Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 maja 2025 13:24
  • Data zakończenia: 17 maja 2025 13:24

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. sterowania w układzie otwartym
B. układu sterowania programowalnego
C. układu regulacji automatycznej
D. sterowania sekwencyjnego
Układ sterowania programowalnego, sterowanie sekwencyjne oraz sterowanie w układzie otwartym to koncepcje, które różnią się zasadniczo od regulacji automatycznej. Układ sterowania programowalnego odnosi się do systemów, które działają na podstawie zaprogramowanych instrukcji, co oznacza, że ich działanie jest z góry ustalone i nie zmienia się w odpowiedzi na zmiany w otoczeniu. Przykłady obejmują roboty przemysłowe, które wykonują zaprogramowane zadania, ale nie dostosowują się do zmieniających się warunków. Kolejną błędną koncepcją jest sterowanie sekwencyjne, które polega na realizacji zadań w określonej kolejności, bez możliwości automatycznego dostosowywania parametrów w odpowiedzi na rzeczywiste potrzeby. W kontekście żelazka elektrycznego, takie podejście nie byłoby efektywne, ponieważ wymagałoby manualnej interwencji użytkownika przy każdej zmianie rodzaju tkaniny. Z kolei sterowanie w układzie otwartym nie ma mechanizmu sprzężenia zwrotnego; oznacza to, że urządzenie nie reaguje na rzeczywiste zmiany parametrów, co w przypadku żelazka mogłoby prowadzić do zbyt wysokiej lub zbyt niskiej temperatury, a tym samym do uszkodzenia tkanin. Wszystkie te podejścia są niewłaściwe w kontekście regulacji temperatury, gdzie wymagana jest automatyczna adaptacja do warunków pracy, co jest integralną częścią działania żelazka elektrycznego z termoregulatorem bimetalicznym.

Pytanie 2

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. dokręcenie przyłącza kluczem dynamometrycznym
B. wymiana przyłącza
C. uszczelnienie przyłącza taśmą teflonową
D. wymiana uszczelki pomiędzy przyłączem a siłownikiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wydaje mi się, że wybór wymiany przyłącza to naprawdę dobry pomysł, szczególnie gdy zauważasz nieszczelności. Często to zużycie lub uszkodzenia połączeń sprawiają, że te problemy się pojawiają. Przyłącza, zwłaszcza w systemach pneumatycznych, są poddawane różnym czynnikom, jak ciśnienie, wibracje, a nawet korozja, co może wpływać na ich stan. Wymieniając przyłącze, masz pewność, że uzyskasz długotrwałe i solidne uszczelnienie, co jest mega ważne dla prawidłowego działania siłowników pneumatycznych. Z mojego doświadczenia, używanie uszczelnienia taśmą teflonową albo dokręcanie to często tylko chwilowe rozwiązanie, które nie eliminuje sedna problemu nieszczelności. Dlatego lepiej postawić na nowe, certyfikowane przyłącze, które spełnia normy branżowe – to najlepsza droga, żeby zapewnić efektywność i bezpieczeństwo systemu. Regularne sprawdzanie i wymiana krytycznych części to naprawdę dobre praktyki, które mogą uchronić cię przed poważniejszymi awariami i drogimi naprawami w przyszłości.

Pytanie 3

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/T
B. X/Y
C. AC
D. DC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź X/Y jest poprawna, ponieważ w tym trybie oscyloskop dwukanałowy pozwala na jednoczesne wyświetlenie zależności prądowo-napięciowej diody półprzewodnikowej. W trybie X/Y jeden kanał oscyloskopu jest przypisany do napięcia (U), a drugi do prądu (I), co umożliwia bezpośrednie zrozumienie charakterystyki diody poprzez obserwację kształtu wykresu, który przedstawia, jak zmienia się prąd w zależności od zastosowanego napięcia. W praktyce, taka analiza pozwala na określenie punktów pracy diody, jak na przykład napięcie progowe oraz maksymalny prąd. Ponadto, standardy branżowe, takie jak normy IEC, zalecają wykorzystanie trybu X/Y do analizy nieliniowych elementów elektronicznych. Umiejętność skutecznego korzystania z oscyloskopów w tym trybie jest kluczowa dla inżynierów zajmujących się projektowaniem obwodów elektronicznych oraz diagnostyką układów elektronicznych. Przykłady zastosowań obejmują badanie diod prostowniczych, złącz złączowych w tranzystorach oraz analizy w układach wzmacniających.

Pytanie 4

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Klejenia
B. Zaginania
C. Spawania
D. Zgrzewania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 5

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić uszczelkę
B. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
C. wymienić membranę
D. zmierzyć rezystancję cewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 6

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. przeciążenia instalacji elektrycznej, co może skutkować pożarem
B. awarii stojana silnika
C. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
D. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 7

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. stabilizatorów
B. zasilaczy
C. prostowników
D. generatorów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 8

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Sondy
B. Chwytaka
C. Regulatora
D. Silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 9

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Kompilator
B. Deasembler
C. Emulator
D. Debugger

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kompilator jest narzędziem, które tłumaczy kod źródłowy napisany w określonym języku programowania na kod maszynowy, który jest zrozumiały dla mikrokontrolera. Proces ten obejmuje kilka kroków, w tym analizę składniową, analizę semantyczną oraz generację kodu. Kompilatory są kluczowe w programowaniu systemów embedded, gdzie efektywność i optymalizacja kodu są niezwykle istotne. Przykładem popularnego kompilatora dla języka C jest GCC (GNU Compiler Collection), który jest szeroko stosowany w projektach związanych z mikrokontrolerami, takimi jak platforma Arduino. Kompilacja pozwala także na wykorzystanie różnych poziomów optymalizacji, co sprawia, że końcowy kod maszynowy działa szybciej i zużywa mniej zasobów. W dobrze zaprojektowanym procesie kompilacji, programiści mogą również zastosować dyrektywy preprocesora, co umożliwia dostosowanie kodu do różnych platform sprzętowych. Z tego powodu, znajomość działania kompilatorów jest niezbędna dla każdego, kto pragnie efektywnie programować mikrokontrolery.

Pytanie 10

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
B. po poinformowaniu osoby przełożonej
C. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
D. po wezwaniu pomocy medycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 11

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Klejenia
B. Zaginania
C. Zgrzewania
D. Spawania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 12

Sprężarka typu śrubowego jest sprężarką

A. rotacyjną
B. wyporową
C. przepływową
D. turbinową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężarka śrubowa jest typem sprężarki rotacyjnej, w której proces sprężania gazu odbywa się za pomocą dwóch śrub, które obracają się w przeciwnych kierunkach. Ta konstrukcja pozwala na ciągłe, płynne sprężanie powietrza, co przekłada się na wysoką wydajność oraz niskie straty energii. W zastosowaniach przemysłowych, sprężarki śrubowe są powszechnie wykorzystywane w systemach pneumatycznych, gdzie wymagane jest dostarczenie dużych ilości sprężonego powietrza w stabilny sposób. Przykładowo, w branży motoryzacyjnej, sprężarki te dostarczają powietrze do narzędzi pneumatycznych, a w przemyśle spożywczym często wykorzystuje się je do pakowania produktów. Standardy ISO dotyczące efektywności energetycznej sprężarek wskazują na korzyści związane z zastosowaniem sprężarek rotacyjnych, takich jak obniżenie kosztów eksploatacji przez zmniejszenie zużycia energii. Dzięki ich niezawodności i efektywności, sprężarki śrubowe stały się standardem w wielu zakładach przemysłowych.

Pytanie 13

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. I
C. Q
D. T

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 14

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. rękawice antywibracyjne.
B. obuwie ochronne.
C. okulary ochronne.
D. kask zabezpieczający.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rękawice antywibracyjne są kluczowym elementem ochrony osobistej, gdy pracownik obsługuje pneumatyczne urządzenia mechatroniczne, które generują znaczne drgania. Te drgania mogą prowadzić do poważnych urazów, takich jak zespół wibracyjny, który objawia się bólem, mrowieniem i osłabieniem kończyn. Rękawice antywibracyjne są zaprojektowane w taki sposób, aby minimalizować przenoszenie drgań na ręce operatora, co znacząco zmniejsza ryzyko kontuzji. W praktyce, standardy takie jak ISO 10819 dotyczące pomiarów drgań w rękach użytkowników podkreślają znaczenie stosowania odpowiednich środków ochronnych. W przypadku pracy z maszynami, które wytwarzają drgania, inwestycja w wysokiej jakości rękawice antywibracyjne jest nie tylko zgodna z dobrymi praktykami, ale również zapewnia komfort i bezpieczeństwo operatora. Przykładem zastosowania takich rękawic jest praca w branży budowlanej, gdzie narzędzia pneumatyczne, takie jak młoty udarowe, są powszechnie używane. Używanie rękawic antywibracyjnych pozwala pracownikom na dłuższą i bardziej wydajną pracę bez ryzyka zdrowotnego związane z drganiami.

Pytanie 15

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. ustawienie na boku, sztuczne oddychanie
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
D. sztuczne oddychanie oraz masaż serca

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 16

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. V
B. V/(obr./min)
C. obr./min
D. Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 17

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
B. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
C. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc
D. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na konieczność wymiany elementów filtrów standardowych w zespole przygotowania powietrza podczas przeglądu konserwacyjnego wykonywanego raz w roku lub w przypadku, gdy spadek ciśnienia na filtrze przekroczy 0,5 bara, jest zgodna z najlepszymi praktykami w zakresie utrzymania systemów wentylacyjnych i klimatyzacyjnych. Regularne przeglądy, co najmniej raz w roku, pozwalają na wczesne wykrycie problemów oraz zapewnienie optymalnej wydajności filtrów, co jest kluczowe dla jakości powietrza w pomieszczeniach. W przypadku, gdy spadek ciśnienia na filtrze przekracza 0,5 bara, oznacza to, że filtr jest zanieczyszczony lub zatkany, co może prowadzić do spadku efektywności całego systemu, a w skrajnych przypadkach do uszkodzeń urządzeń. Przykładem zastosowania tej praktyki może być przemysłowe użycie systemów filtracji w halach produkcyjnych, gdzie zanieczyszczenia powietrza mogą wpływać na jakość produktów. W takich przypadkach, regularna wymiana filtrów jest nie tylko zalecana, ale wręcz niezbędna dla zapewnienia ciągłości produkcji oraz ochrony zdrowia pracowników. Ponadto, stosowanie się do zaleceń producenta dotyczących konserwacji i wymiany filtrów pozwala na utrzymanie gwarancji na urządzenia oraz na optymalizację kosztów eksploatacyjnych.

Pytanie 18

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Utrzymują ustalony poziom ciśnienia
B. Redukują nagłe skoki ciśnienia
C. Ograniczają ciśnienie do ustalonego poziomu
D. Zapewniają ustawiony, stały spadek ciśnienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawory przelewowe pełnią kluczową rolę w układach hydraulicznych, a ich główną funkcją jest utrzymywanie określonego poziomu ciśnienia. Działają one na zasadzie otwierania się w momencie, gdy ciśnienie w systemie przekracza zdefiniowaną wartość, co pozwala na odprowadzenie nadmiaru cieczy z systemu. Dzięki temu zapobiegają one uszkodzeniom elementów układu hydraulicznego, takich jak pompy czy silniki hydrauliczne. Przykładem zastosowania zaworów przelewowych może być system hydrauliczny stosowany w maszynach budowlanych, gdzie stabilne ciśnienie jest niezbędne do prawidłowego działania narzędzi roboczych. W branży hydraulicznej powszechnie stosuje się standardy, takie jak ISO 4413, które określają wymagania dotyczące układów hydraulicznych, w tym zastosowania zaworów przelewowych. Utrzymanie stałego ciśnienia nie tylko zwiększa efektywność działania systemu, ale również wpływa na jego bezpieczeństwo oraz trwałość.

Pytanie 19

Jakie zjawisko fizyczne wyróżnia przetwornik piezoelektryczny?

A. Wytwarzanie siły elektromotorycznej na granicy dwóch metali
B. Wytwarzanie ładunku elektrycznego na powierzchni elementu pod wpływem zastosowanej siły kompresyjnej lub rozciągającej
C. Zmiana napięcia na końcach elementu przewodzącego prąd w wyniku działania pola magnetycznego
D. Modyfikacja rezystancji przewodnika w reakcji na przyłożoną siłę rozciągającą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetworniki piezoelektryczne działają na zasadzie zjawiska piezoelektrycznego, które polega na generowaniu ładunku elektrycznego na powierzchni materiału pod wpływem przyłożonej siły mechanicznej, takiej jak ściskanie lub rozciąganie. Materiały piezoelektryczne, takie jak kwarc czy ceramika piezoelektryczna, wykazują unikalne właściwości, które pozwalają im przekształcać energię mechaniczną w elektryczną i odwrotnie. To zjawisko znajduje szerokie zastosowanie w technologii, na przykład w mikrofonach, głośnikach oraz czujnikach siły i drgań. W praktyce, gdy na przetwornik piezoelektryczny działa siła, np. podczas nacisku, atomy w materiale przesuwają się, co prowadzi do powstania różnicy potencjałów i wytworzenia ładunku elektrycznego. Przetworniki te są wykorzystywane w medycynie (np. w ultrasonografii) oraz w przemyśle motoryzacyjnym do monitorowania drgań i stanu technicznego pojazdów. Zarówno w projektowaniu, jak i w zastosowaniach inżynieryjnych, znajomość właściwości materiałów piezoelektrycznych oraz ich zastosowania w różnych dziedzinach jest kluczowa dla efektywnego wykorzystania tej technologii.

Pytanie 20

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. membrana
B. tłumik
C. zawór dławiący
D. magnes stały

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. watomierzem w układzie Arona
B. woltomierzem i amperomierzem
C. mostkiem Wheatstone'a
D. mostkiem Thompsona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC można zrealizować poprzez zastosowanie woltomierza oraz amperomierza. Woltomierz umożliwia zmierzenie napięcia w obwodzie, natomiast amperomierz mierzy natężenie prądu. Moc (P) można obliczyć korzystając z równania P = U * I, gdzie U to napięcie, a I to natężenie prądu. Przykładowo, jeśli woltomierz wskazuje 24 V, a amperomierz 2 A, moc wynosi 48 W. Takie podejście jest zgodne z najlepszymi praktykami pomiarowymi, gdzie dokładność pomiarów jest kluczowa. Używanie woltomierza i amperomierza jest standardową metodą w wielu zastosowaniach, w tym w inżynierii elektrycznej i automatyce przemysłowej, co zapewnia wiarygodne i precyzyjne wyniki. Warto również pamiętać o prawidłowej kalibracji urządzeń pomiarowych, co wpływa na jakość wyników.

Pytanie 22

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa

A. kompresor olejowy.
B. pompę hydrauliczną.
C. silnik hydrauliczny.
D. silnik elektryczny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 23

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. umyć komutator wodą
B. przetrzeć komutator olejem
C. wykonać szlifowanie komutatora
D. posmarować olejem szczotki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wykonanie szlifowania komutatora jest niezbędnym krokiem w usuwaniu iskrzenia spowodowanego osadzeniem się pyłu ze szczotek. Szlifowanie komutatora polega na usunięciu nierówności i zanieczyszczeń, co zapewnia lepszy kontakt elektryczny pomiędzy komutatorem a szczotkami. Nierównomierne zużycie komutatora prowadzi do iskrzenia, które może z czasem doprowadzić do uszkodzenia zarówno szczotek, jak i innych elementów silnika. Szlifowanie powinno być przeprowadzane przy użyciu odpowiednich narzędzi, takich jak papier ścierny o odpowiedniej gradacji, aby uzyskać gładką powierzchnię komutatora. Ważne jest również, aby po szlifowaniu dokładnie oczyścić komutator z pyłu, aby zapobiec ponownemu pojawieniu się problemu. Takie procedury są zgodne z zaleceniami producentów silników i standardami branżowymi, co zapewnia długotrwałą i niezawodną pracę silnika. Dbanie o regularne konserwacje, w tym szlifowanie komutatora, jest kluczowe dla utrzymania wydajności silników prądu stałego.

Pytanie 24

Podczas funkcjonowania urządzenia mechatronicznego zaobserwowano wyższy poziom hałasu (głośne, rytmiczne dźwięki) spowodowany przez łożysko toczne. Jakie działanie będzie odpowiednie w celu naprawy urządzenia?

A. zredukowanie luzów łożyska
B. wymiana całego łożyska
C. wymiana osłony łożyska
D. usunięcie nadmiaru smaru w łożysku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak na to patrzę, wymiana całego łożyska to naprawdę najlepsze wyjście, gdy słychać jakieś dziwne odgłosy z urządzenia mechatronicznego. Zwykle hałas bierze się ze zużycia łożyska, co zwiększa luzy i obniża jakość materiałów. Wymieniając łożysko, nie tylko pozbywasz się hałasu, ale też przywracasz sprzęt do pełnej sprawności. Ważne, żeby dobrze dobrać łożysko, myślę, że trzeba zwrócić uwagę na jego typ, wymiary i materiał, z którego jest zrobione. No i wymiana musi być zgodna z tym, co mówi producent – wtedy urządzenie będzie dłużej działać bezproblemowo. Przykładowo, w obrabiarkach to kluczowe, bo jakość pracy łożysk ma duży wpływ na jakość obrabianych elementów. Regularne przeglądy łożysk i odpowiednie smarowanie też są ważne, bo wydłużają ich żywotność.

Pytanie 25

Czynniki zagrażające zdrowiu ludzi, związane z użyciem urządzeń hydraulicznych, są w głównej mierze spowodowane przez

A. wysokie ciśnienia płynów oraz ogromne siły.
B. wibracje oraz hałas.
C. wysokie temperatury płynów.
D. duże przepływy prądów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca wysokich ciśnień cieczy i dużych sił jako zagrożeń dla zdrowia człowieka w kontekście urządzeń hydraulicznych jest poprawna. Urządzenia hydrauliczne działają na zasadzie wykorzystania ciśnienia cieczy do przenoszenia sił i momentów, co czyni je niezwykle efektywnymi w wielu zastosowaniach przemysłowych. Wysokie ciśnienie w układach hydraulicznych, które może osiągać wartości kilkuset barów, stwarza ryzyko nie tylko uszkodzenia samych urządzeń, ale również poważnych wypadków, jeśli system ulegnie awarii. Przykładem może być wybuch węża hydraulicznego, który może prowadzić do niebezpiecznych sytuacji, takich jak obrażenia ciała pracowników. Dlatego w branży hydraulicznej istnieją ścisłe normy bezpieczeństwa, takie jak ISO 4413, które określają wymagania dotyczące hydraulicznych systemów zasilania, aby minimalizować ryzyko związane z wysokim ciśnieniem i siłami. Użytkownicy urządzeń hydraulicznych powinni być odpowiednio przeszkoleni, a urządzenia poddawane regularnym inspekcjom, aby zapewnić ich bezpieczeństwo i sprawność działania.

Pytanie 26

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 1 500 bar
B. 150 bar
C. 15 bar
D. 15 000 bar

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 27

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 4,5 V
C. 10,0 V
D. 7,5 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 28

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Nitowane
B. Wpustowe
C. Sworzniowe
D. Wciskowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 29

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Odcinający
B. Przelotowy
C. Rozdzielający
D. Zwrotny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 30

Czujnik zbliżeniowy powinien być podłączony do cyfrowego wejścia sterownika PLC przy użyciu

A. klucza
B. wkrętaka
C. lutownicy
D. szczypiec

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "wkrętaka" jest poprawna, ponieważ narzędzie to jest niezbędne do dokręcania lub luzowania śrub, które często są używane do mocowania złączy i elementów w instalacjach elektrycznych, w tym w podłączaniu czujników do systemów PLC. W przypadku czujników zbliżeniowych, które mogą być montowane w różnych konfiguracjach, ważne jest, aby zapewnić solidne połączenie elektryczne. Użycie wkrętaka pozwala na precyzyjne i bezpieczne przymocowanie przewodów do zacisków sterownika PLC, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i niezawodności połączeń elektrycznych. Niewłaściwe lub luźne połączenia mogą prowadzić do błędnych odczytów czujnika oraz innych problemów w systemie automatyki. W praktyce, często stosuje się wkrętaki o wymiennej końcówce, co umożliwia łatwe dostosowanie narzędzia do różnych typów śrub i zacisków, co zwiększa efektywność pracy na placu budowy czy w zakładzie produkcyjnym. Właściwa metoda podłączenia gwarantuje także dłuższą żywotność komponentów oraz ich prawidłowe działanie w różnych warunkach środowiskowych.

Pytanie 31

Izolacja w kolorze niebieskim jest używana dla kabli

A. sygnałowych
B. fazowych
C. ochronnych
D. neutralnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja niebieska w instalacjach elektrycznych jest standardowo stosowana dla przewodów neutralnych. W praktyce oznaczenie kolorystyczne przewodów ma na celu zabezpieczenie przed błędami w podłączeniach i zwiększenie bezpieczeństwa użytkowników. Przewód neutralny, zazwyczaj oznaczony kolorem niebieskim, pełni kluczową rolę w obwodach elektrycznych, umożliwiając powrót prądu do źródła zasilania. Zgodnie z normami międzynarodowymi, takimi jak IEC 60446, stosowanie jednolitych kolorów dla przewodów ma na celu ułatwienie identyfikacji ich funkcji oraz minimalizację ryzyka nieprawidłowego podłączenia. W praktyce, w przypadku domowych instalacji elektrycznych, przewody neutralne są często wykorzystywane w obwodach oświetleniowych i gniazdkowych, co sprawia, że ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa oraz zgodności z przepisami budowlanymi. Właściwe stosowanie kolorów w identyfikacji przewodów jest istotnym elementem w pracy elektryków i instalatorów, co podkreśla znaczenie standardów w tej dziedzinie.

Pytanie 32

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu dziewięciożyłowego
B. Przewodu koncentrycznego
C. Skrętki czteroparowej, ekranowanej
D. Skrętki dwuprzewodowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skrętka dwuprzewodowa jest preferowanym wyborem do komunikacji w magistrali CAN (Controller Area Network) ze względu na jej zdolność do minimalizacji zakłóceń oraz zapewnienia odpowiedniej jakości sygnału. W systemach CAN, które są często używane w automatyce przemysłowej i motoryzacji, ważne jest, aby przewód miał niską impedancję i był odporny na zakłócenia elektromagnetyczne. Skrętka dwuprzewodowa, dzięki swoim właściwościom, pozwala na zastosowanie metody różnicowej, co oznacza, że sygnał jest przesyłany na dwóch przewodach o przeciwnych napięciach. Takie rozwiązanie znacząco poprawia odporność na zakłócenia zewnętrzne oraz pozwala na dłuższe odległości transmisji, co jest kluczowe w systemach, gdzie urządzenia mogą być rozmieszczone na dużych przestrzeniach. W przypadku komunikacji w magistrali CAN, standardy takie jak ISO 11898 określają parametry techniczne, które muszą być spełnione przez przewody, co dodatkowo podkreśla znaczenie wyboru właściwego typu kabla. Dobrze wykonana instalacja z użyciem skrętki dwuprzewodowej zapewnia stabilność sieci oraz wysoką niezawodność przesyłanych danych.

Pytanie 33

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Wytarte pierścienie uszczelniające tłokowe
B. Wytarte pierścienie uszczelniające rozdzielaczy
C. Nieszczelność w przewodzie ssawnym pompy
D. Nieszczelność zaworu bezpieczeństwa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelność w przewodzie ssawnym pompy jest kluczową przyczyną spieniania się oleju w układzie hydraulicznym. Gdy przewód ssawny jest nieszczelny, powietrze dostaje się do układu, co powoduje, że olej nie jest prawidłowo zasysany przez pompę. W efekcie powietrze miesza się z olejem, co prowadzi do jego spienienia i wytworzenia bąbelków powietrza. To zjawisko obniża wydajność hydrauliczną systemu oraz może prowadzić do uszkodzenia pompy i innych komponentów. W praktyce, aby zapobiec takim problemom, należy regularnie kontrolować stan przewodów ssawnych oraz ich połączeń, zgodnie z zaleceniami producentów maszyn i norm branżowych. Dobrą praktyką jest również stosowanie systemów monitorujących, które informują o ewentualnych nieszczelnościach lub spadkach ciśnienia. Właściwe uszczelnienie przewodów jest kluczowe dla zapewnienia długotrwałej i efektywnej pracy układu hydraulicznego, co jest istotne w zastosowaniach przemysłowych oraz budowlanych, gdzie niezawodność sprzętu jest priorytetem.

Pytanie 34

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. przenoszenie wibracji na pracownika
B. nadmierny hałas generowany przez pracujące urządzenia
C. odłamki rozrywanych maszyn
D. iskra prowadząca do pożaru lub wybuchu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 35

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO16 oraz AI4
B. DI16/DO8 oraz AI4
C. DI32/DO8 oraz AI2
D. DI16/DO16 oraz AI2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Modułowy sterownik PLC z konfiguracją DI32/DO16 oraz AI4 to naprawdę dobry wybór. W układzie mechatronicznym masz aż 18 czujników binarnych, 4 przetworniki analogowe i 11 elementów, które działają w trybie dwustanowym. Dzięki DI32 masz więcej niż dość wejść cyfrowych, żeby połączyć wszystkie czujniki, a nawet zostaje ci trochę zapasu na przyszłość. Z kolei 16 wyjść cyfrowych (DO16) spokojnie obsłuży te 11 elementów wykonawczych, co daje ci możliwość rozszerzenia systemu, jeśli zajdzie taka potrzeba. No i te 4 wejścia analogowe (AI4) są akurat na przetworniki, co pozwala ci na monitorowanie i analizowanie sygnałów, a to jest kluczowe w mechatronice. Przykład? Chociażby automatyka przemysłowa, gdzie trzeba mieć na oku zarówno analogowe sygnały, jak i różne urządzenia wykonawcze.

Pytanie 36

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 3000 mm2
B. 2000 mm2
C. 1000 mm2
D. 1500 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności Fu = η ∙ S ∙ p. Wstawiając znane wartości: Fu = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = Fu / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m2, co odpowiada 2000 mm2. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 37

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. czujnik zegarowy
B. poziomnicę
C. przymiar liniowy
D. kątomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 38

Ciśnienie o wartości 1 N/m2 to

A. 1 at
B. 1 bar
C. 1 Pa
D. 1 mmHg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 39

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
B. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
C. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
D. usunąć ciało obce, położyć rannego i wezwać lekarza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie jałowego opatrunku na ranę i uniesienie kończyn to bardzo dobry sposób na radzenie sobie z krwotokiem zewnętrznym. Najpierw trzeba zasłonić ranę, żeby nie doszło do jej zanieczyszczenia. Dzięki temu zmniejszamy ryzyko zakażeń. Potem, unosząc kończyny, ograniczamy przepływ krwi do rany, co może pomóc w zatrzymaniu krwawienia aż do przybycia fachowej pomocy. To wszystko jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, która podkreśla, jak ważne jest trzymanie poszkodowanego w stabilnej pozycji. W takich sytuacjach, kiedy czas odpowiedzi służb medycznych jest dłuższy, te kroki mają naprawdę kluczowe znaczenie i mogą uratować życie.

Pytanie 40

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 85,0 kW
B. 51,0 kW
C. 5,1 kW
D. 8,5 kW

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moc hydrauliczna siłownika można obliczyć za pomocą wzoru: P = Q * p, gdzie P to moc w watach, Q to natężenie przepływu w litrach na minutę, a p to ciśnienie w barach. W tym przypadku mamy p = 60 barów oraz Q = 85 l/min. Aby obliczyć moc, musimy najpierw przeliczyć jednostki: 1 l/min = 0,001 m³/min, a 60 barów = 6 MPa. Przeliczając natężenie przepływu: Q = 85 l/min * 0,001 m³/l = 0,085 m³/min. Teraz przeliczamy na sekundy: 0,085 m³/min = 0,085/60 m³/s = 0,00141667 m³/s. Teraz możemy obliczyć moc: P = Q * p = 0,00141667 m³/s * 6 MPa = 8,5 kW. Tego typu obliczenia są kluczowe dla inżynierów zajmujących się hydrauliką, ponieważ pozwalają na dobór odpowiednich komponentów systemu hydraulicznego, takich jak pompy i siłowniki, co ma bezpośredni wpływ na efektywność energetyczną oraz funkcjonalność urządzenia. W praktyce, znajomość mocnych punktów siłowników hydraulicznych pozwala na ich właściwe zastosowanie w maszynach przemysłowych, budowlanych czy w aplikacjach mobilnych.