Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 maja 2025 13:16
  • Data zakończenia: 8 maja 2025 13:32

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie służy do mierzenia ciśnienia?

A. tachometr
B. pirometr
C. luksomierz
D. manometr
Manometr jest urządzeniem służącym do pomiaru ciśnienia gazów lub cieczy. Pomiar ciśnienia jest kluczowy w wielu dziedzinach, takich jak inżynieria, przemysł chemiczny, hydraulika oraz w systemach HVAC. Manometry mogą być mechaniczne, wykorzystujące zasadę sprężystości lub cieczy, lub elektroniczne, które oferują większą dokładność oraz możliwość zdalnego odczytu. Przykładem zastosowania manometrów jest monitorowanie ciśnienia w instalacjach wodociągowych, gdzie nadmierne ciśnienie może prowadzić do uszkodzeń. W przemyśle chemicznym manometry są niezbędne do kontrolowania procesów reakcyjnych, które są wrażliwe na ciśnienie. W standardach branżowych, takich jak ASME B40.100, określone są wymagania dotyczące kalibracji i konserwacji manometrów, co zapewnia ich niezawodność i dokładność. Zrozumienie i poprawne stosowanie manometrów jest kluczowe w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 2

Co oznacza zapis IP20 w kontekście urządzenia elektronicznego?

A. ilość zacisków wyjściowych
B. stopień ochrony obudowy
C. częstotliwość napięcia zasilającego
D. moc pozorna
Zapis IP20 na urządzeniu elektronicznym oznacza stopień ochrony obudowy, który jest określany według standardu IEC 60529. IP to skrót od 'Ingress Protection' i wskazuje na poziom ochrony przed wnikaniem ciał stałych oraz cieczy. Liczba '2' oznacza, że obudowa jest chroniona przed dostępem do części niebezpiecznych przy użyciu palca (do 12,5 mm), co czyni ją względnie bezpieczną w normalnych warunkach eksploatacji. Liczba '0' wskazuje, że urządzenie nie jest chronione przed wodą. Przykładem zastosowania IP20 mogą być urządzenia elektroniczne używane w pomieszczeniach, które nie są narażone na kontakt z wodą, jak np. komputery stacjonarne czy osprzęt biurowy. Zrozumienie oznaczeń IP jest kluczowe dla zapewnienia odpowiedniego poziomu bezpieczeństwa i trwałości urządzeń w różnych środowiskach pracy. W praktyce, dobór odpowiedniego stopnia ochrony obudowy powinien być zgodny z warunkami, w jakich dany sprzęt będzie używany, aby zabezpieczyć go przed uszkodzeniami.

Pytanie 3

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
B. podniesienie prędkości działania programu
C. określenie tempa przetwarzania poszczególnych instrukcji
D. zablokowanie obsługi przerwań zewnętrznych
Wykonywanie programu w trybie krokowym, określane również jako 'instrukcja po instrukcji', ma kluczowe znaczenie dla diagnostyki błędów w oprogramowaniu. Ta metoda pozwala programistom na analizowanie działania programu w czasie rzeczywistym, co ułatwia identyfikację miejsc, w których mogą wystąpić nieprawidłowości. Przykładowo, debugger umożliwia przechodzenie przez każdą linię kodu, monitorując wartości zmiennych oraz stan pamięci. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami inżynierii oprogramowania, w tym metodologią Test-Driven Development (TDD), gdzie testowanie i poprawianie kodu odbywa się w cyklu iteracyjnym. Warto również zwrócić uwagę na to, że tryb krokowy jest niezwykle pomocny w kontekście złożonych systemów, takich jak embedded systems, gdzie błędy mogą prowadzić do krytycznych awarii sprzętowych. Poprawne zidentyfikowanie błędu na etapie rozwoju oprogramowania pozwala na oszczędność czasu i zasobów w późniejszych fazach projektu.

Pytanie 4

Korytka kablowe powinny być

A. przykręcone
B. przyspawane
C. przyklejone
D. zaciskane
Odpowiedź 'przykręcić' jest poprawna, ponieważ korytka kablowe do ściany budynku powinny być montowane w sposób zapewniający ich stabilność i trwałość. Przykręcanie korytek do ściany umożliwia ich solidne mocowanie, co jest istotne dla ochrony przewodów elektrycznych przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Do montażu korytek często stosuje się wkręty samowiercące lub wkręty do drewna, w zależności od materiału, z którego wykonana jest ściana. Przykładowo, w przypadku ścian betonowych lub murowanych można użyć kołków rozporowych. Dobrą praktyką jest również wykorzystanie odpowiednich dystansów, które pomogą w utrzymaniu korytka w odpowiedniej odległości od ściany, co sprzyja wentylacji i minimalizuje ryzyko przegrzewania się kabli. Zgodnie z normami, takimi jak PN-IEC 60364, odpowiedni montaż korytek kablowych jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej.

Pytanie 5

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Duża wilgotność powietrza
B. Porywisty podmuch wiatru
C. Wysoka temperatura powietrza
D. Intensywny opad atmosferyczny
Czynniki atmosferyczne, takie jak wysoka temperatura powietrza, duża wilgotność oraz porywisty podmuch wiatru, mogą wpływać na wrażenia odbiorcze, lecz w inny sposób niż intensywne opady deszczu. Wysoka temperatura powietrza nie ma bezpośredniego wpływu na sygnał DVB-T, chociaż może wpływać na działanie sprzętu, takiego jak anteny i dekodery. Z kolei duża wilgotność powietrza, mimo że może prowadzić do pewnego stopnia tłumienia sygnału, nie jest tak znaczącym czynnikiem jak opady deszczu, które intensywnie absorbują i rozpraszają fale radiowe. Porywisty wiatr również nie jest czynnikiem determinującym jakość sygnału, aczkolwiek może wpływać na stabilność anteny, zwłaszcza jeśli nie jest odpowiednio zamocowana. Typowy błąd myślowy polega na utożsamianiu ogólnych warunków atmosferycznych z ich wpływem na sygnał telewizyjny, co prowadzi do nieprawidłowych wniosków. Dlatego kluczowe jest zrozumienie, że różne zjawiska atmosferyczne oddziałują na jakość sygnału w odmienny sposób, a w przypadku DVB-T intensywne opady deszczu są najważniejszym czynnikiem wpływającym na jego odbiór.

Pytanie 6

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o identycznej rezystancji i niższej mocy
B. o wyższej rezystancji i tej samej mocy
C. o identycznej rezystancji i wyższej mocy
D. o niższej rezystancji i tej samej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 7

Jaką jednostką określa się moc czynną?

A. V
B. W
C. VA
D. var
Moc elektryczna to kluczowy parametr w analizie obwodów, a jej jednostka, wat (W), jest niezastąpionym wskaźnikiem dla inżynierów i techników. Odpowiedzi, które nie są jednostką mocy czynnej, wprowadzają w błąd i mogą prowadzić do nieprawidłowych wniosków. Volt (V) jest jednostką napięcia elektrycznego, a nie mocy. Napięcie to różnica potencjałów, która powoduje przepływ prądu. Utrata zrozumienia różnicy między napięciem a mocą może skutkować błędnymi obliczeniami w projektowaniu obwodów. Z kolei VA (woltamper) to jednostka mocy pozornej, która nie uwzględnia kąta fazowego, a zatem nie odzwierciedla rzeczywistej mocy wykorzystanej przez urządzenia. Zastosowanie VA jest ograniczone do określenia maksymalnej mocy, ale nie jest wystarczające do oceny efektywności energetycznej. var (woltamper reaktywny) odnosi się do mocy reaktywnej, która jest mocy, która nie wykonuje pracy użytkowej, a jest związana z elementami indukcyjnymi i pojemnościowymi w obwodach. Ignorowanie różnicy między mocą czynną, pozorną i reaktywną może prowadzić do nieefektywnego projektowania instalacji elektrycznych, co z kolei pociąga za sobą zwiększone koszty eksploatacji i ryzyko awarii. Zrozumienie tych pojęć jest kluczowe dla efektywnego zarządzania energią i zapewnienia optymalizacji systemów elektrycznych.

Pytanie 8

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Warikap
B. Dioda LED
C. Tranzystor bipolarny
D. Tyrystor
Dioda elektroluminescencyjna, czyli LED, to półprzewodnikowe źródło światła, które świeci dzięki rekombinacji elektronów i dziur. Zazwyczaj ma dwuwarstwową strukturę p-n, przez co nie działa jak tyrystor, który ma cztery warstwy. Wydaje mi się, że niektórym może się pomylić, że dioda może mieć czterowarstwową budowę, a to nieprawda. Z kolei warikap to dioda, która zmienia pojemność w odpowiedzi na napięcie, więc to też nie jest to, czego szukamy w tej sytuacji. A jeśli chodzi o tranzystory bipolarne, to mają trzy warstwy, co sprawia, że są zupełnie inne niż tyrystory. Wiem, że czasem łatwo pomylić różne elementy półprzewodnikowe, ale warto to zrozumieć, żeby nie wprowadzać się w błąd i nie robić błędów przy projektowaniu układów elektronicznych.

Pytanie 9

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NC, systemy domofonowe – NO
B. Systemy blokowania przejścia – NO, systemy domofonowe – NO
C. Systemy blokowania przejścia – NC, systemy domofonowe – NC
D. Systemy blokowania przejścia – NO, systemy domofonowe – NC
Poprawna odpowiedź to 'Systemy blokowania przejścia – NO, systemy domofonowe – NC'. W systemach blokowania przejścia, stosowanie elektrozaczepów normalnie otwartych (NO) jest powszechną praktyką, ponieważ umożliwiają one natychmiastowe otwarcie zamka w momencie podania sygnału, co jest kluczowe w sytuacjach, gdy wymagane jest szybkie zwolnienie blokady, na przykład w obiektach o dużym natężeniu ruchu. Z kolei w systemach domofonowych, elektrozaczepy normalnie zamknięte (NC) są preferowane, ponieważ zapewniają większe bezpieczeństwo poprzez stałe blokowanie drzwi, które można otworzyć jedynie po aktywacji systemu, na przykład poprzez naciśnięcie przycisku na panelu domofonowym. Takie rozwiązanie minimalizuje ryzyko nieautoryzowanego dostępu, co jest zgodne z najlepszymi praktykami w zakresie zabezpieczeń budynków. Zrozumienie funkcji obu typów zaczepów i ich zastosowań jest kluczowe dla skutecznego projektowania systemów dostępu oraz zwiększania bezpieczeństwa budynków.

Pytanie 10

W jakim urządzeniu stosuje się zjawisko defleksji elektronów w polu elektromagnetycznym?

A. Nośniku optycznym
B. Dysku twardym
C. Ekranie LCD
D. Monitorze CRT
Twarde dyski, panele LCD oraz napędy optyczne nie bazują na zjawisku odchylania elektronów w polu elektromagnetycznym. Twarde dyski działają na zasadzie magnetyzmu i wykorzystują mechaniczne elementy do odczytu i zapisu danych, co różni się od wykorzystania elektronów w monitorach CRT. W przypadku paneli LCD, obraz jest generowany przez manipulację światłem, które przechodzi przez ciekłe kryształy, a nie przez odchylanie elektronów. Technologia LCD nie wykorzystuje elektronów w sposób, w jaki robi to CRT; zamiast tego, kontroluje intensywność światła poprzez zmiany w orientacji cząsteczek ciekłych kryształów. Napędy optyczne, takie jak napędy DVD, działają na zasadzie lasera, który odczytuje dane zapisane na płytach, co również jest całkowicie różne od zjawiska odchylania elektronów. W wyborach odpowiedzi na takie pytania, kluczowe jest zrozumienie, jak konkretne technologie działają na poziomie fizycznym i technicznym, aby uniknąć mylnych wniosków. Nieprawidłowe odpowiedzi mogą wynikać z niepełnego zrozumienia różnic między technologiami oraz ich zastosowań w praktyce, co jest istotne w kontekście zawodów związanych z informatyką i inżynierią.

Pytanie 11

Na podstawie przeprowadzonych pomiarów pasma przenoszenia wzmacniacza ustalono dolną częstotliwość graniczną fd = 0,1 Hz oraz górną częstotliwość graniczną fg = 150 Hz. Jaki to typ wzmacniacza?

A. selektywny
B. dla dolnej części pasma akustycznego
C. dla górnej części pasma akustycznego
D. szerokopasmowy
Wybór odpowiedzi wskazujących na selektywny wzmacniacz, wzmacniacz dla górnej części pasma akustycznego czy szerokopasmowy wskazuje na pewne nieporozumienia dotyczące definicji i zastosowań wzmacniaczy w kontekście pasma przenoszenia. Selektywny wzmacniacz, który ma ograniczony zakres częstotliwości, jest używany głównie w radiach i systemach komunikacyjnych, gdzie kluczowe jest wzmocnienie konkretnych sygnałów, a nie ogólne pasmo. Natomiast wzmacniacz dla górnej części pasma akustycznego skupiałby się na wyższych częstotliwościach, co nie jest zgodne z podanymi wartościami fd i fg. Wzmacniacze szerokopasmowe są zaprojektowane do obsługi szerokiego zakresu częstotliwości, co również nie jest zgodne z charakterystyką wzmacniacza, który ma wąski zakres od 0,1 Hz do 150 Hz. Typowe błędy myślowe mogą obejmować niezrozumienie, że dolne pasmo akustyczne obejmuje niskie częstotliwości, co często prowadzi do pomylenia z pasmami wyższymi. W praktyce, dobór odpowiedniego wzmacniacza do konkretnego zastosowania jest kluczowy dla uzyskania optymalnej jakości dźwięku, co w przypadku niskich częstotliwości wymaga odpowiednich rozwiązań technicznych.

Pytanie 12

Kabel UTP służący do połączenia komputera z gniazdem abonenckim nazywa się potocznie

A. patchcord
B. patch panel
C. łącznik
D. pigtail
Wybór innych terminów zamiast patchcordu odzwierciedla powszechne nieporozumienia w terminologii sieciowej. Pigtail to krótki kabel, który najczęściej jest używany do łączenia światłowodów, a jego zastosowanie w kontekście kabli miedzianych jest błędne. Pigtail ma swoje miejsce w instalacjach światłowodowych, gdzie służy do zakończenia włókna światłowodowego w złączach, lecz nie pełni roli łącznika między komputerem a gniazdem abonenckim w sieciach miedzianych. Patch panel to komponent, który grupuje i organizuje kable sieciowe w centralnym punkcie, umożliwiając łatwe zarządzanie połączeniami, ale nie jest to kabel, a raczej element infrastruktury, który wspiera organizację sieci. Łącznik, z kolei, jest terminem ogólnym, który nie odnosi się do konkretnego akcesorium stosowanego w połączeniach sieciowych; w kontekście sieci komputerowych najczęściej mówimy o urządzeniach, takich jak switche czy routery, które zarządzają ruchem danych. Użycie tych terminów w miejsce patchcordu może prowadzić do błędnej interpretacji, a tym samym do nieefektywnego zarządzania siecią oraz problemów z jej konfiguracją i wydajnością. W kontekście budowy sieci warto posługiwać się precyzyjną terminologią, aby unikać zamieszania i zapewnić skuteczne korzystanie z zasobów sieciowych.

Pytanie 13

Kabel wyposażony w wtyki RJ45 jest wykorzystywany między innymi do połączenia

A. komputera z ruterem
B. czujnika ruchu z centralką alarmową
C. kamery z rejestratorem video
D. komputera z monitorem
Kable z wtykami RJ45 to coś, co znajdziesz w większości sieci komputerowych, zwłaszcza tych, które korzystają z Ethernetu. Dzięki nim możemy łączyć różne urządzenia, jak komputery, routery czy switch’e, a to jest naprawdę ważne w dzisiejszych czasach, kiedy każdy ma różne urządzenia w swoim domu czy biurze. Wtyki RJ45 działają na różnych standardach, takich jak 10BASE-T, 100BASE-TX czy 1000BASE-T, co oznacza, że mogą przesyłać dane z prędkościami od 10 Mbps do 1 Gbps. W domach czy biurach, gdzie jest sporo sprzętu, takie połączenia są kluczowe, bo zapewniają stabilne i szybkie połączenie internetowe, co jest niezbędne do pracy zdalnej czy przy przesyłaniu dużych plików. Można sobie wyobrazić sytuację, że komputer podłączony kablem RJ45 do routera ma konkretne, stabilne połączenie, co super ułatwia pracę, zwłaszcza przy wideokonferencjach. A jeśli chodzi o miejsca, które muszą być super niezawodne, jak serwerownie, tam zazwyczaj korzysta się z lepszych kabli, na przykład kategorii 6, które mają lepsze możliwości i są bardziej odporne na zakłócenia.

Pytanie 14

Aby połączyć segmenty sieci LAN za pomocą kabla Ethernet w jedną większą sieć, należy wykorzystać

A. router.
B. modem.
C. bramkę.
D. switch.
Wybór routera jako urządzenia do łączenia segmentów sieci LAN jest błędny, ponieważ routery pełnią inną rolę w architekturze sieci. Router jest odpowiedzialny za kierowanie pakietami danych między różnymi sieciami, a nie za zarządzanie komunikacją wewnątrz jednego segmentu. Działa on na trzeciej warstwie modelu OSI i wykorzystuje adresy IP do podejmowania decyzji dotyczących trasowania. Korzystanie z routera do łączenia urządzeń w sieci LAN wprowadza dodatkową złożoność i opóźnienia, które są niepotrzebne w takim kontekście. Modem z kolei jest urządzeniem stosowanym do łączenia lokalnej sieci z internetem, konwertując sygnały cyfrowe na analogowe i odwrotnie. Nie służy on do wewnętrznego zarządzania komunikacją pomiędzy urządzeniami w sieci LAN, co czyni go niewłaściwym wyborem w tym przypadku. Bramki, będące mostem między różnymi protokołami, również nie są odpowiednie do łączenia segmentów LAN, ponieważ ich podstawowym zadaniem jest konwersja protokołów. Tego rodzaju błędne podejścia wynikają często z pomylenia ról poszczególnych urządzeń sieciowych oraz braku zrozumienia, jak działają różne warstwy modelu OSI. Ważne jest, aby rozróżniać te urządzenia i ich funkcje, aby efektywnie zarządzać siecią i zapewnić odpowiednią wydajność oraz bezpieczeństwo.

Pytanie 15

Reflektometr optyczny to urządzenie wykorzystywane do zlokalizowania uszkodzeń w

A. światłowodach
B. ogniwach fotowoltaicznych
C. matrycach LCD
D. matrycach LED RGB
Reflektometr optyczny to naprawdę fajne urządzenie, które przydaje się w telekomunikacji i technologii optycznej. Dzięki niemu można lokalizować uszkodzenia w systemach światłowodowych. W przypadku matryc LCD, jak są jakieś problemy z podświetleniem lub sygnałem, reflektometr potrafi pomóc w diagnozowaniu i naprawach. Analizując odbite sygnały świetlne, można dokładnie zlokalizować miejsce awarii. Na przykład, jeśli matryca LCD ma diody LED do podświetlenia, reflektometr może wykryć odbicia, które wskazują na pęknięcia czy inne defekty. To naprawdę ułatwia precyzyjne naprawy i może obniżyć koszty serwisowe. Używanie takich urządzeń jest zgodne z najlepszymi praktykami w branży, co podkreśla ich ważność w utrzymaniu i serwisie nowoczesnych systemów optycznych.

Pytanie 16

Aby zmierzyć tłumienie w światłowodzie jednomodowym, które urządzenie powinno zostać użyte?

A. reflektometr
B. wobuloskop
C. oscyloskop
D. fotometr
Reflektometria optyczna to technika pomiarowa, która jest kluczowa w ocenie tłumienności światłowodów jednomodowych. Reflektometr, wykorzystujący metodę czasu przelotu (OTDR), umożliwia dokładne pomiary strat sygnału w światłowodzie, co jest istotne dla zapewnienia jakości transmisji danych. Dzięki tej metodzie można identyfikować miejsca uszkodzeń, zagięć i innych anomalii, które mogą wpływać na wydajność sieci. Przykładowo, w trakcie instalacji nowych światłowodów, reflektometr pozwala na szybkie zlokalizowanie ewentualnych problemów, co przyspiesza proces serwisowania i minimalizuje przestoje w komunikacji. Dobre praktyki w branży telekomunikacyjnej zalecają regularne korzystanie z reflektometrów podczas konserwacji sieci, aby utrzymać optymalną jakość sygnału oraz spełniać standardy branżowe, takie jak ITU-T G.652. Reflektometr jest więc niezbędnym narzędziem w pracy techników zajmujących się sieciami optycznymi.

Pytanie 17

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. kabel będzie generował silniejsze pole elektromagnetyczne
B. dojdzie do zmniejszenia impedancji kabla
C. może to prowadzić do obniżenia odporności na zakłócenia
D. zwiększy się impedancja kabla
Przekonania zawarte w błędnych odpowiedziach opierają się na nieprawidłowym zrozumieniu zasad działania kabli krosowych. Zmiana impedancji kabla, co sugeruje jedna z odpowiedzi, nie jest bezpośrednio związana z długością odcinka rozkręcenia. Zmniejszenie impedancji w rzeczywistości może prowadzić do problemów z dopasowaniem impedancji w sieci, jednak nie jest to główny problem związany z rozkręceniem par przewodów. W kontekście pól elektromagnetycznych, kabel krosowy nie stanie się źródłem większego pola elektromagnetycznego jedynie z powodu rozkręcenia par, o ile nie przekroczymy określonych wartości w standardzie. Ważne jest zrozumienie, że kluczowym czynnikiem jest odporność na zakłócenia, a nie tylko pole elektromagnetyczne. W przypadku zwiększenia impedancji, warto zauważyć, że nie jest to możliwe poprzez samo rozkręcenie par przewodów. Problemy z zakłóceniami, które mogą powstać w wyniku niewłaściwego montażu, są bardziej złożone, ale ich głównym efektem jest właśnie spadek jakości sygnału. W praktyce, aby uniknąć tych błędów, ważne jest przestrzeganie standardów montażu i zapewnienie, by długość rozkręcenia nie przekraczała 13 mm, co jest istotne dla utrzymania wysokiej jakości transmisji danych.

Pytanie 18

Jakie urządzenie jest przeznaczone do bezdotykowego pomiaru temperatury?

A. multimetru
B. pirometru
C. luksomierza
D. kalorymetru
Pirometr jest urządzeniem służącym do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie rejestrowania promieniowania podczerwonego emitowanego przez ciało, co pozwala na określenie jego temperatury bez konieczności bezpośredniego kontaktu. Pirometry są niezwykle przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry, mogą być niepraktyczne lub niebezpieczne, na przykład w przypadku gorących powierzchni, elementów w ruchu lub materiałów szkodliwych. W przemyśle, medycynie, a także w laboratoriach, użycie pirometrów pozwala na szybkie i dokładne pomiary, co jest zgodne z najlepszymi praktykami w zakresie monitorowania procesów technologicznych oraz zapewnienia bezpieczeństwa. Warto również zaznaczyć, że wiele pirometrów jest wyposażonych w funkcje, które umożliwiają zapisywanie danych oraz ich analizę, co zwiększa efektywność monitorowania temperatury w dłuższym okresie czasu.

Pytanie 19

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 4
B. 8
C. 5
D. 10
Poprawna odpowiedź to 5 żył, ponieważ w systemie domofonowym 4+N unifon wymaga czterech przewodów do przesyłania sygnału audio oraz zasilania, a dodatkowy przewód, zwany N (neutralnym), jest niezbędny dla prawidłowego funkcjonowania systemu. Zastosowanie takiego układu przewodów umożliwia nie tylko komunikację z bramofonem, ale także zapewnia zasilanie i możliwość sterowania zamkiem elektromechanicznym. W systemach domofonowych zgodnych z tą specyfikacją, ważne jest, aby przewody były odpowiednio dobrane do długości instalacji oraz obciążenia, co zapewnia stabilność i niezawodność działania. Dobrą praktyką jest również stosowanie przewodów o odpowiednim przekroju, co zabezpiecza przed spadkami napięcia. W przypadku większych instalacji, rekomenduje się również użycie zasilacza o odpowiedniej mocy, aby zapewnić właściwą funkcjonalność wszystkich urządzeń w systemie. Takie podejście do instalacji pozwala na długotrwałe i bezawaryjne użytkowanie systemu domofonowego.

Pytanie 20

Który z wymienionych komponentów wykorzystuje się w systemach automatyki przemysłowej do pomiaru temperatury?

A. Triak
B. Warystor
C. Tyrystor
D. Termistor
Termistor jest elementem czujnikowym, który zmienia opór elektryczny w zależności od temperatury. Jest to stosunkowo powszechny komponent w automatyce przemysłowej, wykorzystywany w różnych systemach pomiarowych i kontrolnych. Jego budowa opiera się na materiałach półprzewodnikowych, które charakteryzują się dużą czułością na zmiany temperatury, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur. Przykładowe zastosowania termistorów obejmują kontrolę temperatury w piecach przemysłowych, klimatyzacji, a także w systemach monitorowania procesów chemicznych. Zgodnie ze standardami, termistory są często wykorzystywane w systemach automatyki do zapewnienia efektywnej regulacji i optymalizacji procesów, co przekłada się na zwiększenie efektywności energetycznej oraz bezpieczeństwa operacji. Zastosowanie termistorów w połączeniu z odpowiednim oprogramowaniem pozwala na tworzenie zaawansowanych algorytmów kontroli, co jest zgodne z najlepszymi praktykami w branży automatyki."

Pytanie 21

Gdy zachodzi potrzeba połączenia światłowodu z przewodem skrętkowym, powinno się użyć

A. router.
B. koncentrator.
C. konwerter.
D. wzmacniak.
Wydaje mi się, że wybór wzmacniaka, routera lub koncentratora w przypadku łączenia światłowodu ze skrętką pokazuje, że nie do końca rozumiesz, jak te urządzenia działają i do czego służą w sieciach. Wzmacniak ma za zadanie zwiększać moc sygnału, co jest przydatne, gdy sygnał osłabia się na długich odcinkach, ale nie rozwiąże problemu, bo nie przekształca sygnału optycznego na elektryczny. Router z kolei zarządza ruchem w sieci i rozdziela sygnał, ale też nie służy do konwersji sygnałów. Wprowadzenie routera do połączenia światłowodu z skrętką może spowodować błędy w konfiguracji i nieefektywne wykorzystanie sieci. A koncentrator, czyli hub, działa tylko jako dzielnik pasma sieciowego, więc także nie rozwiązuje problemu. Użycie tych urządzeń w tej sytuacji sugeruje, że brakuje Ci wiedzy na temat ich realnych funkcji i roli w sieciach komputerowych. Żeby skutecznie wykorzystać technologię, warto znać standardy i zasady transmisji danych, co w tym przypadku wskazuje na to, że powinno się użyć konwertera.

Pytanie 22

Urządzenie pozwalające na podłączenie większej ilości czujników do systemu alarmowego nosi nazwę

A. ekspandera wejść
B. modułu GSM
C. ekspandera wyjść
D. modułu ETHM
Moduł ETHM, ekspander wyjść oraz moduł GSM to urządzenia, które pełnią różne funkcje w systemach alarmowych, ale nie są przeznaczone do rozszerzania liczby czujników. Moduł ETHM służy do komunikacji z siecią Ethernet, co pozwala na zdalne zarządzanie systemem alarmowym za pomocą aplikacji lub przeglądarki internetowej. Jego głównym zastosowaniem jest umożliwienie dostępu do danych alarmowych i zarządzanie nimi zdalnie, co jest niezwykle istotne w nowoczesnych systemach zabezpieczeń. Ekspander wyjść, z drugiej strony, jest urządzeniem, które zwiększa liczbę wyjść w centrali, co może być przydatne do podłączenia dodatkowych sygnalizatorów alarmowych lub innych urządzeń, ale nie dodaje nowych czujników. Moduł GSM natomiast zapewnia komunikację systemu alarmowego z siecią GSM, co umożliwia powiadamianie użytkowników o alarmach poprzez SMS lub połączenia telefoniczne. Istnieje często mylne przekonanie, że te urządzenia mogą pełnić tę samą funkcję, co ekspander wejść, co prowadzi do błędnych wniosków przy projektowaniu systemów alarmowych. Kluczowym błędem jest brak zrozumienia, że każde z tych urządzeń ma swoją specyfikę i zastosowanie, które powinny być dostosowane do konkretnych potrzeb danego systemu zabezpieczeń.

Pytanie 23

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. wyłącznie w pionie
B. w pionie oraz poziomie
C. najkrótszą trasą
D. tylko w poziomie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 24

W trakcie serwisowania systemu alarmu przeciwwłamaniowego oraz napadowego konieczne jest sprawdzenie

A. dokumentu gwarancyjnego systemu
B. ustawienia lokalizacji czujników
C. poziomu naładowania akumulatora
D. ciągłości linii dozorowych za pomocą miernika
Lokalizacja umiejscowienia czujek jest istotna, jednak nie jest kluczowym aspektem konserwacji systemu sygnalizacji. Pomimo, że czujniki muszą być odpowiednio umiejscowione, aby skutecznie wykrywać intruzów, ich lokalizacja to kwestia, która jest ustalana w trakcie pierwszej instalacji systemu. W miarę upływu czasu można zmieniać ich położenie, ale nie jest to regularnie wymagany element konserwacji. W kontekście stanu naładowania akumulatora, jego znaczenie dla działania systemu nie może być pominięte. Kontrola ciągłości linii dozorowych za pomocą miernika również jest ważna, lecz nie zastępuje konieczności sprawdzenia akumulatora, który może być jedynym źródłem zasilania w przypadku awarii sieci. Karta gwarancyjna systemu ma znaczenie głównie w kontekście wsparcia producenta, ale nie wpływa na codzienną funkcjonalność systemu, zatem jej sprawdzanie nie powinno być traktowane jako element konserwacji. Typowym błędem myślowym jest koncentrowanie się na aspektach, które nie mają bezpośredniego wpływu na działanie systemu, zamiast na kluczowych elementach, które zapewniają jego niezawodność, takich jak stan akumulatora, co jest niezbędne dla bezpieczeństwa obiektu.

Pytanie 25

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. LAN
B. HDMI
C. SATA
D. USB
Wybór błędnych złączy, takich jak HDMI, USB czy LAN, wskazuje na niepełne zrozumienie ich funkcji oraz ograniczeń w kontekście archiwizacji danych. Złącze HDMI (High-Definition Multimedia Interface) służy głównie do przesyłania sygnału wideo i audio między urządzeniami, ale nie jest przeznaczone do transferu danych do lokalnego przechowywania. Używanie HDMI do archiwizacji materiału wideo byłoby błędne, ponieważ złącze to nie wspiera bezpośredniego dostępu do pamięci masowej. USB (Universal Serial Bus) jest wszechstronnym złączem, które umożliwia transfer danych, jednak jego zastosowanie w profesjonalnych systemach archiwizacji wideo może być ograniczone przez niższą wydajność w porównaniu do SATA. USB 3.0, na przykład, osiąga prędkości do 5 Gbps, co w przypadku dużych plików wideo może okazać się niewystarczające, zwłaszcza w sytuacjach wymagających ciągłego zapisu, jak podczas nagrywania na żywo. Z kolei złącze LAN (Local Area Network) jest używane do komunikacji sieciowej i nie służy do podłączania dysków twardych w sposób umożliwiający ich bezpośrednie użycie w rejestratorze. Choć LAN może być wykorzystywane do zdalnego dostępu do materiału wideo lub do przesyłania danych między urządzeniami, nie zastępuje fizycznego połączenia z dyskiem. Właściwe zrozumienie różnorodnych interfejsów i ich zastosowań jest kluczowe dla efektywnego zarządzania infrastrukturą przechowywania danych oraz zapewnienia optymalnej wydajności systemu.

Pytanie 26

Do styku oznaczonego jako TMP w czytniku kart umiejscowionym przy wejściu należy podłączyć

A. do zacisku uziemiającego w centrali
B. do linii antysabotażowej systemu alarmowego
C. szeregowo do zasilania czytnika
D. równolegle do zasilania czytnika
Odpowiedź wybierająca podłączenie styku TMP do linii antysabotażowej systemu alarmowego jest prawidłowa, ponieważ styk ten jest zaprojektowany w celu wykrywania prób sabotażu czytnika. Podłączenie do linii antysabotażowej zapewnia, że wszelkie nieautoryzowane manipulacje przy czytniku lub jego odłączenie zostaną natychmiast zasygnalizowane systemowi alarmowemu. Taka konfiguracja jest zgodna z dobrymi praktykami ochrony obiektów, która zakłada, że urządzenia zabezpieczające powinny być monitorowane pod kątem ich integralności. Na przykład, w przypadku, gdy ktoś spróbuje usunąć czytnik z miejsca montażu, linia antysabotażowa wykryje to zdarzenie, co pozwoli na natychmiastowe powiadomienie odpowiednich służb. Implementacja tego rozwiązania w systemach zabezpieczeń jest standardem w branży, co potwierdzają normy takie jak EN 50131, które regulują kwestie bezpieczeństwa instalacji alarmowych.

Pytanie 27

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. odbiornika TV
B. odtwarzacza DVD
C. nadajnika TV
D. rejestratora DVR
Rejestrator DVR (Digital Video Recorder) to urządzenie, którego parametry techniczne w tabeli są zgodne z jego funkcjami. Tryb pracy pentaplex, który pozwala na jednoczesne nagrywanie, odtwarzanie, podgląd na żywo oraz zdalne zarządzanie, jest kluczowy w kontekście monitoringu oraz zabezpieczeń. Kompresja H.264 zapewnia efektywne przechowywanie danych wideo, co jest istotne w kontekście ograniczonej pojemności dysków twardych. Możliwość nagrywania z prędkością 25 kl/s w rozdzielczości 1080p świadczy o wysokiej jakości nagrania, co jest wymogiem w profesjonalnych systemach CCTV. Wyjścia HDMI i VGA umożliwiają podłączenie do nowoczesnych monitorów i telewizorów, co zwiększa wszechstronność urządzenia. Obsługa przez dedykowane oprogramowanie, takie jak BCS View Manager, pozwala na łatwe zarządzanie nagraniami oraz konfigurację urządzenia. Znajomość tych parametrów jest kluczowa dla profesjonalistów zajmujących się systemami monitoringu wizyjnego.

Pytanie 28

Woltomierz analogowy wskazał 30 działek. Urządzenie jest ustawione na zakres 100 V, a cała skala ma 100 działek. Jaką wartość napięcia odczytał woltomierz?

A. 33,3 V
B. 3,33 V
C. 30 V
D. 3 V
Wybór błędnych odpowiedzi może wynikać z nieprawidłowej interpretacji skali woltomierza lub zastosowania niewłaściwych obliczeń. Niektóre opcje, takie jak 3,33 V czy 33,3 V, opierają się na założeniu, że każda działka mogłaby reprezentować inną wartość woltów, co jest mylące. W rzeczywistości, woltomierz o zakresie 100 V z 100 działkami jednoznacznie wskazuje, że każda działka odpowiada 1 V. W rezultacie, dla 30 działek, poprawna wartość napięcia wynosi 30 V. Ponadto, wybór wartości 3 V czy 3,33 V może wynikać z błędnych kalkulacji, jak na przykład mylenie rozdzielczości skali. Kluczowe jest, aby zawsze upewnić się, że rozumiemy, jak działa miernik i jak odczytywać jego wskazania. Typowe błędy myślowe, jak niepoprawne dzielenie maksymalnej wartości przez liczbę działek lub zakładanie, że pomiar jest w innej jednostce, mogą prowadzić do poważnych konsekwencji, w tym błędnych ocen napięcia w instalacjach elektrycznych. Dlatego tak ważne jest, aby być dobrze zaznajomionym z zasadami pomiarów oraz ich praktycznym zastosowaniem w różnych dziedzinach elektrotechniki.

Pytanie 29

Automatyczne wyłączanie telewizora z lampą kineskopową w różnych interwałach czasowych oraz towarzyszący mu chwilowy błysk ekranu w jednym z podstawowych kolorów wskazuje na

A. uszkodzenie toru odchylania poziomego
B. przerwę w torze zasilania
C. zwarcia międzyelektrodowe
D. usterkę toru odchylania poziomego
Wybór odpowiedzi związanej z uszkodzeniem toru odchylania poziomego jest błędny, ponieważ objawy samoczynnego wyłączania się telewizora z kineskopem nie są typowe dla tego rodzaju awarii. Uszkodzenie toru odchylania poziomego prowadziłoby raczej do zniekształcenia obrazu, takiego jak zniekształcenie geometrii ekranowej, a nie do nagłego wyłączania się urządzenia. W przypadku toru odchylania poziomego, problemy mogą objawiać się jako smużenie obrazu albo niewłaściwe odchylenie wiązki elektronów, co nie prowadzi do rozbłysku kolorów na ekranie. Ponadto, zwarcia międzyelektrodowe są bardziej prawdopodobne, gdyż skutkują one nagłą zmianą w pracy kineskopu, co może powodować krótkotrwałe rozbłyski. Podobnie, odpowiedzi dotyczące przerwy w torze zasilania nie są adekwatne, ponieważ przerwy w zasilaniu prowadziłyby do całkowitego wyłączenia telewizora, a nie do jego nieregularnego wyłączania się po krótkim czasie. Typowym błędem myślowym jest zakładanie, że zjawisko rozbłysku na ekranie jest związane z problemami z zasilaniem lub torami odchylania, kiedy w rzeczywistości jest to rezultat zwarcia w kineskopie. Dlatego kluczowe jest zrozumienie specyfiki problemu i umiejętność różnicowania objawów związanych z różnymi rodzajami uszkodzeń w telewizorach kineskopowych.

Pytanie 30

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. wzrost mocy wyjściowej
B. podwyższenie napięcia zasilającego
C. spadek mocy wyjściowej
D. zmniejszenie pasma przenoszenia
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 31

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. fototranzystor
B. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
C. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
D. transoptor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 32

Podczas hibernacji komputera zachodzi

A. zamknięcie systemu.
B. zapisanie zawartości pamięci na dysku twardym.
C. przełączanie na zasilanie z UPS.
D. reset systemu.
Hibernacja systemu komputerowego jest często mylona z innymi procesami związanymi z zarządzaniem energią, dlatego ważne jest zrozumienie różnic między nimi. Resetowanie systemu to całkowite ponowne uruchomienie, które nie zachowuje żadnych otwartych programów ani danych w pamięci operacyjnej. Takie działanie prowadzi do utraty wszelkich niezapisanych postępów i jest używane głównie w przypadku awarii lub potrzeby zakończenia pracy systemu. Z kolei przełączanie na zasilanie z UPS, czyli zasilacza awaryjnego, dotyczy sytuacji kryzysowych, takich jak przerwy w dostawie prądu, i nie ma związku z hibernacją. W przypadku zamykania systemu, użytkownik decyduje się na całkowite zakończenie pracy komputera, co również skutkuje utratą otwartych aplikacji, chyba że zostały one wcześniej zapisane. Wiele osób może mieć mylne przekonanie, że hibernacja i usypianie są tym samym, jednak usypianie polega jedynie na tymczasowym przechowywaniu danych w pamięci, co wymaga ciągłego zasilania. Dlatego istotne jest rozróżnienie tych procesów oraz zrozumienie ich zastosowania w praktyce, aby skutecznie zarządzać energią i wydajnością systemu. Zrozumienie tych koncepcji jest kluczowe dla efektywnego użytkowania komputerów w różnych scenariuszach operacyjnych.

Pytanie 33

Podstawowym zadaniem czaszy w antenie satelitarnej jest

A. odbicie fal i skierowanie ich ku konwerterowi
B. ukierunkowanie konwertera na wybrany satelita
C. umożliwienie zamontowania konwertera pod odpowiednim kątem
D. umożliwienie odbioru określonych częstotliwości sygnału
Głównym zadaniem czaszy anteny satelitarnej jest odbicie fal radiowych z satelity i skierowanie ich do konwertera, co jest kluczowe dla efektywnego odbioru sygnału. Czasza działa jak zwierciadło, które zbiera fale elektromagnetyczne i skupia je w jednym punkcie, gdzie znajduje się konwerter. Dzięki temu, sygnał jest poprawnie przetwarzany i przesyłany do odbiornika. Przykładem zastosowania tego rozwiązania może być antena paraboliczna, która jest powszechnie stosowana w telekomunikacji satelitarnej, umożliwiając odbiór wysokiej jakości sygnału telewizyjnego. Warto zauważyć, że odpowiednie ustawienie kąta nachylenia czaszy oraz jej średnicy mają znaczący wpływ na jakość sygnału. W standardach branżowych, takich jak ITU-R, podkreśla się znaczenie precyzyjnego montażu anteny oraz jej dopasowania do parametrów satelity, co zapewnia optymalną wydajność systemu. Wiedza o roli czaszy w antenie satelitarnej jest zatem fundamentalna dla każdej osoby zajmującej się instalacją i konserwacją systemów satelitarnych.

Pytanie 34

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. woltomierza
B. oscyloskopu i generatora funkcyjnego
C. oscyloskopu i zasilacza
D. omomierza
Omomierz to narzędzie, które umożliwia pomiar rezystancji, co jest kluczowe w diagnozowaniu tranzystorów. W przypadku tranzystorów, omomierz pozwala na sprawdzenie połączeń wewnętrznych i ich stan, co jest niezbędne do oceny sprawności komponentu. Możliwe pomiary obejmują zarówno sprawdzenie złączy bazy, emitera i kolektora, jak i wykrycie ewentualnych zwarć. Przykładowo, w tranzystorach bipolarnych (BJT) można zmierzyć rezystancję między bazą a emiterem oraz między bazą a kolektorem w różnych konfiguracjach. Dobrą praktyką jest pomiar rezystancji w obu kierunkach, aby upewnić się, że tranzystor nie jest uszkodzony. Należy również zwrócić uwagę na to, że wartości rezystancji różnią się w zależności od typu tranzystora, co powinno być brane pod uwagę podczas analizy wyników. Warto zaznaczyć, że omomierz jest szybki i łatwy w użyciu, co czyni go idealnym narzędziem do pierwszej diagnostyki komponentów elektronicznych.

Pytanie 35

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Przekazuje informacje pomiędzy satelitami
B. Nadaje sygnały z satelity
C. Odbiera programy telewizyjne
D. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 36

Układ DMA stosowany w mikrokomputerach pozwala na

A. realizowanie podwójnych poleceń
B. podwójne zwiększenie częstotliwości zegara systemu
C. używanie pamięci RAM bez pośrednictwa CPU
D. wstrzymywanie CPU w każdym momencie
Pierwsza odpowiedź dotyczy podwajania częstotliwości zegara systemowego, co jest koncepcją błędną, ponieważ DMA nie ma żadnego wpływu na częstotliwość pracy procesora. Częstotliwość zegara jest determinowana przez parametry sprzętowe oraz ustawienia systemowe, a nie przez technologię dostępu do pamięci. Zatrzymywanie CPU w dowolnym momencie, jak sugeruje kolejna odpowiedź, jest również nieprawidłowe. DMA działa równolegle do CPU, ale nie przerywa jego pracy; zamiast tego efektywnie zarządza dostępem do pamięci w sposób, który nie wymaga zatrzymywania procesora. Ponadto, wykonanie podwójnych rozkazów jest terminologią, która nie odnosi się do funkcji DMA. DMA nie jest zaprojektowane do realizowania rozkazów, lecz do transferowania danych między urządzeniami bez angażowania CPU. Typowym błędem myślowym jest mylenie funkcji DMA z operacjami, które są stricte związane z architekturą procesora. Pojęcie DMA dotyczy uproszczenia i optymalizacji procesów I/O, a nie wpływania na samą architekturę CPU czy jego taktowanie. W związku z powyższym, rozumienie specyfiki funkcji DMA jest kluczowe dla właściwego podejścia do projektowania systemów komputerowych i ich wydajności. Znajomość tego mechanizmu pomaga uniknąć powszechnych nieporozumień dotyczących interakcji między CPU a pamięcią.

Pytanie 37

TCP to protokół transmisyjny umożliwiający transfer pakietów danych

A. telewizyjnego
B. radiowego
C. internetowego
D. optycznego
Wybór protokołów optycznego, telewizyjnego lub radiowego jako alternatywnych odpowiedzi na pytanie o TCP świadczy o pewnym nieporozumieniu odnośnie do roli i funkcji różnych protokołów komunikacyjnych. Protokół optyczny, który nawiązuje do technologii przesyłania danych za pomocą światłowodów, nie jest bezpośrednio związany z TCP, który jest protokołem transportowym. W kontekście sieci komputerowych, protokoły optyczne mogą być wykorzystywane do fizycznego przesyłania sygnałów, jednak nie odpowiadają za zarządzanie transmisją danych, co jest kluczowym zadaniem TCP. Podobnie, protokoły telewizyjne koncentrują się na przesyłaniu sygnałów audio-wideo, co również nie jest w obszarze odpowiedzialności TCP. Z kolei protokoły radiowe, wykorzystywane głównie w komunikacji bezprzewodowej, różnią się znacznie od internetowych protokołów transportowych, takich jak TCP. Kluczowym aspektem TCP jest jego zdolność do zapewnienia integralności danych oraz ich uporządkowanej dostawy przez sieć, co jest nieosiągalne dla wyżej wymienionych technologii, które mają inne cele. Zrozumienie różnicy między tymi protokołami jest niezbędne dla prawidłowego projektowania systemów komunikacyjnych oraz rozwiązywania problemów związanych z przesyłaniem informacji w różnych kontekstach.

Pytanie 38

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. zajmować się czystością grota
B. ustalać czasu lutowania do poszczególnych miejsc na płytce
C. przenosić lutowia na końcówce grota
D. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
Dbanie o czystość grota lutownicy, dobieranie temperatury oraz czasu grzania do konkretnego miejsca na płytce to kluczowe elementy prawidłowego procesu lutowania, które zapewniają wysoką jakość wykonania. Czystość grota lutownicy ma bezpośredni wpływ na efektywność przenoszenia ciepła oraz przyczepność lutowia do podłoża. Zanieczyszczony grot może prowadzić do nieefektywnego lutowania, a w skrajnych przypadkach nawet do uszkodzenia elementów elektronicznych. Odpowiednia temperatura grzania jest niezbędna, aby uniknąć zarówno niedogrzania, które skutkuje słabym spoiwem, jak i przegrzania, które może uszkodzić delikatne komponenty. Ponadto, czas grzania powinien być dostosowany do rodzaju materiałów, z którymi pracujemy, co jest istotne w kontekście uniknięcia deformacji elementów oraz zapewnienia ich trwałości. Brak uwagi na te aspekty może prowadzić do typowych błędów, takich jak 'cold joints', które są niepewnymi połączeniami i mogą skutkować awarią całego układu. Dlatego tak istotne jest, aby stosować się do dobrych praktyk i standardów branżowych w zakresie lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność finalnych produktów.

Pytanie 39

Element pasywny w sieciach telekomunikacyjnych oraz komputerowych, który posiada gniazda po stronie zewnętrznej oraz styki do montażu kabla od wewnątrz, określamy mianem

A. złączki
B. panelu krosowniczego
C. skréty
D. kanału kablowego
Wybór odpowiedzi innej niż panel krosowniczy może prowadzić do nieporozumień dotyczących właściwych funkcji i zastosowania elementów w sieciach telekomunikacyjnych oraz komputerowych. Złączka, na przykład, to element używany do łączenia dwóch przewodów, ale nie oferuje funkcji zarządzania połączeniami w skomplikowanej infrastrukturze sieciowej, jak robi to panel krosowniczy. Złączki są bardziej użyteczne w prostych połączeniach, gdzie nie ma potrzeby dla centralizacji i łatwego dostępu do kabli. Kanał kablowy z kolei pełni rolę ochronną dla kabli, ale nie ma styku do konwersji sygnałów ani możliwości zarządzania połączeniami. Jego głównym celem jest organizacja i zabezpieczenie przewodów, a nie ich łączenie. Skrętka, definiowana najczęściej jako przewód Ethernet, to typ kabla stosowanego w sieciach komputerowych, ale nie jest elementem infrastruktury pasywnej, który zapewnia dostęp do wielu połączeń w jednym miejscu. Wybierając nieprawidłowe odpowiedzi, można zlekceważyć istotną rolę paneli krosowniczych w systemach zarządzania kablami oraz ich znaczenie w zapewnieniu niezawodności i elastyczności sieci. Zrozumienie tych różnic jest kluczowe dla poprawnego projektowania i wdrażania nowoczesnych rozwiązań sieciowych.

Pytanie 40

Jakie urządzenie należy zastosować do mierzenia natężenia prądu w obwodzie elektrycznym?

A. woltomierz
B. omomierz
C. amperomierz
D. watomierz
Woltomierz, watomierz oraz omomierz to urządzenia, które pełnią różne funkcje w pomiarach elektrycznych, ale nie są odpowiednie do pomiaru natężenia prądu. Woltomierz mierzy napięcie elektryczne, co oznacza, że jego działanie koncentruje się na różnicy potencjałów między dwoma punktami w obwodzie. Chociaż napięcie jest kluczowym parametrem w obwodach elektrycznych, bezpośrednio nie informuje nas o przepływie prądu. Watomierz natomiast służy do pomiaru mocy elektrycznej, co oznacza, że oblicza iloczyn napięcia i natężenia prądu, ale nie może bezpośrednio zmierzyć samego natężenia. Omomierz jest narzędziem do pomiaru oporu elektrycznego, a jego zastosowanie w kontekście natężenia prądu jest mylące, ponieważ nie dostarcza informacji o przepływie prądu w obwodzie. Typowe błędy myślowe związane z tymi odpowiedziami obejmują mylenie pojęć związanych z podstawowymi parametrami elektrycznymi. Użytkownicy często zakładają, że różne mierniki mogą być używane zamiennie, co jest nieprawidłowe. Każde z tych urządzeń ma swoje specyficzne zastosowanie i nie można ich stosować w miejsce amperomierza, gdy celem jest pomiar natężenia prądu. Zrozumienie różnicy między tymi urządzeniami jest kluczowe dla prawidłowego pomiaru i analizy obwodów elektrycznych.