejsu użytkownika, co pozwala na zmniejszenie powierzchni ataku oraz minimalizację zużycia zasobów systemowych. Dzięki temu Administratorzy mogą skoncentrować się na zarządzaniu serwerem za pomocą poleceń PowerShell oraz zdalnych narzędzi administracyjnych, co jest zgodne z nowoczesnymi praktykami w zakresie zarządzania serwerami. Przykładowe zastosowanie Server Core znajduje się w kontekście serwerów webowych, baz danych czy aplikacji wysokodostępnych, gdzie maksymalna stabilność i wydajność są kluczowe. Dobrą praktyką jest również stosowanie tego trybu w środowiskach wirtualnych, gdzie ograniczenie zasobów jest istotne dla efektywności operacyjnej.

Pytanie 7

Który z poniższych adresów należy do klasy B?

A. 192.168.0.1
B. 10.0.0.1
C. 224.0.0.1
D. 191.168.0.1
Adres 10.0.0.1 należy do klasy A, która obejmuje zakres adresów od 0.0.0.0 do 127.255.255.255. Klasa A jest wykorzystywana głównie przez bardzo duże organizacje, które potrzebują znacznej liczby adresów IP. Z kolei adres 192.168.0.1 jest przykładem adresu klasy C, który jest szeroko stosowany w sieciach lokalnych (LAN) i obejmuje zakres od 192.0.0.0 do 223.255.255.255. Często stosuje się go w domowych routerach oraz mniejszych sieciach, gdzie nie jest wymagane wiele adresów IP. Adres 224.0.0.1 jest adresem multicastowym, który znajduje się w zakresie klasy D (od 224.0.0.0 do 239.255.255.255). Adresy multicastowe są używane do przesyłania danych do wielu odbiorców jednocześnie, co jest przydatne w aplikacjach takich jak strumieniowanie wideo czy konferencje online. Typowym błędem przy wyborze klasy adresu IP jest mylenie zakresów i ich zastosowań, co może prowadzić do problemów z konfiguracją sieci. Aby uniknąć takich nieporozumień, ważne jest, aby dobrze zrozumieć zasady dotyczące klasyfikacji adresów IP oraz ich praktyczne zastosowania w różnych typach sieci.

Pytanie 8

Jakiego rodzaju złącze powinna mieć płyta główna, aby umożliwić zainstalowanie karty graficznej przedstawionej na rysunku?

Ilustracja do pytania
A. PCIe x1
B. PCIe x16
C. AGP
D. PCI
AGP, czyli Accelerated Graphics Port, było spoko złącze dla kart graficznych w latach 90-tych i na początku 2000-nych. Ale z powodu niskiej przepustowości, szybko ustąpiło miejsca PCIe. Dzisiaj AGP już nie występuje w nowych płytach głównych ani kartach graficznych. PCI, czyli Peripheral Component Interconnect, to stary standard, który używano do różnych urządzeń peryferyjnych. Chociaż był użyteczny, to nie dawał wystarczającej przepustowości dla nowoczesnych kart graficznych, dlatego przesiedliśmy się na PCIe. PCIe x1 to mniejsze złącze, które ma mniej pinów i niższą przepustowość, głównie do kart sieciowych czy dźwiękowych. Choć jest częścią tej samej rodziny co x16, to nie ma szans, żeby się sprawdziło w kartach graficznych, bo one potrzebują znacznie szerszego pasma. Złe wyboru złącza często kończą się problemami z kompatybilnością i wydajnością, co zdarza się nowym użytkownikom. W dzisiejszych czasach, przy obecnych wymaganiach graficznych, PCIe x16 jest jedynym sensownym wyborem zapewniającym dobrą wydajność i zgodność z nowoczesnym oprogramowaniem.

Pytanie 9

Brak danych dotyczących parzystości liczby lub znaku rezultatu operacji w ALU może sugerować usterki w funkcjonowaniu

A. pamięci cache
B. wskaźnika stosu
C. tablicy rozkazów
D. rejestru flagowego
Tablica rozkazów jest odpowiedzialna za przechowywanie instrukcji, które procesor ma wykonać, ale nie ma bezpośredniego związku z informacjami o parzystości lub znaku. Jej rola polega na interpretacji i dekodowaniu rozkazów, co wpływa na przebieg całego procesu obliczeniowego, jednak nie kontroluje wyników operacji arytmetycznych. Pamięć cache natomiast służy do przechowywania danych i instrukcji, które są często wykorzystywane, co przyspiesza dostęp do nich, ale również nie ma wpływu na flagi. Wskaźnik stosu jest używany do zarządzania stosami funkcji, przechowując adresy powrotu i lokalne zmienne, co w żadnym wypadku nie ma związku z obliczeniami wyników operacji. Typowym błędem w tym kontekście jest mylenie komponentów architektury komputera oraz ich funkcji. Brak znajomości roli rejestru flagowego może prowadzić do błędnych wniosków, ponieważ nie docenia się znaczenia stanu operacji, które wpływa na dalsze działanie programu. Zrozumienie, jak różne komponenty współdziałają, jest kluczowe dla programistów i inżynierów zajmujących się projektowaniem systemów komputerowych.

Pytanie 10

Wskaż rodzaj konserwacji, który powinien być przeprowadzony, gdy na wydruku z drukarki atramentowej pojawiają się smugi, kolory są nieprawidłowe lub brakuje niektórych barw.

A. Unowocześnienie oprogramowania drukarki
B. Czyszczenie głowicy drukującej
C. Kalibracja przesuwu papieru
D. Zamiana taśmy barwiącej
Wymiana taśmy barwiącej jest techniką konserwacyjną właściwą dla drukarek igłowych lub termicznych, gdzie taśma jest kluczowym elementem odpowiedzialnym za przenoszenie atramentu na papier. Jednak w przypadku drukarek atramentowych, taśmy barwiące nie są stosowane, co sprawia, że ta odpowiedź jest nieadekwatna do problemu opisanego w pytaniu. Kalibrowanie przesuwu papieru dotyczy głównie problemów z podawaniem papieru lub niewłaściwym ustawieniem druku, a nie jakości samego wydruku, co czyni to podejście nieefektywnym w kontekście smużenia lub zniekształceń kolorów. Aktualizacja oprogramowania drukarki, choć może wprowadzać nowe funkcje lub poprawiać wydajność, nie rozwiązuje bezpośrednio problemów związanych z zatykaną głowicą lub jakością atramentu. Dlatego stosowanie tych podejść w sytuacji, gdy głównym problemem jest zanieczyszczenie głowicy, prowadzi do nieefektywnej konserwacji oraz marnowania zasobów. Ważne jest, aby w takich przypadkach korzystać z praktyk zgodnych z zaleceniami producentów, koncentrując się na czyszczeniu i konserwacji głowic drukujących, co jest kluczowe dla uzyskania wysokiej jakości wydruków oraz długotrwałego użytkowania drukarki.

Pytanie 11

W systemie Linux program, który odpowiada aplikacji chkdsk z Windows, to

A. fsck
B. synaptic
C. totem
D. icacls
Wybór programu icacls jako odpowiedzi na pytanie dotyczące odpowiednika chkdsk w systemie Linux jest niepoprawny, ponieważ icacls jest narzędziem służącym do zarządzania uprawnieniami dostępu do plików i folderów w systemie Windows. Nie ma ono żadnych funkcji związanych z kontrolą integracji systemu plików czy naprawą błędów, co jest kluczowym zadaniem narzędzi takich jak chkdsk lub fsck. W praktyce często myli się funkcje związane z zarządzaniem plikami i systemami plików, co prowadzi do błędnych wniosków. Totem to z kolei odtwarzacz multimedialny, a synaptic jest menedżerem pakietów dla systemów opartych na Debianie, który pozwala na instalację oprogramowania, ale również nie ma związku z naprawą systemu plików. Zrozumienie podstawowych funkcji tych narzędzi jest kluczowe dla prawidłowego zarządzania systemem operacyjnym. Typowym błędem myślowym jest utożsamianie narzędzi administracyjnych z narzędziami do zarządzania danymi, co prowadzi do nieporozumień i nieprawidłowego wykorzystania zasobów systemowych. Właściwe podejście wymaga znajomości specyfiki każdego z narzędzi oraz ich zastosowania w kontekście systemów operacyjnych.

Pytanie 12

Narzędzie diagnostyczne tracert służy do ustalania

Ikona CMDWiersz polecenia
_ X
C:\>tracert wp.pl
Trasa śledzenia do wp.pl [212.77.100.101]
przewyższa maksymalną liczbę przeskoków 30
1    2 ms    3 ms    2 ms  192.168.0.1
2    8 ms    8 ms   10 ms  10.135.96.1
3    *       *       *     Upłynął limit czasu żądania.
4    9 ms    7 ms   10 ms  upc-task-gw.task.gda.pl [153.19.0.5]
5   10 ms   14 ms   10 ms  task-tr-wp.pl [153.19.102.1]
6   91 ms    *      10 ms  zeu.ptr02.sdm.wp-sa.pl [212.77.105.29]
7   11 ms   10 ms   11 ms  www.wp.pl [212.77.100.101]

Śledzenie zakończone.

C:\>

A. wydajności połączenia w protokole IPX/SPX
B. możliwości analizy struktury systemu DNS
C. ścieżki do miejsca docelowego
D. poprawności ustawień protokołu TCP/IP
Polecenie tracert nie służy do diagnozowania infrastruktury systemu DNS. System DNS (Domain Name System) jest odpowiedzialny za tłumaczenie nazw domenowych na adresy IP, ale tracert koncentruje się na śledzeniu ścieżki pakietów IP przez różne węzły sieciowe. Próba użycia tracert w celu diagnozy DNS może prowadzić do błędnych wniosków, ponieważ nie bada on ani poprawności, ani wydajności serwerów DNS. Tracert nie diagnozuje również sprawności połączenia przy użyciu protokołu IPX/SPX, który nie jest nawet kompatybilny z analizowanym protokołem TCP/IP. IPX/SPX był używany w sieciach Novell NetWare i jego funkcjonalność różni się od TCP/IP. Polecenie to także nie służy do weryfikacji poprawności konfiguracji protokołu TCP/IP. Narzędzia takie jak ping czy ipconfig są bardziej odpowiednie do sprawdzania konfiguracji sieci IP. Tracert dostarcza informacji o ścieżce pakietu w sieci, co jest kluczowe dla rozwiązywania problemów z routingiem i identyfikacji miejsc, gdzie połączenie może być ograniczone, ale nie bada konfiguracji TCP/IP jako takiej. Pomylenie funkcji tego narzędzia z innymi można przypisać do zbyt ogólnego podejścia do narzędzi sieciowych i braku zrozumienia ich specyficznych zastosowań. Zrozumienie, kiedy i jak stosować każde narzędzie, jest kluczowe dla skutecznego zarządzania siecią komputerową.

Pytanie 13

Który z systemów operacyjnych przeznaczonych do pracy w sieci jest dostępny na podstawie licencji GNU?

A. Unix
B. Windows Server 2012
C. Linux
D. OS X Server
Jak pewnie wiesz, Linux to taki system operacyjny, który jest rozwijany na zasadzie licencji GNU GPL. To dość ważne, bo każdy może go używać, zmieniać i dzielić się nim. Dlatego właśnie Linux zyskał ogromną popularność, szczególnie na serwerach i wśród programistów. Na przykład, wiele stron internetowych działa na serwerach z Linuxem, bo potrafią obsłużyć naprawdę spore ilości danych i użytkowników. Co ciekawe, Linux jest też podstawą dla wielu rozwiązań w chmurze i systemów embedded, co pokazuje, jak jest elastyczny. W branży korzystanie z Linuxa na serwerach to właściwie standard, bo zapewnia stabilność i bezpieczeństwo, a na dodatek mamy wsparcie od społeczności open source. Wiele dystrybucji, takich jak Ubuntu czy CentOS, jest bardzo popularnych w firmach, więc można powiedzieć, że Linux to istotny element w infrastruktuze IT.

Pytanie 14

W systemie Linux plik posiada uprawnienia ustawione na 765. Grupa przypisana do tego pliku ma możliwość

A. odczytu i wykonania
B. odczytu i zapisu
C. tylko odczytu
D. odczytu, zapisu oraz wykonania
Odpowiedzi, które sugerują, że grupa może odczytać plik, wykonać go lub tylko odczytać, są błędne z kilku powodów. Zrozumienie systemu uprawnień w Linuxie jest kluczowe dla zarządzania bezpieczeństwem i dostępem do danych. System uprawnień oparty jest na liczbach od 0 do 7, gdzie każda cyfra przedstawia zestaw uprawnień dla danej grupy użytkowników. Na przykład, liczba 6 oznacza, że użytkownik z danej grupy ma uprawnienia do odczytu i zapisu, ale nie do wykonywania. W praktyce oznacza to, że grupowy użytkownik może edytować plik, a nie uruchamiać go jako programu. Często pojawia się mylne przekonanie, że przypisanie uprawnień wykonania do grupy użytkowników jest standardową praktyką, co może prowadzić do naruszeń bezpieczeństwa danych. Kolejnym typowym błędem jest zakładanie, że pliki, które mają ustawione uprawnienia 7xx, umożliwiają wykonanie ich przez wszystkich użytkowników. W rzeczywistości, w omawianym przypadku, tylko właściciel ma prawo wykonać plik. Zrozumienie tych podstawowych zasad pozwala na efektywniejsze zarządzanie uprawnieniami i zwiększa bezpieczeństwo użytkowników oraz ich danych w systemie. Praktyczne zastosowanie tej wiedzy przyczynia się do lepszego zabezpieczenia systemów przed nieautoryzowanym dostępem.

Pytanie 15

Wskaź na zakres adresów IP klasy A, który jest przeznaczony do prywatnej adresacji w sieciach komputerowych?

A. 172.16.0.0 - 172.31.255.255
B. 192.168.0.0 - 192.168.255.255
C. 127.0.0.0 - 127.255.255.255
D. 10.0.0.0 - 10.255.255.255
Zakresy adresów IP wskazane w odpowiedziach, które nie są prawidłowe, nie powinny być mylone z adresami prywatnymi. Na przykład, adres 192.168.0.0 do 192.168.255.255 to zakres klasy C zarezerwowany dla adresacji prywatnej, co może prowadzić do błędnych założeń na temat klasyfikacji adresów. Również adres 127.0.0.0 do 127.255.255.255 to pętla zwrotna, która służy do testowania lokalnych połączeń w systemie operacyjnym i nie ma zastosowania w typowej adresacji sieciowej, co wyklucza ten zakres z możliwości użycia w lokalnych sieciach. Adresy z klasy B, takie jak 172.16.0.0 do 172.31.255.255, są również przypisane do prywatnej adresacji, ale obejmują inny przedział adresowy. Typowe błędy myślowe, które mogą prowadzić do wyboru niewłaściwych odpowiedzi, to niewłaściwe zrozumienie, które klasy adresowe są przypisane do prywatnej adresacji. Warto zwrócić uwagę na to, że podczas projektowania sieci, kluczowe jest zrozumienie różnic między adresami prywatnymi a publicznymi oraz ich odpowiednim zastosowaniem w architekturze sieciowej. Użycie niewłaściwych zakresów może prowadzić do konfliktów adresowych oraz problemów z łącznością w przyszłości.

Pytanie 16

W dokumentacji przedstawiono typ systemu plików

„Zaawansowany system plików zapewniający wydajność, bezpieczeństwo, niezawodność i zaawansowane funkcje niespotykane w żadnej wersji systemu FAT. Na przykład dzięki standardowemu rejestrowaniu transakcji i technikom odzyskiwania danych system gwarantuje spójność woluminów. W przypadku awarii system wykorzystuje plik dziennika i informacje kontrolne do przywrócenia spójności systemu plików."

A. FAT32
B. FAT
C. NTFS
D. EXT4
Systemy plików takie jak FAT FAT32 i EXT4 mają swoje zastosowania ale różnią się znacząco od NTFS pod względem funkcjonalności i możliwości. FAT i FAT32 są starszymi technologiami które były powszechnie używane w przeszłości. Charakteryzują się prostotą i szeroką kompatybilnością z różnymi systemami operacyjnymi jednak brakuje im wielu zaawansowanych funkcji obecnych w NTFS. Na przykład FAT32 nie obsługuje uprawnień dostępu do plików ani rejestrowania transakcji co czyni go mniej bezpiecznym w przypadku awarii systemu. EXT4 z kolei jest nowoczesnym systemem plików używanym głównie w systemach Linux. Oferuje on wiele zaawansowanych funkcji takich jak duża skalowalność i wydajność jednak w środowiskach opartych na Windows nie jest natywnym wyborem. EXT4 podobnie jak NTFS obsługuje dziennikowanie co poprawia spójność danych po awarii ale różni się strukturą i sposobem zarządzania metadanymi. Decyzja o wyborze systemu plików powinna być oparta na specyficznych potrzebach i środowisku w jakim będzie używany. NTFS ze względu na swoje zaawansowane funkcje jest standardowym wyborem dla systemów Windows zapewniając wysoką ochronę danych i efektywność zarządzania czym się wyróżnia na tle innych wymienionych opcji. Zrozumienie tych różnic jest kluczowe dla prawidłowego zastosowania technologii w praktycznych scenariuszach IT

Pytanie 17

Symbol umieszczony na obudowie komputera stacjonarnego informuje o zagrożeniu przed

Ilustracja do pytania
A. promieniowaniem niejonizującym
B. możliwym urazem mechanicznym
C. możliwym zagrożeniem radiacyjnym
D. porażeniem prądem elektrycznym
Symbol przedstawiony na obudowie komputera to powszechnie stosowany znak ostrzegawczy przed porażeniem prądem elektrycznym Składa się z żółtego trójkąta z czarną obwódką oraz czarną błyskawicą w środku Ten symbol informuje użytkownika o potencjalnym ryzyku związanym z kontaktem z nieosłoniętymi przewodami lub urządzeniami elektrycznymi mogącymi znajdować się pod niebezpiecznym napięciem Znak ten jest szeroko stosowany w różnych gałęziach przemysłu gdzie istnieje możliwość porażenia prądem szczególnie w miejscach o dużym natężeniu energii elektrycznej Przestrzeganie oznaczeń jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy oraz w domach Zgodnie z międzynarodowymi normami i standardami takimi jak ISO 7010 czy ANSI Z535.4 stosowanie tego rodzaju symboli jest wymagane do informowania o zagrożeniach elektrycznych Praktyczne zastosowanie znaku obejmuje nie tylko sprzęt komputerowy ale także rozdzielnie elektryczne oraz inne urządzenia przemysłowe gdzie występuje ryzyko kontaktu z prądem Elektryczność mimo swoich korzyści stanowi poważne zagrożenie dla zdrowia i życia dlatego znajomość i rozumienie takich symboli jest kluczowe w codziennym użytkowaniu urządzeń elektrycznych i elektronicznych

Pytanie 18

Protokołem kontrolnym w obrębie rodziny TCP/IP, który ma na celu między innymi identyfikowanie usterek w urządzeniach sieciowych, jest

A. ICMP
B. FDDI
C. IMAP
D. SMTP
FDDI, czyli Fiber Distributed Data Interface, to standard komunikacji oparty na światłowodach, który został zaprojektowany głównie dla sieci lokalnych o dużej przepustowości. Choć FDDI ma swoje zastosowanie w tworzeniu wydajnych sieci, nie jest protokołem kontrolnym i nie służy do wykrywania awarii urządzeń. Z drugiej strony, IMAP (Internet Message Access Protocol) oraz SMTP (Simple Mail Transfer Protocol) to protokoły związane z przesyłaniem i zarządzaniem wiadomościami e-mail. IMAP umożliwia dostęp do wiadomości przechowywanych na serwerze, a SMTP jest odpowiedzialny za wysyłanie wiadomości e-mail. Żaden z tych protokołów nie ma funkcji związanych z monitorowaniem stanu sieci czy wykrywaniem awarii, co jest kluczowe dla ICMP. Typowym błędem myślowym jest mylenie protokołów używanych w różnych kontekstach - w tym przypadku protokoły komunikacyjne z protokołami kontrolnymi. Dobrą praktyką jest zrozumienie różnicy między rolami poszczególnych protokołów w ekosystemie TCP/IP, co umożliwia lepsze zarządzanie i optymalizację infrastruktury sieciowej.

Pytanie 19

Jakie polecenie należy zastosować w systemach operacyjnych z rodziny Windows, aby zmienić właściwość pliku na tylko do odczytu?

A. attrib
B. chmod
C. ftype
D. set
Odpowiedzi 'set', 'ftype' oraz 'chmod' są błędne w kontekście ustawiania atrybutu pliku na tylko do odczytu w systemach Windows, ponieważ każde z tych poleceń ma zupełnie inne zastosowanie i nie ma wpływu na atrybuty plików w taki sposób, jak 'attrib'. Polecenie 'set' jest używane do ustawiania zmiennych środowiskowych w systemie Windows. Zmienne te mogą wpływać na sposób działania programów, ale nie mają nic wspólnego z bezpośrednim zarządzaniem atrybutami plików. 'Ftype' z kolei służy do określania, jakie programy są używane do otwierania określonych typów plików, co również nie ma zastosowania w kontekście zmiany właściwości pliku. Natomiast 'chmod' to polecenie stosowane w systemach operacyjnych Unix i Linux do ustawiania uprawnień dostępu do plików i katalogów, a nie do zarządzania atrybutami, takimi jak tylko do odczytu w Windows. Często użytkownicy mylą te komendy, co może prowadzić do frustracji, gdyż każde z tych poleceń jest ograniczone do swojego systemu operacyjnego i jego specyfikacji. W związku z tym, ważne jest, aby zapoznać się z dokumentacją oraz zrozumieć, które polecenia są właściwe dla danego środowiska, aby uniknąć nieporozumień i błędów w zarządzaniu plikami.

Pytanie 20

Jaką funkcję wykonuje zaprezentowany układ?

Ilustracja do pytania
A. Odpowiedź A
B. Odpowiedź D
C. Odpowiedź C
D. Odpowiedź B
Rozważając odpowiedzi które nie są poprawne warto przyjrzeć się logice stojącej za każdą z opcji. Opcja A sugeruje że funkcja realizuje operację (a + b)(a + ¬b) co oznaczałoby że układ musiałby mieć dodatkowe bramki AND i OR aby osiągnąć taką logikę. Jest to błędne zrozumienie ponieważ w przedstawionym układzie nie ma wystarczającej liczby bramek do realizacji takiej funkcji złożonej sumy i iloczynu. Opcja B przedstawia funkcję (a + b)(¬b) co również nie jest możliwe przy danym układzie ponieważ wymagałoby to dodatkowej negacji sygnału b i jego kombinacji z a w inny sposób niż to co jest przedstawione. Takie podejście często jest wynikiem błędnego rozumienia roli bramek logicznych w danym układzie. Opcja D zakłada że układ realizuje funkcję a(a + b) co implikowałoby że sygnał a jest używany zarówno do sumy jak i iloczynu co jest niezgodne z przedstawionym schematem ponieważ sygnał a jest negowany przed użyciem w dalszej części układu. Uczenie się jak prawidłowo identyfikować i analizować układy logiczne jest kluczowe dla poprawnego projektowania i analizowania systemów cyfrowych co pozwala unikać typowych błędów myślowych i zapewnia skuteczne projektowanie rozwiązań cyfrowych.

Pytanie 21

Aplikacja służąca jako dodatek do systemu Windows, mająca na celu ochronę przed oprogramowaniem szpiegującym oraz innymi niepożądanymi elementami, to

A. Windows Azure
B. Windows Home Server
C. Windows Defender
D. Windows Embedded
Wybierając odpowiedzi inne niż Windows Defender, można łatwo wpaść w pułapkę związaną z funkcjami różnych produktów Microsoftu. Na przykład, Windows Azure to platforma chmurowa, która oferuje usługi obliczeniowe, ale nie zajmuje się lokalną ochroną przed złośliwym oprogramowaniem. Jest bardziej o rozwijaniu aplikacji w chmurze, a to zupełnie inna bajka. Z kolei Windows Embedded jest przeznaczony dla urządzeń wbudowanych, jak kioski, i też nie ma nic wspólnego z zabezpieczeniem komputerów. A Windows Home Server? To było coś do zarządzania danymi w domowych sieciach, ale nie miało za bardzo narzędzi do ochrony przed zagrożeniami. Takie mylne wnioski mogą wynikać z tego, że nie do końca rozumiesz, co każdy z tych produktów robi. Poznanie różnic między nimi jest ważne, żeby dobrze wybrać, jak zabezpieczyć swój system operacyjny.

Pytanie 22

Przydzielanie przestrzeni dyskowej w systemach z rodziny Windows

A. przydzielają partycje na dyskach.
B. pozwalają na określenie maksymalnej pojemności dyskowej dla kont użytkowników.
C. przydzielają etykietę (np. C) dla konkretnej partycji.
D. oferują podstawowe funkcje diagnostyczne, defragmentację oraz checkdisk.
Przydziały dyskowe w systemach rodziny Windows są kluczowym elementem zarządzania pamięcią masową, pozwalając na definiowanie maksymalnej przestrzeni dyskowej dla kont użytkowników. Dzięki tej funkcji, administratorzy systemu mogą kontrolować, ile miejsca na dysku jest przydzielane poszczególnym użytkownikom, co jest szczególnie ważne w środowiskach wieloosobowych i serwerowych. Przykładowo, w organizacjach, gdzie wiele osób korzysta z tych samych zasobów, przydział dyskowy pomaga uniknąć sytuacji przepełnienia dysku przez jednego użytkownika, co mogłoby prowadzić do utraty danych lub spowolnienia systemu. Rekomendowane praktyki zarządzania przestrzenią dyskową obejmują monitorowanie użycia przestrzeni oraz regularne aktualizowanie ograniczeń w miarę potrzeb. Warto także zauważyć, że dobra polityka przydziałów dyskowych wspiera nie tylko organizację miejsca na dysku, ale również bezpieczeństwo danych poprzez ograniczanie możliwości przechowywania nieautoryzowanych plików.

Pytanie 23

Jaki standard szyfrowania powinien być wybrany przy konfiguracji karty sieciowej, aby zabezpieczyć transmisję w sieci bezprzewodowej?

A. MAC
B. PPP
C. WPA
D. EAP
WPA (Wi-Fi Protected Access) to standard szyfrowania, który został opracowany w celu poprawy bezpieczeństwa sieci bezprzewodowych. Jest on następcą wcześniejszych protokołów, takich jak WEP, które okazały się nieefektywne w ochronie przed nieautoryzowanym dostępem. WPA wykorzystuje silniejsze algorytmy szyfrowania, w tym TKIP (Temporal Key Integrity Protocol), co znacząco zwiększa poziom bezpieczeństwa. W praktyce, zastosowanie WPA w konfiguracji karty sieciowej pozwala na szyfrowanie danych przesyłanych w sieci bezprzewodowej, co zminimalizuje ryzyko podsłuchiwania i ataków typu „man-in-the-middle”. Oprócz WPA, istnieje również WPA2 i WPA3, które oferują jeszcze większe bezpieczeństwo dzięki zastosowaniu AES (Advanced Encryption Standard) oraz bardziej zaawansowanym mechanizmom uwierzytelniania. Wybierając WPA, Administratorzy powinni również pamiętać o stosowaniu silnych haseł oraz regularnych aktualizacjach oprogramowania, aby zapewnić maksymalne bezpieczeństwo systemu.

Pytanie 24

W systemie Windows mechanizm ostrzegający przed uruchamianiem nieznanych aplikacji oraz plików pobranych z Internetu funkcjonuje dzięki

A. zaporze systemu Windows
B. Windows SmartScreen
C. Windows Ink
D. Windows Update
Wybór odpowiedzi związanych z Windows Ink, Windows Update oraz zaporą systemu Windows wskazuje na pewne nieporozumienia dotyczące ich funkcji i roli w systemie Windows. Windows Ink jest narzędziem, które pozwala na korzystanie z rysików i piór, umożliwiając tworzenie notatek oraz szkiców, ale nie ma związku z ochroną przed niebezpiecznymi plikami. Z kolei Windows Update jest odpowiedzialny za aktualizację systemu operacyjnego i aplikacji, co jest istotne dla zapewnienia bezpieczeństwa poprzez poprawki, lecz sam w sobie nie ostrzega przed uruchamianiem nieznanych aplikacji. Ważne jest, aby zrozumieć, że aktualizacje mają na celu poprawę bezpieczeństwa, ale nie są dedykowane do oceny ryzyka związanego z poszczególnymi aplikacjami. Natomiast zapora systemu Windows (Windows Firewall) działa na zasadzie monitorowania i kontrolowania ruchu sieciowego, co może zapobiegać nieautoryzowanemu dostępowi z zewnątrz, ale nie jest zaprojektowana do analizy plików pobranych z Internetu i ich potencjalnego zagrożenia dla systemu. Te funkcjonalności są ważne w kontekście bezpieczeństwa systemu, ale nie spełniają roli, jaką pełni Windows SmartScreen. Dlatego kluczowe jest zrozumienie, że różne komponenty systemu pełnią różne funkcje, a ich niewłaściwa interpretacja może prowadzić do fałszywych wniosków dotyczących tego, jak zapewnić bezpieczeństwo użytkownika.

Pytanie 25

Po skompresowaniu adresu 2001:0012:0000:0000:0AAA:0000:0000:000B w protokole IPv6 otrzymujemy formę

A. 2001::AAA:0000:000B
B. 2001:12::0E98::B
C. 2001:0012::000B
D. 2001:12::AAA:0:0:B
Patrząc na inne odpowiedzi, można zauważyć, że są tam spore błędy w interpretacji zasad kompresji IPv6. Na przykład, w odpowiedzi 2001:0012::000B, adres został skompresowany w niewłaściwy sposób, bo w skompresowanej wersji można usuwać wiodące zera tylko w segmentach, a nie w całym adresie. Jeszcze ten podwójny dwukropek jest niepoprawny, bo niby wskazuje na kompresję dwóch grup zer, a to łamie zasady adresacji IPv6. W innym przypadku, 2001:12::0E98::B, mamy nawet dwa podwójne dwukropki, co jest totalnie niezgodne z regułami, bo IPv6 powinno mieć tylko jedną taką sekwencję. W adresie 2001:12::AAA:0:0:B jest błąd z użyciem segmentu '0' – można by go pominąć, a to prowadzi do nieefektywności. Zrozumienie tych zasad jest ważne, bo błędy mogą powodować problemy z routingiem i komunikacją w sieciach.

Pytanie 26

Jaką maksymalną liczbę podstawowych partycji na dysku twardym z tablicą MBR można utworzyć za pomocą narzędzia Zarządzanie dyskami dostępnego w systemie Windows?

A. 4
B. 2
C. 3
D. 1
Odpowiedzi 1, 2 i 3 są niepoprawne, ponieważ opierają się na błędnych założeniach dotyczących struktury tablicy MBR i możliwości zarządzania partycjami. W przypadku opcji pierwszej, twierdzenie, że można utworzyć jedynie jedną partycję podstawową, jest błędne, ponieważ MBR został zaprojektowany z myślą o umożliwieniu tworzenia czterech partycji podstawowych. Dla odpowiedzi drugiej, pomylenie możliwości utworzenia dwóch partycji z rzeczywistością sugeruje, że użytkownik nie rozumie podstawowych zasad działania MBR i jego struktury. Z kolei odpowiedź trzecia, która sugeruje, że można utworzyć trzy partycje podstawowe, również nie uwzględnia maksymalnego limitu czterech partycji. Takie błędne interpretacje często wynikają z niepełnego zrozumienia tematu i nieznajomości specyfiki działania systemów operacyjnych oraz sposobów przydzielania przestrzeni dyskowej. Warto również zauważyć, że w przypadku systemu MBR, partycje mogą być wykorzystywane nie tylko do przechowywania danych, ale także do instalacji różnych systemów operacyjnych, co czyni je kluczowym elementem w zarządzaniu dyskami. Dlatego znajomość limitów i funkcji MBR jest istotna dla osób zajmujących się administracją systemami oraz dbających o efektywność wykorzystania przestrzeni dyskowej.

Pytanie 27

Na dysku obok systemu Windows zainstalowano system Linux Ubuntu. W celu dostosowania kolejności uruchamiania systemów operacyjnych, należy zmienić zawartość

A. bcdedit
B. /etc/grub
C. /etc/inittab
D. boot.ini
W Ubuntu, jak chcesz ustawić, w jakiej kolejności uruchamiają się systemy operacyjne, musisz zajrzeć do pliku /etc/grub. GRUB, czyli taki bootloader, to standard w Linuxie, który pozwala Ci wybrać, jaki system chcesz włączyć przy starcie komputera. Konfiguracja w grub.cfg zawiera info o systemach, które masz na dysku i ich lokalizację. Jak coś zmienisz w tym pliku, to może się okazać, że inny system uruchomi się jako pierwszy. Na przykład, jak użyjesz komendy 'sudo update-grub', to GRUB zaktualizuje się automatycznie, żeby pokazać wszystkie dostępne systemy, w tym Windowsa i Linuxa. Fajnie jest sprawdzać i aktualizować GRUB-a po każdej instalacji lub aktualizacji systemu, żeby wszystko działało jak należy.

Pytanie 28

Jakie jest właściwe IP dla maski 255.255.255.0?

A. 122.168.1.0
B. 192.168.1.255
C. 192.168.1.1
D. 122.0.0.255
Adres 192.168.1.1 jest poprawny dla maski podsieci 255.255.255.0, ponieważ mieści się w zakresie adresów prywatnych zdefiniowanych przez standard RFC 1918. Maski podsieci określają, jak adres IP jest dzielony na część sieciową i część hosta. W przypadku maski 255.255.255.0, pierwsze trzy oktety (192.168.1) stanowią adres sieciowy, a ostatni oktet (1) oznacza adres konkretnego hosta w tej sieci. Oznacza to, że adres 192.168.1.0 określa sieć, a 192.168.1.255 to adres rozgłoszeniowy (broadcast) dla tej podsieci, co oznacza, że nie mogą być przypisane jako adresy hostów. W praktyce adres 192.168.1.1 jest często używany jako domyślny adres bramy w routerach domowych, co czyni go kluczowym w konfiguracji lokalnych sieci komputerowych. Znajomość tego, jak działają adresy IP i maski podsieci, jest niezbędna dla administratorów sieci, którzy muszą zarządzać lokalnymi i rozległymi sieciami przez prawidłowe przypisanie adresów IP dla różnorodnych urządzeń.

Pytanie 29

Aby zatuszować identyfikator sieci bezprzewodowej, należy zmodyfikować jego ustawienia w ruterze w polu oznaczonym numerem

Ilustracja do pytania
A. 4
B. 1
C. 2
D. 3
Opcja ukrycia identyfikatora SSID w sieci bezprzewodowej polega na zmianie konfiguracji routera w polu oznaczonym numerem 2 co jest standardową procedurą pozwalającą na zwiększenie bezpieczeństwa sieci. SSID czyli Service Set Identifier to unikalna nazwa identyfikująca sieć Wi-Fi. Choć ukrycie SSID nie zapewnia pełnej ochrony przed nieautoryzowanym dostępem może utrudnić odnalezienie sieci przez osoby niepowołane. W praktyce przydaje się to w miejscach gdzie chcemy ograniczyć możliwość przypadkowych połączeń z naszą siecią np. w biurach czy domach w gęsto zaludnionych obszarach. Dobrą praktyką jest także stosowanie dodatkowych środków zabezpieczających takich jak silne hasła WPA2 lub WPA3 oraz filtrowanie adresów MAC. Mimo że ukrycie SSID może zwiększyć bezpieczeństwo technicznie zaawansowani użytkownicy mogą zidentyfikować ukryte sieci za pomocą odpowiednich narzędzi do nasłuchu sieci. Jednakże dla przeciętnego użytkownika ukrycie SSID stanowi dodatkową warstwę ochrony. Należy pamiętać że zmiany te mogą wpływać na łatwość połączenia się urządzeń które były już wcześniej skonfigurowane do automatycznego łączenia z siecią.

Pytanie 30

W systemie Windows można przeprowadzić analizę wpływu uruchomionych aplikacji na wydajność komputera, korzystając z polecenia

A. dfrgui.exe
B. taskschd.msc
C. perfmon.msc
D. iscsicpl.exe
Perfmon.msc, znany jako Monitor wydajności, to narzędzie w systemie Windows, które umożliwia użytkownikom szczegółowe monitorowanie i analizowanie wydajności systemu oraz uruchamianych aplikacji. Dzięki temu narzędziu można śledzić różnorodne metryki, takie jak wykorzystanie CPU, pamięci RAM, dysków twardych oraz sieci, co pozwala na zidentyfikowanie potencjalnych wąskich gardeł w systemie. Perfmon.msc oferuje możliwość tworzenia złożonych zestawów danych, które mogą być wykorzystywane do analizy trendów wydajności w czasie. Na przykład, administratorzy systemów mogą skonfigurować zbieranie danych na temat wydajności w określonych interwałach czasu oraz analizować je w celu optymalizacji działania aplikacji. Dodatkowo, korzystanie z tego narzędzia jest zgodne z najlepszymi praktykami w zakresie zarządzania wydajnością systemów IT, umożliwiając szybką identyfikację problemów oraz podejmowanie decyzji na podstawie danych.

Pytanie 31

Podanie nieprawidłowych napięć do płyty głównej może skutkować

A. puchnięciem kondensatorów, zawieszaniem się procesora oraz nieoczekiwanymi restartami
B. brakiem możliwości instalacji aplikacji
C. uruchomieniem jednostki centralnej z kolorowymi pasami i kreskami na wyświetlaczu
D. pojawieniem się błędów w pamięci RAM
Dostarczanie nieprawidłowych napięć do płyty głównej może prowadzić do puchnięcia kondensatorów, zawieszania się jednostki centralnej oraz niespodziewanych restartów. Kondensatory na płycie głównej są kluczowymi elementami odpowiedzialnymi za stabilizację napięcia zasilającego różne komponenty systemu. Kiedy napięcie przekracza dopuszczalne wartości, kondensatory mogą ulec uszkodzeniu, co objawia się ich puchnięciem lub wyciekiem. Zjawisko to jest szczególnie istotne w kontekście kondensatorów elektrolitycznych, które są wrażliwe na zbyt wysokie napięcia. Dodatkowo, nieprawidłowe napięcie wpływa na stabilność pracy procesora oraz pamięci RAM, co może prowadzić do zawieszeń, bluescreenów oraz niespodziewanych restartów. W branży komputerowej standardem jest stosowanie zasilaczy z certyfikatem 80 Plus, które gwarantują efektywność i stabilność napięcia, co minimalizuje ryzyko uszkodzenia komponentów. Dbanie o odpowiednie parametry zasilania to kluczowy element utrzymania długowieczności sprzętu i jego niezawodności.

Pytanie 32

Który z protokołów nie działa w warstwie aplikacji modelu ISO/OSI?

A. IP
B. FTP
C. HTTP
D. DNS
Wszystkie wymienione w pytaniu protokoły, z wyjątkiem IP, działają w warstwie aplikacji modelu ISO/OSI. FTP, jako protokół transferu plików, umożliwia użytkownikom przesyłanie danych między urządzeniami w sieci. Jego zastosowanie jest szczególnie widoczne w kontekście zarządzania plikami na serwerach, gdzie użytkownicy mogą łatwo wgrywać lub pobierać pliki. DNS pełni kluczową rolę w rozwiązywaniu nazw domenowych na odpowiadające im adresy IP, co jest fundamentalne dla nawigacji w Internecie. HTTP, z kolei, jest protokołem wykorzystywanym do przesyłania danych w sieci WWW, umożliwiając przeglądanie stron internetowych. Powszechny błąd polega na myleniu warstwy aplikacji z warstwą sieciową, co może prowadzić do niewłaściwego rozumienia, jak poszczególne protokoły współdziałają. Warto pamiętać, że warstwa aplikacji jest najbliżej użytkownika i odpowiada za interakcję z aplikacjami, podczas gdy warstwa sieciowa, w której operuje IP, zajmuje się fundamentalnymi aspektami dostarczania danych. Zrozumienie tych różnic jest kluczowe dla profesjonalistów w dziedzinie IT, którzy muszą projektować i zarządzać złożonymi systemami sieciowymi oraz aplikacjami.

Pytanie 33

Komputery K1, K2, K3, K4 są podłączone do interfejsów przełącznika, które są przypisane do VLAN-ów wymienionych w tabeli. Które z tych komputerów mają możliwość komunikacji ze sobą?

Nazwa komputeraAdres IPNazwa interfejsuVLAN
K110.10.10.1/24F1VLAN 10
K210.10.10.2/24F2VLAN 11
K310.10.10.3/24F3VLAN 10
K410.10.11.4/24F4VLAN 11

A. K1 i K4
B. K1 z K3
C. K1 i K2
D. K2 i K4
Komputery K1 i K3 mogą się ze sobą komunikować, ponieważ są przypisane do tego samego VLAN-u, czyli VLAN 10. W sieciach komputerowych VLAN (Virtual Local Area Network) to logiczna sieć, która pozwala na oddzielenie ruchu sieciowego w ramach wspólnej infrastruktury fizycznej. Przypisanie urządzeń do tego samego VLAN-u umożliwia im komunikację tak, jakby znajdowały się w tej samej sieci fizycznej, mimo że mogą być podłączone do różnych portów przełącznika. Jest to podstawowa praktyka w zarządzaniu sieciami, szczególnie w dużych infrastrukturach, gdzie organizacja sieci w różne VLAN-y poprawia wydajność i bezpieczeństwo. Komputery w różnych VLAN-ach domyślnie nie mogą się komunikować, chyba że zostaną skonfigurowane odpowiednie reguły routingu lub zastosowane mechanizmy takie jak routery między VLAN-ami. Praktyczne zastosowanie VLAN-ów obejmuje segmentację sieci dla różnych działów w firmie lub rozgraniczenie ruchu danych i głosu w sieciach VoIP. Zrozumienie działania VLAN-ów jest kluczowe dla zarządzania nowoczesnymi sieciami, ponieważ pozwala na efektywne zarządzanie zasobami oraz minimalizowanie ryzyka związanego z bezpieczeństwem danych.

Pytanie 34

Aby naprawić zasilacz laptopa poprzez wymianę kondensatorów, jakie narzędzie powinno się wykorzystać?

A. chwytak próżniowy
B. lutownicę z cyną i kalafonią
C. tester płyt głównych
D. tester okablowania sieciowego
Wybór niewłaściwych narzędzi do naprawy zasilacza laptopa jest częstym błędem, który może prowadzić do dalszych problemów z urządzeniem. Chwytak próżniowy, chociaż użyteczny w wielu zastosowaniach elektronicznych, nie jest odpowiedni do wymiany kondensatorów. Jego głównym zastosowaniem jest podnoszenie i przenoszenie drobnych komponentów elektronicznych, co w przypadku wymiany kondensatorów nie jest wymagane. Tester płyt głównych również nie wnosi wartości w procesie lutowania, ponieważ jego funkcja polega na diagnostyce i sprawdzaniu poprawności działania płyty, a nie na fizycznej naprawie komponentów. Z kolei tester okablowania sieciowego jest narzędziem służącym do analizy i diagnozowania problemów w infrastrukturze sieciowej, co w kontekście zasilacza laptopa jest całkowicie nieprzydatne. Podejmowanie takich błędnych decyzji jest często wynikiem braku zrozumienia procesu lutowania oraz roli, jaką odgrywają poszczególne narzędzia w naprawach elektronicznych. Kluczowym aspektem, na który należy zwrócić uwagę, jest znajomość specyfiki komponentów oraz technik ich wymiany, co pozwala na właściwe dobranie narzędzi i uniknięcie kosztownych błędów.

Pytanie 35

Jakie urządzenie powinno być użyte do połączenia komputerów w układzie gwiazdowym?

A. Switch
B. Transceiver
C. Bridge
D. Repeater
Switch, czyli przełącznik, jest kluczowym urządzeniem w topologii gwiazdy, ponieważ umożliwia efektywne i wydajne zarządzanie komunikacją między komputerami w sieci lokalnej (LAN). W topologii gwiazdy wszystkie urządzenia są podłączone do centralnego węzła, którym jest właśnie switch. Dzięki temu, gdy jeden komputer wysyła dane, switch kieruje te dane bezpośrednio do odpowiedniego odbiorcy, minimalizując zatory i zwiększając prędkość transferu. Przykładem zastosowania może być biuro, w którym każdy komputer pracownika jest podłączony do switcha, co umożliwia wydajną komunikację i dobrą organizację pracy w sieci. Dodatkowo, urządzenia te obsługują standardy takie jak IEEE 802.3, co zapewnia zgodność i interoperacyjność w różnych środowiskach sieciowych. Ponadto, wiele nowoczesnych switchów oferuje możliwości zarządzania, takie jak VLAN, co pozwala na segregację ruchu i zwiększenie bezpieczeństwa w sieci, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 36

Ile sieci obejmują komputery z adresami IP i maskami sieci podanymi w tabeli?

Adres IPv4Maska
10.120.16.10255.255.0.0
10.120.18.16255.255.0.0
10.110.16.18255.255.255.0
10.110.16.14255.255.255.0
10.130.16.12255.255.255.0

A. 2
B. 4
C. 3
D. 5
Błędne rozumienie liczby sieci, do których należą komputery, wynika często z nieprawidłowej analizy adresów IP i masek sieciowych. Kluczowym elementem jest zrozumienie, jak maska sieciowa definiuje zakres adresów w danej sieci. Maski takie jak 255.255.0.0 oznaczają, że sieć jest określana przez pierwsze dwa oktety, a pozostałe są dostępne dla urządzeń w tej samej lokalnej sieci. W przypadku maski 255.255.255.0 sieć jest określana przez trzy oktety. Zatem błędne podejścia mogą wynikać z nieuwzględnienia tej zależności lub z pomylenia części sieciowej z częścią hosta. Inny typowy błąd to założenie, że każda różnica w adresie IP tworzy nową sieć, co jest nieprawidłowe, gdyż to maska sieciowa określa precyzyjnie granice sieci. Aby uniknąć tych błędów, ważne jest praktyczne ćwiczenie analizy adresów IP i ich klasyfikacji według masek, co jest podstawą planowania sieci i zarządzania nimi według standardów IETF i dobrych praktyk w zakresie projektowania sieci komputerowych. Dokładna analiza adresów i masek umożliwia optymalizację użycia przestrzeni adresowej oraz poprawę skalowalności i bezpieczeństwa infrastruktury sieciowej. Zrozumienie, jak maski wpływają na podział sieci, jest kluczowe w nowoczesnym zarządzaniu siecią, ponieważ pozwala na efektywne projektowanie i implementację rozwiązań sieciowych zgodnych z wymaganiami biznesowymi i technologicznymi. To podejście zwiększa również zdolność do szybkiego rozwiązywania problemów i adaptacji sieci do zmieniających się warunków operacyjnych.

Pytanie 37

Zbiór usług sieciowych dla systemów z rodziny Microsoft Windows jest reprezentowany przez skrót

A. HTTPS
B. HTTP
C. FTPS
D. IIS
FTPS, HTTP i HTTPS to protokoły sieciowe, które pełnią różne funkcje, ale nie są serwerami internetowymi samymi w sobie jak IIS. FTPS to rozszerzenie protokołu FTP, które wprowadza warstwę szyfrowania, co czyni go bardziej bezpiecznym rozwiązaniem do przesyłania plików, ale nie jest zbiorem usług internetowych, a jedynie jednym z protokołów. HTTP, czyli Hypertext Transfer Protocol, jest to protokół komunikacyjny używany do przesyłania danych w sieci WWW, jednak sam w sobie nie jest usługą ani systemem, lecz standardem, który musi być obsługiwany przez serwer, taki jak IIS. HTTPS to z kolei wariant HTTP, który zapewnia szyfrowanie danych za pomocą protokołu SSL/TLS, co również czyni go bardziej bezpiecznym, ale podobnie jak HTTP, nie jest to system usług internetowych. Typowym błędem myślowym jest utożsamianie protokołów z całymi systemami serwerowymi. Odpowiednie zrozumienie różnic między serwerami a protokołami jest kluczowe dla efektywnego projektowania i zarządzania systemami sieciowymi. W praktyce, korzystając z IIS, można wykorzystać standardowe protokoły, takie jak HTTP i HTTPS, ale w kontekście pytania, to IIS jest właściwą odpowiedzią jako serwer, który obsługuje te protokoły.

Pytanie 38

Medium transmisyjne oznaczone symbolem S/FTP wskazuje na skrętkę

A. bez ekranu.
B. z ekranem dla każdej pary oraz z ekranem z folii dla czterech par przewodów.
C. z ekranem z folii dla każdej pary przewodów oraz z ekranem z siatki dla czterech par.
D. tylko z ekranem z folii dla czterech par przewodów.
Odpowiedzi, które wskazują na inne typy ekranowania, wprowadzają w błąd, co może wynikać z niepełnego zrozumienia zasad działania ekranów w kablach sieciowych. Na przykład, twierdzenie, że skrętka jest ekranowana jedynie folią na czterech parach przewodów, nie uwzględnia faktu, że w standardzie S/FTP każda para musi być ekranowana indywidualnie, co ma kluczowe znaczenie dla redukcji zakłóceń między parami. Taki błąd pokazuje nieporozumienie dotyczące roli ekranowania – nie tylko chroni to przed zakłóceniami z zewnątrz, ale również poprawia integralność sygnału wewnętrznego. Również stwierdzenie, że skrętka jest nieekranowana, całkowicie zaprzecza definicji S/FTP, co może prowadzić do poważnych konsekwencji w projektowaniu systemów sieciowych. Brak odpowiedniego ekranowania może skutkować spadkiem jakości sygnału, co w praktyce objawia się problemami z połączeniami, większą liczbą błędów w transmisji, a w skrajnych przypadkach nawet utratą połączenia. W projektowaniu sieci należy kierować się najlepszymi praktykami, które uwzględniają wszystkie aspekty ekranowania, aby zapewnić optymalną wydajność sieci i minimalizować zakłócenia.

Pytanie 39

Który z parametrów w poleceniu ipconfig w systemie Windows służy do odnawiania konfiguracji adresów IP?

A. /displaydns
B. /flushdns
C. /release
D. /renew
Parametr /renew w poleceniu ipconfig w systemie Windows jest używany do odnawiania adresu IP przypisanego do urządzenia w sieci. Umożliwia to klientowi DHCP (Dynamic Host Configuration Protocol) ponowne uzyskanie adresu IP oraz innych konfiguracji sieciowych od serwera DHCP. W praktyce, gdy komputer jest podłączony do sieci lokalnej i potrzebuje nowego adresu IP, na przykład po zmianie lokalizacji w sieci lub po upływie czasu ważności aktualnego adresu, użycie polecenia 'ipconfig /renew' pozwala na szybkie i efektywne odświeżenie ustawień. W kontekście standardów branżowych, regularne odnawianie adresów IP za pomocą DHCP jest powszechnie stosowaną praktyką, która zapewnia optymalizację wykorzystania dostępnych adresów IP oraz ułatwia zarządzanie siecią. Ważne jest, aby administratorzy sieci byli świadomi, że czasami może być konieczne ręczne odnowienie adresu IP, co można zrealizować właśnie tym poleceniem, zwłaszcza w sytuacjach, gdy występują problemy z połączeniem lub konieczne jest przydzielenie nowego adresu z puli DHCP.

Pytanie 40

Na schemacie procesora rejestry mają za zadanie przechowywać adres do

Ilustracja do pytania
A. kolejnej instrukcji programu
B. przechowywania argumentów obliczeń
C. zarządzania wykonywanym programem
D. wykonywania operacji arytmetycznych
W kontekście architektury procesora rejestry pełnią określone funkcje, które nie obejmują wykonywania działań arytmetycznych lecz przygotowanie do nich poprzez przechowywanie danych. Samo wykonywanie operacji arytmetycznych odbywa się w jednostce arytmetyczno-logicznej (ALU), która korzysta z danych zapisanych w rejestrach. Rejestry są także mylone z pamięcią operacyjną, co może prowadzić do błędnego przekonania, że służą do przechowywania adresu następnej instrukcji programu. W rzeczywistości za to zadanie odpowiada licznik rozkazów, który wskazuje na kolejną instrukcję do wykonania. Sterowanie wykonywanym programem natomiast jest rolą jednostki sterującej, która interpretuje instrukcje i kieruje przepływem danych między różnymi komponentami procesora. Typowe błędy myślowe wynikają z nieświadomości specyficznych ról poszczególnych elementów CPU. Zrozumienie, że rejestry są używane do przechowywania tymczasowych danych do obliczeń, jest kluczowe dla poprawnej interpretacji działania procesorów i ich efektywnego programowania. Rozróżnienie tych funkcji jest istotne nie tylko dla teoretycznego zrozumienia, ale także praktycznych zastosowań w optymalizacji kodu i projektowaniu sprzętu komputerowego.