Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 maja 2025 00:52
  • Data zakończenia: 8 maja 2025 01:10

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W przedsiębiorstwie zajmującym się produkcją układów elektronicznych złożono zamówienie na 20 sztuk pilotów telewizyjnych. Cena komponentów potrzebnych do zrealizowania jednego pilota wynosi 30 zł. Koszt pracy pracownika przy wytworzeniu jednego pilota to 10 zł. Jak będzie wyglądać całkowity koszt zamówienia po uwzględnieniu 5% zniżki?

A. 800 zł
B. 760 zł
C. 720 zł
D. 840 zł
Obliczenie całkowitego kosztu zamówienia 20 sztuk pilotów TV wymaga uwzględnienia kosztów elementów oraz kosztów robocizny. Koszt elementów dla jednego pilota wynosi 30 zł, co daje łącznie 600 zł za 20 sztuk (20 x 30 zł). Dodatkowo, koszt wykonania jednego pilota przez pracownika wynosi 10 zł, co przekłada się na 200 zł za 20 pilotów (20 x 10 zł). Zatem łączny koszt produkcji wynosi 800 zł (600 zł + 200 zł). Po zastosowaniu 5% rabatu, który wynosi 40 zł (5% z 800 zł), całkowity koszt zamówienia obniża się do 760 zł (800 zł - 40 zł). Tego rodzaju kalkulacja jest standardową praktyką w branży produkcyjnej, gdzie rabaty są często stosowane przy większych zamówieniach, co może znacznie wpłynąć na ostateczny koszt. Zrozumienie tych obliczeń jest kluczowe dla zarządzania kosztami oraz efektywności finansowej w firmach produkcyjnych.

Pytanie 2

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Ultradźwiękową
B. Podczerwieni
C. Kontaktronową
D. Mikrofalową
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 3

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. cyny
B. pasty lutowniczej
C. kalafonii
D. ołowiu
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 4

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 0,1 kHz
B. 1 kHz
C. 100 kHz
D. 10 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 5

Aby zweryfikować ciągłość instalacji, należy użyć

A. omomierza
B. watmierz
C. woltomierza
D. amperomierza
Omomierz to urządzenie pomiarowe, które jest kluczowe w procesie sprawdzania ciągłości instalacji elektrycznej. Jego głównym zadaniem jest pomiar rezystancji elektrycznej, co pozwala na ocenę, czy dany przewód lub obwód są poprawnie połączone i czy nie mają przerw. W praktyce, omomierz jest używany do weryfikacji ciągłości połączeń uziemiających, a także do testowania przewodów w instalacjach elektrycznych przed ich uruchomieniem. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji oraz ciągłości przewodów jest niezbędnym krokiem w procesie odbioru instalacji elektrycznych. Użycie omomierza pozwala na wykrycie potencjalnych problemów, które mogłyby prowadzić do awarii systemów elektrycznych lub stanowić zagrożenie dla bezpieczeństwa. Dobrą praktyką jest przeprowadzanie takich pomiarów regularnie, szczególnie w instalacjach narażonych na czynniki atmosferyczne lub mechaniczne uszkodzenia. Rezultaty pomiarów powinny być dokumentowane w celu zapewnienia zgodności z obowiązującymi normami i przepisami.

Pytanie 6

W projekcie kabel oznakowano jako S/FTP, co to oznacza?

A. skrętka z każdą parą foliowaną dodatkowo w ekranie z siatki
B. skrętka z każdą parą w oddzielnym ekranie z folii
C. skrętka z każdą parą w oddzielnym ekranie z folii, dodatkowo w ekranie z folii
D. skrętka ekranowana zarówno folią, jak i siatką
Odpowiedź wskazuje, że kabel S/FTP (Shielded Foiled Twisted Pair) to skrętka, w której każda para przewodów jest dodatkowo ekranowana folią, a całość jest umieszczona w zewnętrznej osłonie z siatki. Taki typ kabla charakteryzuje się wysoką odpornością na zakłócenia elektromagnetyczne, co czyni go idealnym do zastosowań w środowiskach o dużym poziomie zakłóceń, np. w biurach z wieloma urządzeniami elektronicznymi. Ekranowanie folią i siatką zapewnia, że sygnał przesyłany przez pary przewodów jest chroniony zarówno przed wpływem otoczenia, jak i przed wzajemnym zakłócaniem się par. Standardy takie jak ISO/IEC 11801 i ANSI/TIA-568 określają wymagania dotyczące wydajności oraz konstrukcji kabli, co podkreśla znaczenie stosowania odpowiednich materiałów i technologii w celu zapewnienia niezawodności transmisji. W praktyce kable S/FTP są często używane w sieciach lokalnych (LAN), zapewniając stabilną i szybką komunikację między urządzeniami.

Pytanie 7

Który z kabli jest odpowiedni do przesyłania sygnału video z kamery analogowej?

A. RG59
B. YTDY
C. YTKSy
D. RG58
Kabel RG59 jest powszechnie używany do przesyłania sygnału video z kamer analogowych, głównie ze względu na jego niską tłumienność oraz dobrą jakość sygnału na długich odległościach. RG59 charakteryzuje się impedancją 75 ohmów, co jest standardem dla większości systemów wideo, w tym telewizji kablowej i systemów CCTV. Dzięki zastosowaniu odpowiednich materiałów dielektrycznych, kabel ten skutecznie minimalizuje straty sygnału, co jest kluczowe w przypadku przesyłania obrazu w wysokiej rozdzielczości. Przykładem praktycznego zastosowania RG59 może być instalacja systemu monitoringu w obiektach komercyjnych, gdzie kamery są rozmieszczone w znacznych odległościach od rejestratorów. W takich sytuacjach, zapewnienie jakości obrazu i stabilności sygnału jest niezbędne do efektywnej pracy systemu. Decydując się na RG59, instalatorzy mogą również stosować złącza BNC, które zapewniają łatwe i bezpieczne połączenie, eliminując ryzyko zakłóceń czy utraty jakości sygnału.

Pytanie 8

Stacja bazowa jest częścią systemu

A. alarmowego
B. sterowania mikroprocesorowego
C. telewizji kablowej
D. nawigacyjnego
Wybór odpowiedzi dotyczącej alarmowego systemu jest nieprawidłowy, ponieważ stacja czołowa nie ma związku z systemami alarmowymi. Systemy alarmowe koncentrują się na detekcji zagrożeń, takich jak włamania czy pożary, oraz na monitorowaniu i reagowaniu na te sytuacje. W kontekście telekomunikacji, stacja czołowa nie jest elementem, który odpowiada za alarmowanie, lecz za przetwarzanie sygnałów telewizyjnych. Podobnie, wybór opcji dotyczącej nawigacji jest błędny, ponieważ systemy nawigacyjne, takie jak GPS, skupiają się na lokalizacji i kierowaniu, a nie na przekazywaniu sygnału telewizyjnego. Stacja czołowa nie uczestniczy w procesie nawigacyjnym, lecz skupia się na dystrybucji treści multimedialnych. Napotkanie na odpowiedź wskazującą na sterowanie mikroprocesorowe może wynikać z mylnego przekonania o uniwersalności mikroprocesorów w różnych zastosowaniach. Choć mikroprocesory są kluczowe w systemach elektronicznych, ich rola w stacji czołowej telewizji kablowej jest ograniczona do przetwarzania sygnałów, a nie zarządzania funkcjami systemów sterowania. Często spotykanym błędem myślowym w takich przypadkach jest uogólnienie funkcji technologii bez zrozumienia ich kontekstu i specyfiki działania w danym systemie.

Pytanie 9

W jakich systemach wykorzystywany jest sterownik PLC?

A. w transmisji światłowodowej
B. w automatyce przemysłowej
C. w sieciach komputerowych
D. w telewizji dozorowej
Sterownik PLC to naprawdę ważna rzecz w automatyce przemysłowej. Umożliwia kontrolę i monitorowanie produkcji, co jest super istotne w fabrykach. Dzięki temu można dostosować systemy do potrzeb konkretnej produkcji. Na przykład w liniach montażowych, PLC potrafi świetnie koordynować pracę maszyn, tak żeby wszystko działało sprawnie i bezpiecznie. Tak samo, w budynkach, gdzie zarządza się oświetleniem czy wentylacją, PLC pomaga zaoszczędzić energię. Jest też sporo standardów, jak IEC 61131, które mówią, jak projektować te systemy. To wszystko pokazuje, jak ważne są PLC w nowoczesnym przemyśle.

Pytanie 10

Przyczyną chwilowego znikania obrazu (zamrożenia) podczas odbioru sygnału z satelity mogą być

A. awarie układu synchronizacji
B. warunki atmosferyczne
C. nieprawidłowości w synchronizacji
D. uszkodzenia systemu odchylania
Warunki atmosferyczne są jednym z najważniejszych czynników wpływających na jakość sygnału satelitarnego. W szczególności opady deszczu, śniegu oraz intensywne chmury mogą powodować osłabienie sygnału, co może prowadzić do czasowego zaniku obrazu. Zjawisko to jest znane jako „attenuacja”, czyli osłabienie sygnału, które zwiększa się przy zwiększonej wilgotności powietrza lub podczas wystąpienia burz. W praktyce, techniki takie jak stosowanie większych anten satelitarnych, które mogą lepiej odbierać sygnał w trudnych warunkach, są powszechnie przyjęte w branży. Zgodnie z dobrymi praktykami, zaleca się również monitorowanie prognoz pogody i dostosowywanie systemów do zmieniających się warunków. Użytkownicy powinni być świadomi, że podczas intensywnych opadów lub burz mogą wystąpić czasowe zakłócenia w odbiorze, a zrozumienie tego zjawiska może pomóc w lepszym planowaniu korzystania z technologii satelitarnych.

Pytanie 11

W jaki sposób należy zrealizować połączenie uszkodzonego kabla koncentrycznego, który prowadzi do odbiornika sygnału telewizyjnego, aby miejsce złączenia wprowadzało minimalne tłumienie?

A. Lutując żyłę sygnałową i ekran w miejscu uszkodzenia
B. Łącząc żyłę sygnałową i ekran przy pomocy złącza typu F
C. Łącząc żyłę sygnałową i ekran przy użyciu tulejek zaciskowych
D. Skręcając żyłę sygnałową i ekran w miejscu uszkodzenia
Łączenie rdzenia i oplotu kabla koncentrycznego za pomocą złącza typu F to najskuteczniejszy sposób na minimalizację tłumienia sygnału telewizyjnego w miejscu przerwania. Złącza typu F zostały zaprojektowane z myślą o wysokiej jakości połączeniu, które zapewnia niską stratność sygnału. W przeciwieństwie do innych metod, takich jak lutowanie czy skręcanie, złącza te umożliwiają stabilne i trwałe połączenie, które jest odporne na działanie czynników zewnętrznych. Dodatkowo, złącza typu F są szeroko stosowane w instalacjach telewizyjnych, co czyni je standardem branżowym. W praktyce, instalatorzy często korzystają z tych złączy, aby zapewnić optymalne parametry sygnałowe, zwłaszcza w dłuższych odległościach od źródła sygnału. Użycie złącza typu F eliminuje również ryzyko korozji, która może występować w innych metodach łączenia, co dodatkowo przyczynia się do długotrwałej niezawodności instalacji. Kluczowe jest również, aby przed zastosowaniem złącza odpowiednio przygotować kabel, co obejmuje staranne usunięcie izolacji oraz prawidłowe ułożenie rdzenia i oplotu, co zapewnia ich właściwe zamocowanie w złączu.

Pytanie 12

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. NAND
B. NOT
C. EX-OR
D. OR
Wybór bramek takich jak NOT, EX-OR czy OR nie jest wystarczający do realizacji dowolnej funkcji logicznej. Chociaż każda z tych bramek ma swoje zastosowania, ich ograniczenia sprawiają, że nie mogą one samodzielnie zrealizować wszystkich możliwych operacji logicznych. Na przykład, bramka NOT, która neguje sygnał, jest podstawową jednostką, ale sama w sobie nie pozwala na tworzenie bardziej złożonych funkcji logicznych, takich jak AND czy OR. Z kolei bramka EX-OR, stosowana głównie w operacjach arytmetycznych i porównaniach, również nie jest wystarczająca, aby zrealizować pełny zestaw funkcji logicznych, ponieważ jej działanie opiera się na porównywaniu wartości wejściowych, co czyni ją nieuniwersalną. W przypadku bramki OR, chociaż jest przydatna do realizacji funkcji logicznych, nie jest w stanie zrealizować negacji czy operacji AND bez dodatkowych komponentów. Błędem jest myślenie, że można stworzyć pełen zestaw funkcji logicznych, polegając tylko na tych bramkach. Taki sposób rozumowania prowadzi do ograniczeń w projektowaniu układów cyfrowych, które wymagają elastyczności i wszechstronności. W rzeczywistości, projektanci muszą łączyć różne typy bramek, aby uzyskać pożądane wyniki, co podkreśla znaczenie bramek uniwersalnych, takich jak NAND, w nowoczesnym inżynierii cyfrowej.

Pytanie 13

Aby dostosować wartość temperatury w danym obiekcie, należy użyć

A. termostatu
B. termopary
C. termometru
D. termowizora
Termostat to urządzenie, które automatycznie reguluje temperaturę w danym obiekcie, zapewniając odpowiednie warunki do funkcjonowania lub przechowywania określonych materiałów. Działa na zasadzie pomiaru temperatury otoczenia i aktywacji grzania lub chłodzenia w zależności od ustawionych parametrów. Przykładem zastosowania termostatu może być system klimatyzacji w budynkach, gdzie termostat monitoruje temperaturę wewnętrzną i dostosowuje działanie klimatyzacji, aby utrzymać komfortowe warunki. W przemyśle, termostaty są używane w piecach, chłodniach czy inny urządzeniach wymagających precyzyjnej kontroli temperatury. Normy dotyczące instalacji i użycia termostatów w różnych aplikacjach, takie jak ISO 9001, zapewniają, że urządzenia te działają zgodnie z wymaganiami jakościowymi, co jest kluczowe dla zachowania efektywności i bezpieczeństwa procesów technologicznych.

Pytanie 14

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dBµV
B. dBmV
C. dBA
D. dB
Stosunek poziomu sygnału do szumu (MER - Modulation Error Ratio) w instalacjach telewizyjnych określany jest w decybelach (dB), które stanowią jednostkę miary używaną do wyrażania stosunku dwóch wartości, w tym przypadku mocy sygnału do mocy szumu. Używanie dB jest standardem w telekomunikacji, ponieważ pozwala na wygodne porównywanie poziomów sygnału w różnych warunkach i systemach. Przykładowo, w instalacjach DVB-T (Digital Video Broadcasting - Terrestrial) poprawny MER jest kluczowy dla jakości odbioru sygnału - wartości powyżej 30 dB są zazwyczaj uznawane za satysfakcjonujące. W praktyce, aby osiągnąć odpowiednią jakość sygnału, technicy często korzystają z mierników sygnału, które wskazują wartości MER w dB, co umożliwia szybkie i efektywne diagnozowanie problemów z odbiorem. Dobre praktyki branżowe zalecają regularne monitorowanie tych wartości, co pozwala na wczesne wykrycie problemów z jakością sygnału i szumem, co jest kluczowe dla zapewnienia stabilnej i wysokiej jakości transmisji telewizyjnej.

Pytanie 15

Jakie dodatkowe funkcje może pełnić rejestrator w systemach nadzoru?

A. Rozpoznawanie twarzy
B. Sterowanie dodatkowymi źródłami światła dla kamer
C. Zasilanie kamer za pomocą BNC
D. Kontrola kamer z obrotnicą PTZ
Rejestrator w systemach monitoringu odgrywa kluczową rolę w zarządzaniu i kontrolowaniu kamer, w tym w przypadku kamer PTZ (pan-tilt-zoom). Funkcja sterowania kamerami PTZ oznacza, że rejestrator może wysyłać polecenia do kamer, aby zmieniały swoje położenie, kąt widzenia oraz powiększenie obrazu. Przykładowo, w zastosowaniach takich jak monitorowanie obiektów przemysłowych czy przestrzeni publicznych, operator może zdalnie dostosować kąt widzenia kamery PTZ, aby uzyskać najlepszy obraz w danym momencie. Standardy takie jak ONVIF określają protokoły komunikacyjne i interfejsy, które pozwalają na efektywne zarządzanie kamerami w systemach monitoringu. Dobre praktyki branżowe wskazują, że integracja funkcji PTZ z rejestratorem znacząco zwiększa elastyczność oraz skuteczność monitoringu, umożliwiając szybką reakcję na zmieniające się warunki w obserwowanej strefie.

Pytanie 16

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. potencjometru
B. zasilacza
C. wzmacniacza mocy
D. głośnika
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 17

Aby odpowiednio dopasować impedancję w systemie antenowym, konieczne jest zastosowanie

A. zwrotnicy antenowej.
B. rozdzielacza.
C. symetryzatora.
D. wzmacniacza antenowego.
Symetryzator jest urządzeniem używanym w instalacjach antenowych do dopasowania impedancji. Jego głównym zadaniem jest zapewnienie odpowiedniego połączenia między anteną a przewodem sygnałowym, co pozwala na minimalizację strat sygnału. Dzięki symetryzatorowi, który konwertuje sygnał z asymetrycznego przewodu (np. współosiowego) na symetryczny, można poprawić efektywność pracy anteny. Przykładem zastosowania symetryzatora jest instalacja anteny typu dipol, gdzie symetryzator pozwala na uzyskanie lepszego dopasowania impedancji, co z kolei przekłada się na lepszą jakość odbieranego sygnału. W praktyce, stosowanie symetryzatorów jest zgodne z zaleceniami standardów telekomunikacyjnych, które podkreślają znaczenie dopasowania impedancji w celu poprawy jakości sygnału i redukcji refleksji. Dobrą praktyką jest również umieszczanie symetryzatorów blisko anteny, co minimalizuje straty sygnału na odcinku przewodu.

Pytanie 18

Jakie urządzenie powinno być użyte wraz z konwerterem satelitarnym typu Quattro do rozprowadzania sygnałów telewizji satelitarnej z jednej anteny do wielu odbiorników TV-SAT?

A. Tuner
B. Multiswitch
C. Wzmacniacz
D. Modulator
Multiswitch jest urządzeniem, które umożliwia dystrybucję sygnału telewizyjnego satelitarnego z jednej anteny do wielu odbiorników telewizyjnych. W przypadku konwerterów typu Quattro, które dostarczają sygnały w czterech pasmach (V/H i Częstotliwości Niskie/Wysokie), multiswitch rozdziela sygnały z konwertera na wiele wyjść, co umożliwia podłączenie kilku tunerów satelitarnych. Umożliwia to jednoczesne oglądanie różnych programów telewizyjnych przez różne odbiorniki. Przykładem zastosowania jest instalacja w budynku wielorodzinnym, gdzie jeden zestaw antenowy i multiswitch pozwalają na obsługę kilku mieszkań. Zgodnie z normami instalacji telewizyjnych, multiswitch powinien być wybierany zgodnie z liczbą odbiorników oraz typem konwertera, co zapewnia optymalne parametry jakości sygnału.

Pytanie 19

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. podniesienie prędkości działania programu
B. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
C. określenie tempa przetwarzania poszczególnych instrukcji
D. zablokowanie obsługi przerwań zewnętrznych
Wykonywanie programu w trybie krokowym, określane również jako 'instrukcja po instrukcji', ma kluczowe znaczenie dla diagnostyki błędów w oprogramowaniu. Ta metoda pozwala programistom na analizowanie działania programu w czasie rzeczywistym, co ułatwia identyfikację miejsc, w których mogą wystąpić nieprawidłowości. Przykładowo, debugger umożliwia przechodzenie przez każdą linię kodu, monitorując wartości zmiennych oraz stan pamięci. Zastosowanie tej techniki jest zgodne z najlepszymi praktykami inżynierii oprogramowania, w tym metodologią Test-Driven Development (TDD), gdzie testowanie i poprawianie kodu odbywa się w cyklu iteracyjnym. Warto również zwrócić uwagę na to, że tryb krokowy jest niezwykle pomocny w kontekście złożonych systemów, takich jak embedded systems, gdzie błędy mogą prowadzić do krytycznych awarii sprzętowych. Poprawne zidentyfikowanie błędu na etapie rozwoju oprogramowania pozwala na oszczędność czasu i zasobów w późniejszych fazach projektu.

Pytanie 20

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. kablowej
B. dozorowej
C. naziemnej
D. satelitarnej
DVB-C jest standardem stworzonym z myślą o telewizji kablowej, a więc odpowiedzi dotyczące dozoru, satelitarnej czy naziemnej są błędne i wynikają z nieporozumienia dotyczącego specyfiki i zastosowania różnych technologii transmisji. Telewizja dozorowa wykorzystuje inne systemy, które są bardziej skoncentrowane na monitorowaniu i rejestracji obrazu, a nie na przesyle sygnałów telewizyjnych w tradycyjnym rozumieniu. Przykładem mogą być systemy CCTV, które korzystają z technologii analogowej lub cyfrowej, ale nie są związane z DVB-C. W przypadku systemów satelitarnych, standard DVB-S jest odpowiedzialny za przesył sygnałów telewizyjnych za pośrednictwem satelitów, co jest całkowicie odrębne od technologii kablowej. Z kolei DVB-T dotyczy transmisji naziemnej, która jest używana do nadawania sygnału telewizyjnego z anten naziemnych, także nie mając związku z kablowym przesyłem sygnałów. Błędne rozumienie zastosowania tych standardów prowadzi do mylnego wniosku, że DVB-C mógłby być użyty w kontekście innych form transmisji, co jest niezgodne z jego projektowymi założeniami i praktycznym użyciem w branży telekomunikacyjnej.

Pytanie 21

Jakie zjawisko napięć związane jest z pojęciem rezonansu?

A. stabilizatorze napięcia o działaniu ciągłym
B. stabilizatorze napięcia o działaniu impulsowym
C. obwodzie równoległym R, L, C
D. obwodzie szeregowym R, L, C
Rezonans napięć występuje w obwodach szeregowych R, L, C, gdzie R to opornik, L to induktor, a C to kondensator. Gdy częstotliwość sygnału zmiennego osiąga wartość rezonansową, impedancja obwodu osiąga minimum, co prowadzi do maksymalizacji prądu. W takim stanie napięcia na elementach obwodu są ze sobą ściśle powiązane, co może prowadzić do zjawiska wzmacniania sygnału. Przykładem praktycznym zastosowania tego zjawiska jest obwód rezonansowy stosowany w radioodbiornikach, gdzie umożliwia selekcję określonej częstotliwości sygnału radiowego, eliminując inne zakłócenia. Zrozumienie tego zjawiska jest kluczowe w projektowaniu filtrów, oscylatorów oraz w systemach komunikacyjnych. W praktyce inżynierskiej, wiedza o rezonansie jest niezbędna do efektywnego projektowania układów elektronicznych, aby zapewnić ich stabilność i efektywność działania.

Pytanie 22

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Ogranicznik prądowy zrealizowany w technologii bipolarnej
B. Źródło prądowe oparte na tranzystorze bipolarnym
C. Wzmacniacz z tranzystorem bipolarnym w układzie OC
D. Wzmacniacz z tranzystorem bipolarnym w układzie OB
Wzmacniacz na tranzystorze bipolarnym w konfiguracji OB (otwarty kolektor) to odpowiedź, która nie odzwierciedla natury wtórnika emiterowego. W konfiguracji OB sygnał wyjściowy jest zazwyczaj bezpośrednio podłączony do kolektora tranzystora, co ogranicza możliwości wzmacniania sygnału. Dodatkowo, ta konfiguracja charakteryzuje się niską impedancją wejściową, co czyni ją nieefektywną w zastosowaniach wymagających wysokiej impedancji. Z kolei źródło prądowe zbudowane na tranzystorze bipolarnym nie ma nic wspólnego z charakterystyką wtórnika emiterowego, ponieważ służy do utrzymywania stałego poziomu prądu niezależnie od obciążenia, co jest zupełnie innym zastosowaniem. Ogranicznik prądowy wykonany w technice bipolarnej również nie jest odpowiedni, gdyż koncentruje się na ograniczeniu prądu, a nie na wzmacnianiu sygnału. Typowe błędy, które prowadzą do takich nieprawidłowych odpowiedzi, to niepełne zrozumienie konfiguracji tranzystorów oraz ich funkcji w różnych układach. Zrozumienie różnicy między tymi różnymi konfiguracjami jest kluczowe dla poprawnego doboru komponentów w projektach elektronicznych. Wiedza ta jest fundamentalna dla inżynierów elektroniki oraz osób zajmujących się projektowaniem układów elektronicznych.

Pytanie 23

Jakim skrótem opisuje się modulację szerokości impulsów?

A. FSK
B. QAM
C. PSK
D. PWM
Modulacja szerokości impulsów (PWM) jest techniką, która pozwala na kontrolowanie wartości średniej mocy dostarczanej do obciążenia poprzez regulację szerokości impulsów w sygnale cyfrowym. W przeciwieństwie do innych metod modulacji, PWM nie zmienia częstotliwości sygnału, a jedynie jego czas trwania w cyklu pracy. Jest to szeroko stosowane podejście w wielu aplikacjach, takich jak regulacja prędkości silników elektrycznych, dimmery do oświetlenia LED, a także w systemach audio do modulacji sygnałów dźwiękowych. W kontekście standardów, PWM znajduje zastosowanie w różnych protokołach komunikacyjnych oraz w systemach sterowania automatyki, gdzie precyzyjna kontrola nad mocą jest kluczowa dla wydajności i niezawodności. Dzięki swojej prostocie i skuteczności, PWM jest istotnym narzędziem w inżynierii elektronicznej i automatyce, co czyni go fundamentem dla wielu nowoczesnych rozwiązań technologicznych.

Pytanie 24

Oznaczenie RG6 odnosi się do typu kabla

A. symetrycznego
B. ethernetowego
C. współosiowego
D. głośnikowego
Odpowiedź 'współosiowy' jest prawidłowa, ponieważ kabel RG6 to typ kabla współosiowego, który jest powszechnie używany w systemach telewizyjnych i szerokopasmowych. Kabel ten składa się z centralnego przewodnika, otoczonego izolatorem, ekranem i powłoką zewnętrzną. Jego konstrukcja umożliwia przesyłanie sygnałów o wysokiej jakości z minimalnymi stratami oraz zakłóceniami. RG6 charakteryzuje się niską tłumiennością, co czyni go idealnym do zastosowań wymagających dużej szerokości pasma, takich jak telewizja kablowa, satelitarna oraz internet szerokopasmowy. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, biurach oraz w większych systemach rozprowadzających sygnał. Standardy branżowe, takie jak ANSI/SCTE 74, określają wymagania dla kabli współosiowych, a ich poprawna instalacja i użycie są kluczowe dla zapewnienia optymalnej jakości sygnału oraz zadowolenia użytkowników.

Pytanie 25

W zainstalowanym wideodomofonie nie ma obrazu, jednak dźwięk działa poprawnie. Która z wymienionych usterek nie może wystąpić w tym urządzeniu?

A. Uszkodzenie monitora
B. Usterka kamery bramofonu
C. Awaria zasilacza zestawu wideodomofonowego
D. Zniszczenie przewodu łączącego bramofon z monitorem
Awaria zasilacza zestawu wideodomofonowego nie może być przyczyną braku wizji, ponieważ dźwięk działa prawidłowo. W systemach wideodomofonowych zasilacz odpowiada za dostarczenie energii zarówno do kamery, jak i do monitora. Jeśli zasilacz jest sprawny, obie funkcje powinny działać poprawnie. W przypadku awarii zasilacza, zarówno obraz, jak i dźwięk przestałyby działać. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie zasilania w instalacjach wideodomofonowych, aby zapewnić ich niezawodność. Warto również wspomnieć, że w profesjonalnych instalacjach zaleca się stosowanie zasilaczy o odpowiedniej mocy, aby uniknąć problemów z funkcjonowaniem urządzeń, co jest zgodne z zaleceniami producentów i standardami branżowymi. Zrozumienie tej zasady pozwala na szybsze diagnozowanie problemów oraz skuteczniejsze planowanie instalacji.

Pytanie 26

Na zakłócenie czasowe w odbiorze sygnału satelitarnego prawidłowo zamontowanej anteny wpływ mają

A. mgła
B. zawilgocenie kabla antenowego
C. wiatr
D. chmura burzowa
Chmury burzowe mają duży wpływ na sygnał satelitarny, zwłaszcza przez rozpraszanie oraz wchłanianie fal radiowych. Kiedy pojawiają się takie chmury, które są naładowane wodą i różnymi cząstkami, sygnał może być naprawdę słabszy, co prowadzi do różnych zakłóceń. Na przykład, w czasie burzy radiofale mogą być odbijane albo rozpraszane, co sprawia, że sygnał staje się niestabilny. Warto pamiętać, że projektując systemy antenowe, powinniśmy brać pod uwagę lokalne warunki atmosferyczne, w tym możliwość wystąpienia burz, bo to może mieć duży wpływ na jakość odbioru. Moim zdaniem, użytkownicy satelitów powinni być świadomi, że podczas intensywnych deszczy czy burz, jakość sygnału może znacznie spaść, więc czasem trzeba pomyśleć o dodatkowych rozwiązaniach, jak mocniejsze anteny czy jakieś systemy zapasowe, by poprawić odbiór.

Pytanie 27

Jakie oznaczenie mają terminale w urządzeniach systemów alarmowych, które służą do podłączenia obwodu sabotażowego?

A. CLK
B. TMP
C. COM
D. KPD
Zaciski CLK, COM oraz KPD nie są związane z obwodami sabotażowymi, co może wprowadzać w błąd osoby niewystarczająco zaznajomione z terminologią używaną w systemach alarmowych. Zaciski CLK (clock) często stosowane są w systemach komunikacji, gdzie synchronizacja czasowa jest kluczowa do prawidłowego funkcjonowania urządzeń. W kontekście systemów alarmowych, błędne przypisanie tego oznaczenia do obwodu sabotażowego może prowadzić do nieprawidłowych instalacji oraz, co gorsza, do braku detekcji manipulacji. Zaciski COM (common) mogą być używane jako wspólne połączenia w obwodach, ale nie mają one specyficznego zastosowania w kontekście obwodów sabotażowych. Zastosowanie tych zacisków w niewłaściwy sposób może prowadzić do obniżenia efektywności ochrony. Oznaczenie KPD (klawiatura podziału stref) odnosi się do urządzeń umożliwiających interakcję z systemem alarmowym, takich jak wprowadzanie kodów dostępu, a nie do obwodów sabotażowych. Prawidłowe zrozumienie funkcji i oznaczeń zacisków jest kluczowe w ich zastosowaniach, dlatego w kontekście systemów alarmowych istotne jest, aby nie mylić tych terminów, co może prowadzić do poważnych błędów w instalacji i programowaniu systemów zabezpieczeń.

Pytanie 28

Jakie cechy posiada wzmacniacz kanałowy w złożonych systemach antenowych?

A. Zwiększa sygnał kanałów wizyjnych o niższych częstotliwościach
B. Wzmacnia sygnał wszystkich kanałów o takiej samej wartości
C. Wzmacnia selektywnie sygnały jednego lub kilku kanałów telewizyjnych
D. Wzmacnia sygnał kanałów wizyjnych o wyższych częstotliwościach
Wzmacniacz kanałowy jest kluczowym elementem rozbudowanych instalacji antenowych, który pełni istotną rolę w poprawie jakości sygnału telewizyjnego. Jego fundamentalną właściwością jest selektywne wzmacnianie sygnałów jednego lub kilku określonych kanałów telewizyjnych, co pozwala na eliminację zakłóceń i poprawę odbioru. W praktyce, zastosowanie wzmacniacza kanałowego pozwala na osiągnięcie lepszej jakości obrazu i dźwięku, zwłaszcza w warunkach, gdzie sygnał jest osłabiony przez czynniki zewnętrzne, takie jak odległość od nadajnika czy przeszkody terenowe. Wzmacniacze te są projektowane zgodnie z określonymi standardami, aby zapewnić optymalną wydajność i minimalizację strat sygnału. Na przykład w instalacjach kablowych lub w systemach zbiorowego odbioru telewizyjnego, wzmacniacze kanałowe są często wykorzystywane do selektywnego wzmacniania sygnałów z różnych źródeł, co umożliwia odbiór szerokiego zakresu kanałów bez zakłóceń. Dzięki temu użytkownicy mogą cieszyć się lepszym doświadczeniem telewizyjnym, a instalacje mają większą niezawodność i efektywność.

Pytanie 29

Ile wynosi maksymalna prędkość przesyłania danych do urządzenia, którego dane techniczne przedstawiono w tabeli?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM

A. 1 200 B/s
B. 14 400 B/s
C. 150 B/s
D. 115 200 B/s
Wybór niepoprawnej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących prędkości przesyłania danych. Często myli się różne jednostki miary oraz maksymalne prędkości, które są specyficzne dla konkretnego protokołu komunikacyjnego. Na przykład, odpowiedzi takie jak 1 200 B/s czy 150 B/s sugerują bardzo niską prędkość, która jest typowa dla archaicznych systemów komunikacji. Te prędkości były używane w przeszłości, ale w obecnych standardach są zdecydowanie za niskie do efektywnej wymiany danych w nowoczesnych urządzeniach. Z kolei odpowiedź 115 200 B/s, mimo że jest zgodna z maksymalnymi prędkościami niektórych interfejsów, nie odnosi się do kontekstu pytania, który wyraźnie wskazuje na ograniczenia określonego urządzenia. Takie błędne wybory mogą wynikać z braku zrozumienia różnic między różnymi standardami komunikacyjnymi oraz ich zastosowaniem w praktyce. Warto zatem zwrócić uwagę na kontekst oraz specyfikacje techniczne, które konkretne urządzenie oferuje, zanim podejmiemy decyzję o odpowiedzi. Wiedza na temat prędkości przesyłania danych jest kluczowa w pracy z systemami elektronicznymi oraz w inżynierii komputerowej, dlatego tak ważne jest, aby zrozumieć, jakie maksymalne wartości są realistyczne dla danej technologii.

Pytanie 30

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Odbiera programy telewizyjne
B. Nadaje sygnały z satelity
C. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
D. Przekazuje informacje pomiędzy satelitami
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 31

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBmA
B. dBmW
C. dBµΩ
D. dBµV
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 32

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. pomiaru rezystancji przewodów
B. próby działania urządzeń różnicowoprądowych
C. pomiaru poboru mocy przez zasilane odbiorniki
D. badania ciągłości przewodów ochronnych
Prawidłowa odpowiedź wskazuje, że zakres okresowego sprawdzania i prób instalacji zasilającej urządzenie elektroniczne nie obejmuje pomiaru poboru mocy przez zasilane odbiorniki. W praktyce, to badanie koncentruje się na zapewnieniu bezpieczeństwa i niezawodności instalacji elektrycznej, a nie na analizie wydajności energetycznej odbiorników. Zgodnie z normą PN-EN 60204-1 oraz innymi wytycznymi, istotne jest, aby sprawdzano aspekty takie jak ciągłość przewodów ochronnych, rezystancję przewodów oraz działanie urządzeń różnicowoprądowych, aby upewnić się, że instalacja elektryczna nie stanowi zagrożenia dla użytkowników. Przykładem może być badanie ciągłości przewodów ochronnych, które jest kluczowe dla ochrony przed porażeniem prądem. Pomiar poboru mocy, choć ważny dla oceny efektywności energetycznej, nie jest częścią podstawowych kontrolnych procedur związanych z bezpieczeństwem instalacji.

Pytanie 33

Na środku wyświetlacza odbiornika OTV pojawia się bardzo jasna pozioma linia, podczas gdy reszta ekranu jest ciemna. Gdzie doszło do awarii w odbiorniku?

A. W bloku odchylania pionowego
B. W dekoderze kolorów
C. We wzmacniaczu p.cz. różnicowej fonii
D. W bloku odchylania poziomego
Chociaż odpowiedzi dotyczące bloku odchylania poziomego, wzmacniacza p.cz. różnicowej fonii oraz dekodera kolorów mogą wydawać się logiczne, każda z nich ma zasadnicze braki w kontekście diagnozowania problemu opisanego w pytaniu. Blok odchylania poziomego odpowiada za kontrolowanie ruchu elektronów w poziomie. Problemy w tym obszarze prowadzą do zniekształceń poziomych, takich jak zniekształcenia obrazu, a nie do pojawienia się jasnej linii poziomej. Wzmacniacz p.cz. różnicowej fonii ma na celu przetwarzanie sygnałów audio, co nie ma wpływu na wyświetlanie obrazu. Usterka w tym bloku skutkuje problemami z dźwiękiem, a nie z obrazu. Z kolei dekoder kolorów jest odpowiedzialny za separację i przetwarzanie sygnałów kolorów. Usterki w tym obszarze mogą prowadzić do problemów z kolorami, ale nie stworzą jasnej, poziomej linii na ekranie. Kluczowym błędem myślowym w takich przypadkach jest mylenie funkcji różnych bloków i ich wpływu na wyjście obrazu. Właściwe zrozumienie architektury i funkcji różnych komponentów telewizora jest niezbędne do efektywnej diagnostyki i naprawy. Dlatego ważne jest, aby podczas rozwiązywania problemów z telewizorami zwracać uwagę na konkretne symptomy i ich powiązania z odpowiednimi obszarami funkcjonalnymi urządzenia.

Pytanie 34

W instrukcji technicznej zasilacza impulsowego podano, że amplituda napięcia wyjściowego nie przekracza 50 mVpp. Co oznacza, że wartość nieprzekraczająca 50 mV to

A. międzyszczytowa wartość napięcia tętnień
B. skuteczna wartość napięcia tętnień
C. maksymalna wartość napięcia tętnień
D. średnia wartość napięcia tętnień
Wybór odpowiedzi dotyczącej skutecznej, maksymalnej lub średniej wartości napięcia tętnień jest mylący i nieadekwatny w kontekście opisanego problemu. Skuteczna wartość napięcia odnosi się do napięcia zmiennego, które dostarcza taką samą moc do obciążenia jak napięcie stałe. W przypadku tętnień, skuteczna wartość nie jest miarodajnym wskaźnikiem jakości napięcia, ponieważ nie uwzględnia ona zmienności sygnału w czasie, a jedynie jego efektywną moc. Z kolei maksymalna wartość odnosi się do najwyższego punktu napięcia w danym cyklu, co nie pozwala na pełne zrozumienie dynamiki sygnału. Średnia wartość napięcia również nie jest adekwatna, ponieważ nie odzwierciedla wahań napięcia, które mogą mieć negatywny wpływ na działanie urządzeń. W praktyce, projektując zasilacze impulsowe, kluczowe jest skupienie się na międzyszczytowej wartości tętnień, aby zapewnić ich stabilność i minimalizować wpływ na inne elementy układu. Często błędne wnioski wynikają z mylnego interpretowania definicji parametrów elektrycznych, co może prowadzić do niewłaściwego projektowania i nieoptymalnych rozwiązań w systemach zasilania.

Pytanie 35

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav > Ifsm
B. Ifav ~= Ifsm
C. Ifav < Ifsm
D. Ifav = Ifsm
Dobrze, że wskazałeś, że Ifav < Ifsm. To ważna zasada, bo Itav to maksymalny prąd, który dioda może prowadzić na stałe. W zwykłych warunkach pracy nie powinieneś go przekraczać, bo to zapewnia, że dioda będzie działać długo i niezawodnie. Ifsm natomiast to maksymalny prąd, jaki dioda może znieść przez krótki czas. Zwykle Ifsm jest dużo większe od Ifav, co daje diodzie możliwość radzenia sobie z chwilowymi skokami prądu, na przykład w przetwornicach czy zasilaczach impulsowych. Kiedy wybierasz diodę prostowniczą, zawsze bierzesz pod uwagę oba te prądy. Musisz upewnić się, że Ifav nie przekracza Ifsm, żeby uniknąć przegrzewania diody i jej uszkodzenia na dłuższą metę. W układach zasilania, gdzie dioda prostownicza działa na prądzie zmiennym, to naprawdę kluczowe zagadnienie.

Pytanie 36

Co oznacza zapis IP20 w kontekście urządzenia elektronicznego?

A. częstotliwość napięcia zasilającego
B. moc pozorna
C. ilość zacisków wyjściowych
D. stopień ochrony obudowy
Zapis IP20 na urządzeniu elektronicznym oznacza stopień ochrony obudowy, który jest określany według standardu IEC 60529. IP to skrót od 'Ingress Protection' i wskazuje na poziom ochrony przed wnikaniem ciał stałych oraz cieczy. Liczba '2' oznacza, że obudowa jest chroniona przed dostępem do części niebezpiecznych przy użyciu palca (do 12,5 mm), co czyni ją względnie bezpieczną w normalnych warunkach eksploatacji. Liczba '0' wskazuje, że urządzenie nie jest chronione przed wodą. Przykładem zastosowania IP20 mogą być urządzenia elektroniczne używane w pomieszczeniach, które nie są narażone na kontakt z wodą, jak np. komputery stacjonarne czy osprzęt biurowy. Zrozumienie oznaczeń IP jest kluczowe dla zapewnienia odpowiedniego poziomu bezpieczeństwa i trwałości urządzeń w różnych środowiskach pracy. W praktyce, dobór odpowiedniego stopnia ochrony obudowy powinien być zgodny z warunkami, w jakich dany sprzęt będzie używany, aby zabezpieczyć go przed uszkodzeniami.

Pytanie 37

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 400 W
B. 100 W
C. 800 W
D. 200 W
Wiesz, żeby obliczyć zakres pomiarowy watomierza, trzeba skorzystać z wzoru na moc elektryczną. Mamy tutaj proste równanie: P = U * I. W tym przypadku to wygląda tak: prąd wynosi 2 A, a napięcie to 200 V. Jak to podstawisz do wzoru, wyjdzie ci P = 200 V * 2 A, co daje 400 W. To znaczy, że maksymalna moc, którą ten watomierz może zmierzyć, to 400 W – to pasuje do jego specyfikacji. W praktyce, jak będziesz mógł mierzyć różne urządzenia, ważne jest, żeby wiedzieć, jaki jest maksymalny zakres pomiarowy, bo inaczej ryzykujesz uszkodzenie urządzenia i błędne odczyty. Takie pomiary są przydatne w wielu sytuacjach – od monitorowania zużycia energii w domu po sprawdzanie wydajności w przemyśle. Zrozumienie zakresu pomiarowego jest kluczowe, bo pozwala inżynierom i technikom na właściwy dobór sprzętu do konkretnych zadań.

Pytanie 38

Skrót ADSL odnosi się do technologii, która pozwala na

A. kompresję materiałów audio i wideo
B. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
C. transmisję informacji cyfrowych za pośrednictwem fal radiowych
D. odbieranie cyfrowej telewizji naziemnej
Skrót ADSL jednoznacznie odnosi się do technologii szerokopasmowego dostępu do internetu, co czyni niektóre odpowiedzi nieprawidłowymi. Przesyłanie informacji cyfrowej poprzez fale radiowe odnosi się do technologii takich jak Wi-Fi czy LTE, które nie wymagają fizycznego połączenia kablowego, co jest przeciwstawne do sposobu działania ADSL, który bazuje na istniejących liniach telefonicznych. Odbiór naziemnej telewizji cyfrowej również jest procesem niezwiązanym z ADSL, ponieważ polega na odbieraniu sygnałów telewizyjnych za pomocą anteny, a nie transmisji danych przez linię telefoniczną. Kompresja audio i wideo to proces technologiczny służący do zmniejszenia rozmiaru plików multimedialnych, który nie ma bezpośredniego związku z ADSL i jego funkcjonalnością. Typowym błędem myślowym w tym przypadku jest mylenie różnych technologii transmisji danych i ich zastosowań. ADSL jest specyficzną technologią, która została zaprojektowana do efektywnego dostarczania usług szerokopasmowych, a nie do transmisji radiowej, telewizyjnej czy kompresji danych. Właściwe zrozumienie ADSL i jego charakterystyki jest kluczowe dla efektywnego korzystania z zasobów internetowych, zwłaszcza w kontekście wzrastających potrzeb użytkowników.

Pytanie 39

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. naziemnych
B. satelitarnych
C. z internetu
D. kablowych
W przypadku odpowiedzi, które dotyczą sygnałów internetowych, naziemnych czy satelitarnych, widać, że zrozumienie tych technologii i standardów było nieco mylne. Odbiorniki do streamingu w internecie działają na innych zasadach niż DVB-C, bo polegają na połączeniu z Internetem, a nie na sygnale kablowym. Więc jeśli internet działa słabo, to użytkownik może mieć problem z odbiorem. Z kolei telewizja naziemna korzysta z DVB-T, czyli sygnał jest nadawany z konkretnych nadajników i czasem nie ma go w górskich rejonach. Co do telewizji satelitarnej, to tam znowu mówimy o DVB-S, gdzie sygnał idzie z satelitów na orbitach i potrzebne są specjalne anteny. Jak więc wybierasz odbiornik, warto wiedzieć, że każdy z tych standardów jest inny i wpływa na jakość odbioru.

Pytanie 40

Którego typu środka gaśniczego nie należy używać do gaszenia ognia pochodzącego z urządzenia elektrycznego?

A. Proszku gaśniczego.
B. Halon.
C. Piany gaśniczej.
D. Dwutlenku węgla.
Piana gaśnicza nie powinna być stosowana do gaszenia pożarów urządzeń elektrycznych, ponieważ może prowadzić do przewodzenia prądu i stwarzać zagrożenie dla ratowników oraz osób znajdujących się w pobliżu. Piana gaśnicza jest skuteczna w przypadku pożarów materiałów stałych oraz cieczy palnych, jednak w przypadku pożarów sprzętu elektrycznego, zawsze należy wykorzystywać środki, które nie przewodzą prądu. Przykładem odpowiednich mediów gaśniczych są dwutlenek węgla oraz proszek gaśniczy, które nie tylko tłumią płomienie, ale także minimalizują ryzyko wybuchu elektrycznego. Zgodnie z normami branżowymi, takich jak NFPA 70E oraz IEC 60947-4-1, ważne jest, aby przy wyborze środka gaśniczego kierować się jego właściwościami izolacyjnymi oraz skutecznością w danym kontekście. Warto również szkolenia z zakresu ochrony przeciwpożarowej, aby zrozumieć różnice między środkami gaśniczymi i ich zastosowaniem w praktyce.