Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 maja 2025 22:24
  • Data zakończenia: 21 maja 2025 22:43

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 4 stopnie swobody
B. 6 stopni swobody
C. 5 stopni swobody
D. 3 stopnie swobody
Manipulator z pięcioma stopniami swobody to świetna rzecz, bo potrafi ruszać się w trzech osiach oraz obracać wokół trzech osi. Dzięki temu może zarówno przesuwać się, jak i kręcić w przestrzeni, co jest naprawdę ważne w różnych zastosowaniach – mówimy tu o przemyśle czy robotyce. Z mojego doświadczenia, pięć stopni swobody to super rozwiązanie, bo daje większą precyzję i elastyczność, co przydaje się na przykład przy montażu części, przenoszeniu materiałów lub nawet bardziej skomplikowanych zadaniach. Widziałem, jak roboty na liniach montażowych wykorzystują to, bo dzięki temu mogą dostosowywać się do różnych zadań i warunków. W inżynierii robotów, te manipulatory są właściwie standardem, bo balansują między złożonością a tym, co mogą zrobić. Warto też wspomnieć, że według norm ISO dotyczących robotyki, projektując manipulatory, trzeba brać pod uwagę stopnie swobody, bo to ma wpływ na ich efektywność i bezpieczeństwo. Te wszystkie cechy sprawiają, że manipulator to naprawdę świetny wybór w nowoczesnych zastosowaniach przemysłowych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Olej hydrauliczny klasy HL to olej

A. syntetyczny
B. mineralny posiadający właściwości antykorozyjne
C. o polepszonych parametrach lepkości i temperatury
D. mineralny bez dodatków uszlachetniających
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7

A. 4 x 4 mm
B. 3 x 3 mm
C. 5 x 5 mm
D. 6 x 6 mm
Odpowiedź 4 x 4 mm jest poprawna, ponieważ zgodnie z danymi przedstawionymi w tabeli, wymiary wpustu pryzmatycznego powinny być dostosowane do średnicy wału. Dla wałów o średnicy od 10 mm do 12 mm, wymagany wpust ma wymiary 4 x 4 mm. Odpowiednie dopasowanie wymiarów wpustu jest kluczowe dla prawidłowego przenoszenia momentu obrotowego oraz zapewnienia stabilności i trwałości mechanizmu. Zastosowanie niewłaściwych wymiarów wpustu może prowadzić do luzów, co z kolei może skutkować uszkodzeniem elementów współpracujących. W praktyce, poprawnie dobrany wpust pryzmatyczny stosuje się w wielu zastosowaniach, w tym w przekładniach, wałach napędowych oraz silnikach, gdzie precyzyjne połączenie elementów jest niezbędne. Dobrą praktyką w inżynierii mechanicznej jest zawsze odniesienie się do standardów przemysłowych, takich jak ISO, które precyzują wymagania dotyczące wymiarów i tolerancji wpustów. Takie podejście zapewnia nie tylko funkcjonalność, ale również bezpieczeństwo i niezawodność konstrukcji.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 5487 obr/min
B. 305 obr/min
C. 2916 obr/min
D. 524 obr/min
Jak chcesz obliczyć prędkość obrotową silnika elektrycznego, to możesz skorzystać z takiego wzoru: P = M * ω. Tu P to moc w watach, M to moment obrotowy w niutonometrach, a ω to prędkość kątowa w radianach na sekundę. Jak przekształcisz ten wzór, to dostaniesz ω = P / M. Dla tego silnika mamy: P = 4000 W i M = 13,1 Nm. Jak to obliczysz, to wyjdzie ω = 4000 W / 13,1 Nm, co daje jakieś 305,34 rad/s. Żeby przeliczyć na prędkość obrotową w obr/min, używamy przelicznika: 1 rad/s = 9,5493 obr/min. Więc 305,34 rad/s * 9,5493 to około 2916 obr/min. To pokazuje, że silniki elektryczne, mając daną moc i moment obrotowy, mogą naprawdę kręcić się szybko, co jest super ważne w różnych miejscach, gdzie potrzebna jest precyzyjna kontrola prędkości, jak w maszynach. Zrozumienie tych obliczeń jest istotne, żeby dobrze dobierać silniki do konkretnych zadań i optymalizować procesy mechaniczne w różnych branżach.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Silnik liniowy przekształca

A. energię elektryczną w energię mechaniczną
B. ruch obrotowy w ruch liniowy
C. ruch liniowy w ruch obrotowy
D. energię mechaniczną w energię elektryczną
Wybór odpowiedzi, która sugeruje, że silnik liniowy zamienia ruch liniowy na ruch obrotowy, oparty jest na błędnym zrozumieniu zasad działania tych urządzeń. Silniki liniowe i obrotowe różnią się zasadniczo w sposobie generacji ruchu. Silnik liniowy prowadzi do powstania ruchu bezpośrednio wzdłuż osi, co eliminuje potrzebę konwersji ruchu obrotowego, jak ma to miejsce w tradycyjnych silnikach. Z kolei odpowiedzi sugerujące zamianę energii mechanicznej na energię elektryczną również wprowadzają w błąd, ponieważ silnik liniowy nie generuje energii elektrycznej, lecz ją konsumuje, aby wytworzyć ruch mechaniczny. Kolejna nieprawidłowa odpowiedź wskazuje na zamianę energii elektrycznej na mechaniczną, co jest poprawne, ale nie odnosi się do zasadniczej funkcji silnika liniowego. Kluczowym jest zrozumienie, że silniki liniowe są projektowane specjalnie do działania w linii prostej, co sprawia, że ich zastosowanie jest znacznie bardziej efektywne w sytuacjach wymagających precyzyjnych ruchów liniowych. Użytkownicy często mylą silniki liniowe z innymi typami silników, co prowadzi do nieporozumień w ich zastosowaniach oraz funkcjach. W praktyce, silniki liniowe są wykorzystywane w systemach automatyki, transportu i robotyki, gdzie ich unikalne właściwości przekształcania energii elektrycznej w ruch liniowy są kluczowe dla efektywności operacyjnej.

Pytanie 19

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. FBD
B. IL
C. LAD
D. ST
Wybór niewłaściwego języka programowania może wynikać z niepełnego zrozumienia charakterystyk i zastosowań poszczególnych języków sterowników PLC. FBD (Function Block Diagram) jest językiem graficznym, który używa bloków funkcyjnych do modelowania systemów, co czyni go bardziej wizualnym, ale nie zawsze efektywnym w operacjach wymagających dużej precyzji, jak to ma miejsce w IL. Z kolei ST (Structured Text) to język tekstowy, ale bardziej przypominający tradycyjne języki programowania, co może wprowadzać w błąd użytkowników, którzy szukają prostoty i zwięzłości, jaką oferuje IL. LAD (Ladder Diagram) jest kolejnym językiem graficznym, który jest szczególnie przyjazny dla inżynierów przyzwyczajonych do schematów elektrycznych. Każdy z tych języków ma swoje mocne strony, ale nie można ich stosować zamiennie w sytuacjach, gdy precyzyjna manipulacja danymi jest kluczowa. Typowym błędem myślowym jest przekonanie, że język graficzny może zastąpić język tekstowy w kontekście programowania niskopoziomowego. W rzeczywistości, języki tekstowe, takie jak IL, oferują większą kontrolę nad procesem, co pozwala na optymalizację kodu i lepsze dostosowanie do specyficznych wymagań aplikacji. Dlatego istotne jest, aby inżynierowie automatyki dobrze rozumieli różnice między językami oraz ich zastosowania w praktyce, co pomoże uniknąć nieporozumień i błędnych wyborów w przyszłych projektach.

Pytanie 20

W celu zamontowania sterownika PLC na szynie DIN, należy użyć

A. śrub
B. zatrzasków
C. łap
D. nitów
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 21

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
B. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
C. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
D. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. transformator do zmiany liczby faz
B. transformator bezpieczeństwa
C. przekładnik napięciowy
D. przekładnik prądowy
Zarówno transformator bezpieczeństwa, jak i przekładnik napięciowy, posiadają swoje unikalne zastosowania, ale nie pełnią funkcji zbliżonej do przekładnika prądowego. Transformator bezpieczeństwa jest zaprojektowany w celu ograniczenia napięcia i ochrony systemów pomiarowych przed wysokimi wartościami napięcia, co sprawia, że nie może pracować w pełni obciążonym stanie zwarcia, jak to ma miejsce w przypadku przekładników prądowych. Jego zastosowanie głównie koncentruje się na zapewnieniu bezpieczeństwa ludzi oraz urządzeń w obwodach elektrycznych. Z kolei przekładnik napięciowy działa na zasadzie przekształcania wysokiego napięcia na niskie w celu pomiaru napięcia w obwodach. Oba te urządzenia są używane w systemach pomiarowych, ale ich struktura i funkcjonalność są inne. Zastosowanie transformatorów do zmiany liczby faz dotyczy innego aspektu konwersji energii elektrycznej i nie ma zastosowania w kontekście pomiarów prądowych. Wybór niewłaściwego urządzenia do określonego pomiaru często wynika z braku zrozumienia różnic między tymi urządzeniami, co może prowadzić do poważnych błędów w analizie działania systemu. W praktyce ważne jest, aby dokładnie rozumieć zastosowania różnych typów transformatorów i przekładników, aby odpowiednio je wykorzystać w projektach elektrycznych oraz zapewnić bezpieczeństwo i efektywność operacji.

Pytanie 30

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
Odpowiedź, która podaje wydajność 5,3 m3/h i maksymalne ciśnienie 1,0 MPa, jest jak najbardziej trafna. To spełnia wymagania dla siłownika, który działa na sprężone powietrze. Siłownik zasuwa 50 cykli na minutę, a każdy cykl to 1,4 litra powietrza. Jak to policzymy, to wychodzi, że potrzebuje 70 litrów powietrza na minutę (czyli 50 cykli na minutę razy 1,4 l na cykl). Jak to przerobimy na metry sześcienne, to mamy 0,07 m3 na minutę, co po przeliczeniu na godzinę daje 4,2 m3/h. Żeby zniwelować straty związane z kompresją, sprężarka musi mieć wyższą wydajność. I właśnie ta 5,3 m3/h nie tylko pokrywa zapotrzebowanie siłownika, ale daje też pewien zapas. Co do maksymalnego ciśnienia sprężarki 1,0 MPa (czyli 10 bar), to też jest okej, bo obsługuje siłownik, który działa przy ciśnieniu 8 barów. Użycie sprężarki o tych parametrach to nie tylko kwestia wydajności, ale też pewności działania całego systemu pneumatycznego, co jest zgodne z normami branżowymi.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 10 A
B. 2,5 A
C. 3 A
D. 0,75 A
Maksymalny prąd 3 A, który można obciążyć sterownik PLC, odpowiada specyfikacjom podanym w dokumentacji technicznej urządzenia. W praktyce oznacza to, że przy dołączaniu silnika indukcyjnego do wyjścia sterownika, nie można przekraczać tego prądu, aby uniknąć uszkodzenia urządzenia. Przykładowo, jeśli planujesz używać niewielkiego silnika do napędu wentylatora lub pompy, upewnij się, że jego maksymalne zapotrzebowanie na prąd nie przekracza tego limitu. W przemyśle, często stosuje się zabezpieczenia, takie jak bezpieczniki lub wyłączniki przeciążeniowe, które chronią sprzęt przed uszkodzeniami związanymi z nadmiernym prądem. Dobrym rozwiązaniem jest również monitorowanie prądu roboczego silnika przy pomocy amperomierza, co pozwala na bieżąco ocenić, czy urządzenie pracuje w dopuszczalnych granicach. Zrozumienie i przestrzeganie tych limitów jest kluczowe dla wydajności oraz długowieczności systemów automatyki przemysłowej, w których używane są sterowniki PLC.

Pytanie 35

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. wzrostu rezystancji uzwojeń
B. spadku rezystancji uzwojeń
C. zwiększenia prędkości obrotowej
D. zmniejszenia prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Rozdzielacz suwakowy
B. Regulator przepływu
C. Zawór przelewowy
D. Zawór dławiąco-zwrotny
Regulator przepływu jest kluczowym elementem w układach hydraulicznych, który umożliwia utrzymanie stałej prędkości obrotowej silnika hydraulicznego, niezależnie od zmian momentu obciążenia na wale. Działa on poprzez automatyczne dostosowanie przepływu cieczy hydraulicznej, co pozwala na zachowanie stabilności pracy urządzenia. Przykładem zastosowania regulatorów przepływu są maszyny budowlane, gdzie zmienne obciążenia są powszechne. W takich aplikacjach, regulator przepływu zapewnia, że silnik hydrauliczny działa w optymalnym zakresie prędkości, co prowadzi do efektywnego zużycia energii i minimalizacji zużycia komponentów. Stosowanie regulatorów przepływu jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, ponieważ pozwala na zwiększenie wydajności układów oraz przedłużenie żywotności systemów hydraulicznych poprzez eliminację ryzyka przeciążeń. Dodatkowo, w kontekście norm ISO dotyczących systemów hydraulicznych, regulacja przepływu jest uznawana za niezbędny element, który przyczynia się do bezpieczeństwa i funkcjonalności układów hydraulicznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Tachometryczna prądnica działa z prędkością obrotową wynoszącą 1000 obr/min. Jaką prędkość obrotową należy osiągnąć, aby napięcie na wyjściu prądnicy wyniosło 7,3 V?

A. 730 obr/min
B. 73 obr/min
C. 7 300 obr/min
D. 7,3 obr/min
Wybór 7,3 obr/min, 730 obr/min oraz 73 obr/min jako odpowiedzi na pytanie o prędkość obrotową prądnicy tachometrycznej prowadzi do kilku błędnych wniosków, które są wynikiem nieprawidłowego zrozumienia zasad działania prądnic. Przede wszystkim, prądnica tachometryczna wytwarza napięcie, które jest proporcjonalne do prędkości obrotowej wału. Oznacza to, że im wyższa prędkość obrotowa, tym wyższe napięcie. Odpowiedzi 7,3 obr/min i 73 obr/min sugerują ekstremalnie niskie prędkości, które są nieadekwatne do standardowego działania prądnicy. Dla prędkości 1000 obr/min napięcie wynosi 7,3 V; zatem prędkości obrotowe niższe od 1000 obr/min nie mogą generować napięcia wyjściowego wyższego niż 7,3 V. Z kolei odpowiedź 730 obr/min również jest błędna, ponieważ przy tej prędkości napięcie wyniesie mniej niż 7,3 V. Typowym błędem myślowym jest przyjęcie, że mniejsze prędkości mogą wytwarzać wyższe napięcia, co jest sprzeczne z zasadami fizyki. Kluczowe jest zrozumienie, że prądnice tachometryczne są wykorzystywane w systemach, gdzie precyzyjne mierzenie prędkości obrotowej jest kluczowe, na przykład w systemach regulacji i kontroli procesów przemysłowych, a ich działanie opiera się na proporcjonalności między prędkością a napięciem.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.