Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 23:36
  • Data zakończenia: 24 maja 2025 23:50

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. miliwoltomierzem
B. stoperem
C. czujnikiem zegarowym
D. mikrometrem
Czas wykonania skoku siłownika elektrycznego mierzy się za pomocą stopera, ponieważ jest to narzędzie umożliwiające dokładne i precyzyjne określenie czasu trwania określonego zdarzenia. W przypadku siłowników elektrycznych, które są często wykorzystywane w automatyce i robotyce, czas reakcji oraz czas skoku mają kluczowe znaczenie dla efektywności pracy całego systemu. Stoper pozwala na mierzenie czasu z wysoką dokładnością, co jest niezbędne w procesach, gdzie synchronizacja ruchów jest istotna. W praktyce, w laboratoriach oraz w zakładach produkcyjnych, zastosowanie stopera w badaniach wydajności siłowników elektrycznych pozwala na optymalizację pracy maszyn oraz zwiększenie ich niezawodności. Takie pomiary mogą być również wykorzystywane do analizy wpływu różnych parametrów, takich jak obciążenie, napięcie zasilania czy rodzaj zastosowanej mechaniki, na czas odpowiedzi siłownika. Dzięki temu można wprowadzać usprawnienia oraz dostosowywać parametry pracy do specyficznych wymagań procesów technologicznych.

Pytanie 2

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca dorywcza
B. Praca przerywana
C. Praca ciągła
D. Praca długotrwała
Wybór innych typów pracy silnika, takich jak praca dorywcza, długotrwała czy ciągła, nie odzwierciedla specyfiki działania silników, co prowadzi do nieprawidłowego rozumienia ich zastosowania. Praca dorywcza zakłada sporadyczne użycie silnika, co nie odpowiada jego funkcjonalności w kontekście pracy przerywanej. W rzeczywistości, praca dorywcza jest bardziej związana z zastosowaniami, gdzie silnik jest uruchamiany rzadko, co nie jest typowe dla większości zastosowań przemysłowych. W przypadku pracy długotrwałej, mowa o ciągłym działaniu bez przerw, co może prowadzić do przegrzania silnika, jeśli nie jest on odpowiednio chłodzony, a to jest przeciwieństwem pracy przerywanej. Praca ciągła, z kolei, odnosi się do trybu pracy, w którym silnik funkcjonuje w pełnym obciążeniu przez dłuższy czas, co również jest nieadekwatne w odniesieniu do symbolu S3, który wymaga przerw w eksploatacji. Często w branży można spotkać mylne interpretacje związane z długotrwałym eksploatowaniem silników, co prowadzi do niewłaściwego doboru urządzeń do aplikacji. Poznanie specyfiki klasyfikacji pracy silników jest kluczowe, aby uniknąć uszkodzeń i zwiększyć efektywność energetyczną urządzeń.

Pytanie 3

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. wzmocnieniu
B. odbiciu
C. pochłonięciu
D. rozproszeniu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 4

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. klucz dynamometryczny
B. palnik gazowy
C. ściągacz
D. młotek
Użycie młotka do demontażu łożysk kulkowych jest podejściem niezalecanym, ponieważ może prowadzić do poważnych uszkodzeń zarówno łożyska, jak i elementów maszyny, z którymi ma się ono kontakt. Młotek generuje dużą siłę uderzenia, która może nie tylko zniszczyć łożysko, ale również uszkodzić wał lub obudowę, co skutkuje koniecznością kosztownej wymiany tych komponentów. Ponadto, stosowanie młotka nie spełnia standardów bezpieczeństwa, ponieważ może prowadzić do urazów rąk czy wzroku w przypadku niekontrolowanego uderzenia. W przypadku palnika gazowego, jego zastosowanie do demontażu łożysk jest jeszcze bardziej niebezpieczne. Wysokie temperatury mogą spowodować deformację elementów oraz zniszczenie łożyska, a także stwarzać ryzyko pożaru, zwłaszcza w warsztatach pełnych materiałów łatwopalnych. Z kolei klucz dynamometryczny jest narzędziem przeznaczonym do dokręcania śrub z określoną siłą, a nie do demontażu. Użycie klucza w tym kontekście jest nieodpowiednie, ponieważ nie ma on zastosowania w procesie wyciągania łożysk. Dobrą praktyką jest zawsze stosowanie odpowiednich narzędzi zgodnych z zaleceniami producentów, co pozwala na efektywne i bezpieczne wykonywanie prac serwisowych.

Pytanie 5

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik uniwersalny
B. miernik parametrów instalacji
C. kamerę termowizyjną
D. miernik RLC
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 6

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 3% roztworu sody oczyszczonej
B. 1% roztworu kwasu octowego
C. 1% roztworu kwasu cytrynowego
D. wody destylowanej
Oparzenia kwasem siarkowym to poważny problem medyczny, który wymaga natychmiastowego działania. W przypadku kontaktu z tym silnym kwasem, pierwszym krokiem jest obfite przemycie oparzonego miejsca wodą, co pozwala na usunięcie resztek kwasu z powierzchni skóry. Następnie, zastosowanie 3% roztworu sody oczyszczonej jest kluczowe, ponieważ soda działa jako łagodny alkalizator, neutralizując działanie kwasu. W praktyce, stosowanie sody oczyszczonej jest zalecane w sytuacjach, gdzie zasadowe pH może przyczynić się do łagodzenia skutków oparzenia. Dobre praktyki w zakresie pierwszej pomocy w takich przypadkach obejmują również monitorowanie stanu pacjenta oraz unikanie używania substancji o bardziej kwasowym charakterze, co mogłoby pogorszyć sytuację. Warto również pamiętać, że w przypadku oparzeń chemicznych, nie zaleca się stosowania wody destylowanej, gdyż nie ma właściwości neutralizujących w odniesieniu do substancji kwasowych. Znajomość tych zasad jest kluczowa w kontekście bezpieczeństwa w miejscu pracy oraz w sytuacjach awaryjnych.

Pytanie 7

W jakiej maksymalnej odległości od czoła czujnika powinien znajdować się przedmiot, aby został wykryty przez czujnik o parametrach podanych w tabeli?

Napięcie zasilania: 12 ÷ 24V DC
Zasięg: 8 mm
Typ wyjścia: NPN N.O., NPN N.C., PNP N.O., PNP N.C.
Rodzaj czoła: odkryte
Obudowa czujnika: M18
Przyłącze: przewód 2 m
Maksymalny prąd pracy: 100 mA
Czas odpowiedzi układu: max. 2 ms
Materiał korpusu: metal
Stopień ochrony: IP66
Temperatura pracy: -20°C ÷ +60°C

A. 66mm
B. 2mm
C. 8mm
D. 12mm
Poprawna odpowiedź to 8 mm, co zgadza się z parametrami czujnika podanymi w tabeli. Zasięg detekcji czujnika wynosi dokładnie 8 mm, co oznacza, że przedmiot musi znajdować się w tej odległości od czoła czujnika, aby mógł zostać skutecznie wykryty. W praktycznych zastosowaniach, takich jak automatyka przemysłowa, robotyka czy systemy zabezpieczeń, znajomość zasięgu detekcji czujników jest kluczowa. Umożliwia to prawidłowe zaprojektowanie systemów, które polegają na precyzyjnym wykrywaniu obiektów. Na przykład, w aplikacjach z wykorzystaniem czujników zbliżeniowych, jeśli odległość obiektu przekroczy zasięg czujnika, wykrycie nie będzie możliwe, co może prowadzić do błędów w działaniu całego systemu. Dlatego też, przy projektowaniu układów automatyki, ważne jest, aby zawsze uwzględniać parametry techniczne czujników, co zapewnia ich efektywne działanie i zgodność ze standardami branżowymi.

Pytanie 8

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Potencjometr obrotowy
B. Mostek tensometryczny
C. Selsyn trygonometryczny
D. Prądnica tachometryczna
Prądnica tachometryczna to fajne urządzenie, które służy do mierzenia prędkości obrotowej wału silnika. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że kiedy wał się kręci, w uzwojeniach prądnicy powstaje prąd, który jest proporcjonalny do prędkości tego obrotu. To bardzo ważne w automatyce i regulacji, bo precyzyjne pomiary prędkości są kluczowe, żeby maszyny działały stabilnie i efektywnie. Na przykład w autach, prądnice tachometryczne pomagają kontrolować prędkość silnika, co z kolei wpływa na zużycie paliwa i emisję spalin. Co więcej, te urządzenia są zgodne z normami europejskimi, jak IEC 60034, więc można na nie liczyć. W praktyce, wdrożenie prądnic tachometrycznych w systemach pomiarowych umożliwia uzyskanie wysokiej dokładności i szybkiej reakcji, co jest super ważne w nowoczesnym przemyśle.

Pytanie 9

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. rotametry
B. galwanometry
C. akcelerometry
D. tensometry
Rotametry, które są stosowane do pomiaru przepływu cieczy lub gazów, nie są odpowiednie do monitorowania przyspieszeń czy drgań. Ich zasada działania opiera się na pomiarze objętościowego przepływu medium, co jest kompletnie inne od potrzeb pomiaru wibracji. Tensometry, z drugiej strony, są używane do pomiaru odkształceń materiałów pod wpływem obciążeń, co również nie odpowiada specyficznym wymaganiom monitorowania drgań w silnikach elektrycznych. Chociaż tensometry mogą być użyteczne w kontekście analiz strukturalnych, ich zastosowanie w monitoringach dynamicznych jest ograniczone. Galwanometry, z kolei, są wykorzystywane do pomiaru prądów elektrycznych, co w kontekście pomiarów wibracyjnych nie ma żadnego zastosowania. Typowym błędem myślowym jest mylenie różnych typów czujników i ich zastosowań, co może prowadzić do wyboru niewłaściwego urządzenia do danego pomiaru. Aby skutecznie monitorować wibracje w elektrycznych silnikach, kluczowe jest zastosowanie odpowiednich czujników, takich jak akcelerometry, które dostarczają rzetelnych danych o stanie technicznym maszyn, co jest istotne dla utrzymania ich w dobrym stanie operacyjnym.

Pytanie 10

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. szumów
B. prędkości
C. temperatury
D. drgań
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 11

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RTT - jedną oś obrotową i dwie osie prostoliniowe
B. TTT - trzy osie prostoliniowe
C. RRR - trzy osie obrotowe
D. RRT - dwie osie obrotowe i jedną oś prostoliniową
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 12

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. NOR
B. NAND
C. AND
D. OR
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 13

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza imbusowego
B. klucza płaskiego
C. wkrętaka płaskiego
D. wkrętaka krzyżowego
Użycie wkrętaka krzyżowego do demontowania sterownika PLC z szyny DIN to nie najlepszy pomysł. Te narzędzia są zaprojektowane bardziej do pracy z krzyżowymi gniazdami, a nie do zwalniania zatrzasków. Jak się mocno pchnie wkrętak krzyżowy, to można uszkodzić zatrzaski, a potem będzie problem z montowaniem z powrotem sterownika. Klucz imbusowy z kolei jest do śrub sześciokątnych, więc do szyn DIN się nie nadaje. A klucz płaski też nie zda egzaminu, bo nie jest do zatrzasków, co może być mylone przez osoby, które nie wiedzą, jak to działa. Używanie złych narzędzi wydłuża czas demontażu i może prowadzić do różnych uszkodzeń. W sytuacjach awaryjnych, kiedy potrzebna jest szybka wymiana, źle dobrane narzędzia mogą wywołać poważne problemy, zarówno techniczne, jak i finansowe. Dlatego trzeba się dobrze zapoznać z tym, co jest potrzebne i używać narzędzi, które poleca producent.

Pytanie 14

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany indukcyjności własnej
B. zmiany pojemności elektrycznej
C. efektu piezoelektrycznego
D. zmiany rezystancji
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 15

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. transformator bezpieczeństwa
B. przekładnik prądowy
C. transformator do zmiany liczby faz
D. przekładnik napięciowy
Zarówno transformator bezpieczeństwa, jak i przekładnik napięciowy, posiadają swoje unikalne zastosowania, ale nie pełnią funkcji zbliżonej do przekładnika prądowego. Transformator bezpieczeństwa jest zaprojektowany w celu ograniczenia napięcia i ochrony systemów pomiarowych przed wysokimi wartościami napięcia, co sprawia, że nie może pracować w pełni obciążonym stanie zwarcia, jak to ma miejsce w przypadku przekładników prądowych. Jego zastosowanie głównie koncentruje się na zapewnieniu bezpieczeństwa ludzi oraz urządzeń w obwodach elektrycznych. Z kolei przekładnik napięciowy działa na zasadzie przekształcania wysokiego napięcia na niskie w celu pomiaru napięcia w obwodach. Oba te urządzenia są używane w systemach pomiarowych, ale ich struktura i funkcjonalność są inne. Zastosowanie transformatorów do zmiany liczby faz dotyczy innego aspektu konwersji energii elektrycznej i nie ma zastosowania w kontekście pomiarów prądowych. Wybór niewłaściwego urządzenia do określonego pomiaru często wynika z braku zrozumienia różnic między tymi urządzeniami, co może prowadzić do poważnych błędów w analizie działania systemu. W praktyce ważne jest, aby dokładnie rozumieć zastosowania różnych typów transformatorów i przekładników, aby odpowiednio je wykorzystać w projektach elektrycznych oraz zapewnić bezpieczeństwo i efektywność operacji.

Pytanie 16

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. suwmiarka
B. szczelinomierz
C. liniał
D. mikrometr
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 17

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal niskowęglowa
B. Stal wysokowęglowa
C. Żeliwo szare
D. Żeliwo białe
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 18

Jakiego koloru powinna być izolacja przewodu PE?

A. Zielony.
B. Żółto-zielony.
C. Niebieski.
D. Brązowy.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 19

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 160 N
B. 150 N
C. 130 N
D. 140 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 20

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 1 i 3
B. wyłącznie tranzystora na wyjściu 3
C. tranzystorów na wyjściach 2 i 4
D. wyłącznie tranzystora na wyjściu 4
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 21

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg

A. 240 V
B. 380V
C. 230 V
D. 400 V
Nieprawidłowe odpowiedzi są wynikiem błędnego zrozumienia zasad działania silników trójfazowych oraz ich charakterystyki elektrycznej. Odpowiedzi 240 V, 380 V i 230 V są typowymi wartościami napięć, które mogą występować w różnych kontekstach, jednak nie odpowiadają one znamionowemu napięciu międzyfazowemu dla silnika asynchronicznego o danych znamionowych. W przypadku silników trójfazowych, napięcie międzyfazowe wynoszące 400 V jest normą w wielu krajach, w tym w Europie. Odpowiedzi 240 V, 230 V i 380 V mogą wynikać z nieporozumień dotyczących napięcia międzyfazowego i jednofazowego lub pomiarów napięcia w różnych warunkach. Często występującym błędem jest mylenie napięcia fazowego z napięciem międzyfazowym; w układzie trójfazowym napięcie fazowe wynosi 230 V, co prowadzi do mylnego wniosku, że jest to wartość właściwa dla napięcia międzyfazowego. Dlatego ważne jest, aby przy analizie danych technicznych silników oraz przy projektowaniu instalacji elektrycznych mieć na uwadze standardy oraz dobre praktyki w branży, których celem jest zapewnienie bezpieczeństwa i niezawodności systemów zasilania.

Pytanie 22

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zwiększenia efektywności układu
B. zmniejszenia lepkości oleju
C. zmniejszenia objętości oleju
D. zwiększenia lepkości oleju
Jak temperatura oleju w hydraulice rośnie, to jego lepkość spada. Fajnie, bo to zjawisko można zobaczyć nie tylko w olejach hydraulicznych, ale i w innych cieczach. Po prostu, im wyższa temperatura, tym cząsteczki oleju mają więcej energii i szybciej się poruszają. W praktyce, olej staje się bardziej płynny, co znaczy, że lepiej krąży w układzie hydraulicznym. Dzięki mniejszej lepkości łatwiej pokonywane są opory, co sprawia, że wszystko działa lepiej. W branży hydraulicznej dobrze jest pilnować temperatury oleju. Jak pracuje długo w wysokich temperaturach, to warto pomyśleć o wymianie lub użyciu innego oleju, który lepiej znosi upały. Te wszystkie standardy, jak ISO 4406 dotyczący czystości oleju, są mega ważne, by olej zachował swoje właściwości w trudniejszych warunkach.

Pytanie 23

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Sklejanie
B. Zgrzewanie
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 24

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. przymiar liniowy
B. poziomnicę
C. czujnik zegarowy
D. kątomierz
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 25

Czy obniżenie temperatury czynnika w sprężarkach prowadzi do

A. powiększania objętości sprężonego powietrza
B. wzrostu ciśnienia sprężonego powietrza
C. osadzania zanieczyszczeń na dnie zbiornika
D. skraplania pary wodnej oraz osuszania powietrza
Odpowiedź dotycząca skraplania pary wodnej oraz osuszania powietrza jest poprawna, ponieważ ochładzanie czynnika roboczego w sprężarkach prowadzi do zmniejszenia jego temperatury, co z kolei powoduje kondensację pary wodnej zawartej w powietrzu. W praktyce, w systemach klimatyzacyjnych oraz chłodniczych, proces ten jest kluczowy dla zapewnienia efektywności działania układów. W momencie, gdy powietrze jest schładzane, jego zdolność do utrzymywania wilgoci maleje, co prowadzi do skraplania się wody. Zjawisko to jest szczególnie istotne w kontekście osuszania powietrza, co przekłada się na lepszą jakość powietrza oraz wydajność systemów. Standardy takie jak ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) podkreślają znaczenie kontroli wilgotności dla poprawy komfortu użytkowników oraz efektywności energetycznej. Dlatego w wielu zastosowaniach, takich jak chłodzenie przemysłowe czy klimatyzacja budynków, stosuje się wymienniki ciepła, które umożliwiają skuteczne zarządzanie wilgotnością oraz temperaturą powietrza.

Pytanie 26

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. generuje mgłę olejową
B. łączy sprężone powietrze z mgłą olejową
C. zapewnia stałe ciśnienie robocze
D. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 27

Wyłącznik silnikowy może zadziałać na skutek

A. uruchomienia silnika przy niewielkim obciążeniu
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. braku jednej fazy zasilającej silnik
D. użycia stałego napięcia w obwodzie sterowania silnika
Skojarzenie uzwojeń silnika w gwiazdę zamiast w trójkąt nie jest przyczyną zadziałania wyłącznika silnikowego, lecz wynika z różnicy w napięciu oraz charakterystyce obciążenia. W przypadku silników małej mocy, skojarzenie w gwiazdę zmniejsza napięcie na uzwojeniach, co jest korzystne przy rozruchu. Włączenie silnika pod niewielkim obciążeniem, co również sugeruje niepoprawna odpowiedź, nie powinno powodować zadziałania wyłącznika, o ile obciążenie jest w granicach dopuszczalnych parametrów silnika. Nieprawidłowe myślenie w tym kontekście często prowadzi do przekonania, że każdy typ obciążenia jest równie niebezpieczny dla silnika, podczas gdy rzeczywistość jest bardziej złożona. Zastosowanie stałego napięcia w obwodzie sterownia silnika jest również błędnym założeniem, gdyż silniki asynchroniczne są zaprojektowane do pracy z napięciem przemiennym. Stosowanie napięcia stałego w takim kontekście prowadziłoby do uszkodzenia silnika, co jest sprzeczne z zasadami jego działania. Kluczowe jest zrozumienie, że prawidłowe zasilanie i odpowiednie parametry pracy silnika to fundamenty jego efektywności i bezpieczeństwa.

Pytanie 28

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Zaciskarkę tulejek
B. Klucz dynamometryczny
C. Zaciskarkę konektorów
D. Klucz płaski
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 29

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
B. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
C. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
D. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia prawidłowe działanie aplikacji. Minimalne wymagania mogą obejmować parametry takie jak procesor, pamięć RAM, dostępna przestrzeń na dysku oraz wersję systemu operacyjnego. Ignorowanie tych wymagań może prowadzić do problemów z wydajnością, a nawet do niemożności uruchomienia oprogramowania. Na przykład, jeśli oprogramowanie wymaga 4 GB RAM, a komputer ma tylko 2 GB, może to spowodować znaczące opóźnienia lub awarie. W branży automatyki standardem jest zawsze upewnienie się, że sprzęt spełnia wymagania, co pozwala na efektywne wykorzystanie oprogramowania. Dodatkowo, niektóre z oprogramowań mogą mieć specyficzne wymagania dotyczące kart graficznych lub złączy, co również warto zweryfikować przed instalacją. Taka praktyka nie tylko minimalizuje ryzyko problemów technicznych, ale również optymalizuje czas potrzebny na konfigurację i uruchomienie systemu.

Pytanie 30

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HL
B. HH
C. HM
D. HR
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 31

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 406,00 cm3
B. 4,06 cm3
C. 40,60 cm3
D. 4060,00 cm3
Wielu użytkowników może pomylić się w obliczeniach objętości cylindra siłownika, co często wynika z niepełnego zrozumienia wzoru na objętość V = A * h. Niepoprawne odpowiedzi, takie jak 4060,00 cm3, 40,60 cm3 czy 4,06 cm3, mogą być wynikiem błędnych przeliczeń lub nieodpowiedniego przeliczenia jednostek. Na przykład, przy odpowiedzi 4060,00 cm3, użytkownik może błędnie założyć, że skok cylindra powinien być bezpośrednio dodany jako wartość w cm, nie przeliczywszy milimetrów na centymetry. Z kolei 40,60 cm3 może sugerować, że użytkownik źle zinterpretował powierzchnię roboczą, być może myląc jednostki lub pomijając istotne przeliczenia. Natomiast odpowiedź 4,06 cm3 jest rażąco nieadekwatna, co może świadczyć o pominięciu kluczowych elementów w procesie obliczeń. Kluczowym krokiem jest prawidłowe zrozumienie i przeliczenie jednostek, co jest niezbędne dla uzyskania właściwych wyników. W praktyce, właściwe obliczenia objętości siłownika mają znaczenie dla wydajności hydrauliki, a ich błędy mogą prowadzić do niewłaściwego doboru komponentów, co w efekcie może wpłynąć na całościową efektywność systemu oraz jego bezpieczeństwo operacyjne.

Pytanie 32

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. czujnik termiczny
B. termoelement
C. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
D. termostat
Termoelement to naprawdę fajne urządzenie do pomiaru temperatury. Działa na zasadzie efektu Seebecka, co oznacza, że generuje napięcie, gdy są różnice temperatur między dwoma różnymi przewodnikami. Jest super dokładny i szybko reaguje na zmiany temperatury, co czyni go idealnym w różnych branżach, takich jak chemia czy przemysł spożywczy. Można go też spotkać w laboratoriach badawczych. Na przykład, w przemyśle monitoruje się dzięki niemu temperaturę, co jest kluczowe, żeby produkt był dobrej jakości. Co ciekawe, w zależności od użytych materiałów, termoelementy mogą działać w różnych zakresach temperatur, a ich właściwości spełniają międzynarodowe standardy, jak na przykład IEC 60584. Dzięki tym cechom są bardzo popularne w systemach automatyki oraz kontroli procesów.

Pytanie 33

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 000 bar
B. 15 bar
C. 1 500 bar
D. 150 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 34

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Odłączenie uziemienia silnika
B. Zmiana kolejności faz
C. Podłączenie kondensatora rozruchowego
D. Zastosowanie wyłącznika instalacyjnego zwłocznego
Zastosowanie wyłącznika instalacyjnego zwłocznego to rozwiązanie, które pozwala na bezpieczne użytkowanie urządzeń z silnikiem trójfazowym, zwłaszcza w sytuacjach, gdy przy rozruchu silnika występują chwilowe przeciążenia. Wyłącznik zwłoczny działa na zasadzie odroczenia zadziałania na krótki okres, co pozwala na rozruch silnika bez ryzyka natychmiastowego wyłączenia z powodu chwilowego wzrostu prądu. W praktyce, tego rodzaju wyłączniki są często stosowane w instalacjach przemysłowych, gdzie silniki mogą doświadczać większych obciążeń przy starcie. Ponadto, takie wyłączniki zgodne są z normami bezpieczeństwa, które zalecają stosowanie urządzeń chroniących przed przeciążeniem. Należy pamiętać, że w sytuacji, gdy silnik jest sprawny, a problemem jest tylko zbyt duży prąd rozruchowy, ważne jest, aby dobrać odpowiedni wyłącznik, który zminimalizuje ryzyko fałszywych alarmów oraz zapewni ciągłość pracy maszyny. W praktyce, instalatorzy powinni również zwracać uwagę na charakterystykę pracy silnika oraz jego zastosowanie, aby dobrać odpowiedni wyłącznik zwłoczny.

Pytanie 35

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Złożonych
B. Uwikłanych
C. Pośrednich
D. Bezpośrednich
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 36

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Żeliwo szare
C. Stal wysokowęglowa
D. Stal niskowęglowa
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 37

Zainstalowanie dodatkowych zaworów bezpieczeństwa w systemie zasilającym zbiornik ciśnieniowy?

A. powiększa ryzyko związane z możliwością rozerwania zbiornika
B. ogranicza ryzyko wynikające z możliwości rozerwania zbiornika
C. całkowicie redukuje ryzyko, jakie wiąże się z możliwością rozerwania zbiornika
D. nie wywiera wpływu na wzrost lub zmniejszenie ryzyka, jakie wynika z możliwości rozerwania zbiornika
Montaż dodatkowych zaworów bezpieczeństwa w instalacji zasilającej zbiornik ciśnieniowy to naprawdę ważny krok, jeśli chodzi o bezpieczeństwo. Te zawory pomagają regulować ciśnienie wewnętrzne, co jest kluczowe, żeby nie doszło do rozerwania zbiornika. W praktyce, dobrze jest stosować zawory zgodnie z międzynarodowymi normami, na przykład ASME czy EN. Wyobraź sobie sytuację w zakładzie przemysłowym, gdzie pompy generują duże ciśnienie; wtedy zawory mogą odprowadzić nadmiar medium, co jest mega przydatne. No i oczywiście pamiętaj o regularnej konserwacji tych zaworów – to też wpływa na bezpieczeństwo całej operacji. Odpowiednio dobrane i zainstalowane zawory naprawdę mogą zmniejszyć ryzyko wypadków, co jest korzystne zarówno dla ludzi, jak i dla samej infrastruktury.

Pytanie 38

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. iskra prowadząca do pożaru lub wybuchu
B. odłamki rozrywanych maszyn
C. nadmierny hałas generowany przez pracujące urządzenia
D. przenoszenie wibracji na pracownika
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 39

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 15 V
B. 25 V
C. 5 V
D. 10 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 40

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Sterownik PLC
B. Przekaźnik programowalny
C. Panel operatorski HMI
D. Robot przemysłowy
Sterownik PLC, robot przemysłowy i przekaźnik programowalny to urządzenia, które pełnią różne funkcje w systemach automatyki, ale nie służą jako bezpośredni interfejs komunikacyjny pomiędzy operatorem a maszyną. Sterownik PLC (Programmable Logic Controller) jest używany do automatyzacji procesów i zarządzania urządzeniami w zakładach produkcyjnych. Jego główną rolą jest monitorowanie sygnałów wejściowych z czujników i wykonywanie odpowiednich działań na wyjściu, jednak nie jest zaprojektowany do bezpośredniego interakcji z operatorem. Robot przemysłowy z kolei wykonuje precyzyjnie zaprogramowane ruchy i operacje, ale również nie komunikuje się bezpośrednio z użytkownikiem w sposób interaktywny. Przekaźnik programowalny działa na zasadzie przełączania sygnałów elektrycznych, co czyni go przydatnym w prostych aplikacjach, ale również nie spełnia roli interfejsu operatora. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów mechatronicznych. Często mylnie zakłada się, że te urządzenia mogą pełnić rolę interfejsu, co prowadzi do nieefektywności w obsłudze i nadzoru nad procesami technologicznymi. Odpowiednie zastosowanie technologii HMI pozwala na lepsze zarządzanie systemami oraz poprawę wydajności pracy operatorów poprzez dostarczenie im narzędzi do efektywnej interakcji z maszynami.