Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 22 maja 2025 16:08
  • Data zakończenia: 22 maja 2025 16:25

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. awaria pompy olejowej
B. zbyt duże zanieczyszczenie filtra oleju
C. uszkodzenie uszczelki pod głowicą
D. zużycie czopów wału korbowego
Uszkodzenie uszczelki pod głowicą jest jedną z najczęstszych przyczyn wzrostu poziomu oleju w silniku. Kiedy uszczelka jest uszkodzona, może dojść do przedostawania się płynów chłodniczych do komory spalania lub do układu smarowania. Płyn chłodniczy, który dostaje się do silnika, może powodować zubożenie oleju lub jego nadmiar z powodu zjawiska emulgacji, co prowadzi do wzrostu poziomu oleju. W praktyce, mechanik powinien regularnie sprawdzać uszczelki oraz wykonywać testy ciśnienia, aby wykryć potencjalne nieszczelności. Dobre praktyki w zakresie konserwacji silnika obejmują również korzystanie z oleju i płynów chłodniczych o odpowiednich parametrach, co ma kluczowe znaczenie dla długowieczności silnika. Rekomendowane jest również regularne przeprowadzanie inspekcji wizualnych, które mogą pomóc w wczesnym wykryciu problemów z uszczelką pod głowicą, co może zapobiec poważniejszym uszkodzeniom silnika.

Pytanie 2

W jednostce napędowej o symbolu V6 24V zaleca się wymianę zaworów. Ile zaworów trzeba pobrać z magazynu?

A. 12
B. 24
C. 18
D. 6
Silnik V6 24V, jak sama nazwa wskazuje, jest wyposażony w sześć cylindrów oraz 24 zawory. Oznacza to, że każdy cylinder ma po 4 zawory - dwa dolotowe i dwa wydechowe. W związku z tym, aby przeprowadzić wymianę wszystkich zaworów w takim silniku, należy przygotować 24 sztuki. W praktyce, przy takich wymianach, ważne jest, aby stosować oryginalne części zamienne, które odpowiadają specyfikacjom producenta. W przypadku silników V6, ich konstrukcja oraz rozmieszczenie zaworów wpływają na wydajność oraz osiągi silnika. Należy również pamiętać, że podczas wymiany zaworów warto sprawdzić stan innych komponentów, takich jak uszczelki czy prowadnice zaworów, co może przyczynić się do dłuższej i bardziej efektywnej pracy silnika. Dlatego, przy planowaniu takiej wymiany, dobrze jest mieć na uwadze kompleksowość układu i ewentualne dodatkowe części, jakie mogą być potrzebne.

Pytanie 3

Jakim urządzeniem dokonuje się pomiaru bicia osiowego tarczy hamulcowej?

A. czujnikiem zegarowym
B. suwmiarką modułową
C. średnicówką mikrometryczną
D. pasametrem
Czujnik zegarowy jest kluczowym narzędziem w pomiarze bicia osiowego tarczy hamulcowej, ponieważ pozwala na precyzyjne określenie odchylenia od osi obrotu. Umożliwia to wykrycie nawet najmniejszych nieprawidłowości, co jest niezwykle ważne dla bezpieczeństwa pojazdu. W praktyce, czujnik zegarowy jest umieszczany na tarczy hamulcowej, a następnie obraca się koło. Wskazania czujnika pokazują wahania, które można zaobserwować w różnych punktach tarczy. Tarcze hamulcowe muszą spełniać określone normy, aby zapewnić odpowiednią efektywność hamowania oraz minimalizować wibracje. Odpowiednie bicia osiowe mogą prowadzić do nierównomiernego zużycia klocków hamulcowych oraz pogorszenia działania układu hamulcowego. W branży motoryzacyjnej, standardy takie jak te określone przez SAE (Society of Automotive Engineers) lub ISO (International Organization for Standardization) podkreślają znaczenie precyzyjnych pomiarów w celu zapewnienia bezpieczeństwa i wydajności pojazdu. Zastosowanie czujnika zegarowego w tej dziedzinie jest zatem niezbędne, aby dokonać rzetelnej oceny stanu technicznego tarczy hamulcowej, co przekłada się na bezpieczeństwo jazdy i żywotność komponentów.

Pytanie 4

Jakiego woltomierza o odpowiednim zakresie pomiarowym należy użyć do pomiaru spadku napięcia podczas rozruchu akumulatora?

A. 20 V AC
B. 2 V DC
C. 20 V DC
D. 2 V AC
Odpowiedź 20 V DC to trafny wybór. Kiedy mierzysz spadek napięcia na akumulatorze, który działa w trybie stałoprądowym, to woltomierz musi być przystosowany do napięcia stałego (DC). Wartość 20 V powinna być wystarczająca do uchwycenia typowych spadków napięcia, które mogą wystąpić podczas uruchamiania silnika. W praktyce, warto zmierzyć napięcie przed uruchomieniem i w trakcie rozruchu, żeby upewnić się, że akumulator działa jak należy. Jeśli wskazania spadają poniżej 12 V, to raczej coś jest nie tak. W branży mamy standardy, jak SAE J537, które podkreślają, jak ważne jest monitorowanie napięcia akumulatora, żeby zapobiegać różnym awariom w systemach elektrycznych pojazdu. Z kolei prawidłowe pomiary to klucz do diagnostyki i planowania konserwacji akumulatorów – bez tego ciężko będzie utrzymać efektywność zasilania.

Pytanie 5

W trakcie analizy hamulców na stanowisku rolkowym przeprowadza się przede wszystkim pomiar

A. siły hamowania
B. siły tarcia
C. opóźnienia przy hamowaniu
D. dystansu hamowania
Pomiar siły hamowania na stanowisku rolkowym jest kluczowym elementem oceny efektywności systemu hamulcowego pojazdu. Siła hamowania, mierzona w niutonach (N), określa, jaką moc hamulce są w stanie wygenerować w momencie działania, co bezpośrednio wpływa na bezpieczeństwo i skuteczność hamowania. W praktyce, podczas testów na stanowisku rolkowym, pojazd jest umieszczany na rolkach, a następnie przy użyciu pedału hamulca generowana jest siła, która jest następnie rejestrowana. Pomiar ten pozwala na ocenę stanu technicznego hamulców, co jest zgodne z normami, takimi jak UNECE Regulation No. 13, które regulują wymagania dotyczące hamulców pojazdów. Dobre praktyki w zakresie diagnostyki hamulców obejmują regularne kontrole oraz analizę wyników pomiarów, co umożliwia wczesne wykrywanie ewentualnych usterek oraz zapewnia bezpieczeństwo użytkowników dróg. Zrozumienie siły hamowania oraz jej wpływu na drogę hamowania i opóźnienie jest kluczowe dla inżynierów i techników zajmujących się pojazdami.

Pytanie 6

W pojazdach metalowe żeliwo wykorzystuje się do produkcji

A. łożysk tocznych
B. wałów napędowych
C. zaworów wydechowych
D. kolektorów wydechowych
Żeliwo jest materiałem powszechnie stosowanym w budowie kolektorów wydechowych w samochodach, głównie ze względu na swoje korzystne właściwości mechaniczne i termiczne. Kolektory wydechowe muszą wytrzymywać wysokie temperatury oraz korozję, co czyni żeliwo idealnym wyborem. Dzięki swojej odporności na ścieranie i utlenianie, żeliwo zapewnia długowieczność elementów, co przekłada się na mniejsze koszty serwisowania. Przykładowo, w silnikach spalinowych żeliwne kolektory wydechowe są w stanie wytrzymać intensywne warunki pracy, takie jak wysokie ciśnienie spalin. Ponadto, żeliwo ma doskonałą zdolność tłumienia drgań, co pozwala na cichszą pracę silnika, a także ogranicza przenoszenie wibracji na inne elementy układu wydechowego. Zastosowanie żeliwa w kolektorach wydechowych jest zgodne z najlepszymi praktykami inżynieryjnymi, które kładą nacisk na trwałość i bezpieczeństwo komponentów samochodowych.

Pytanie 7

Który z płynów hamulcowych charakteryzuje się najwyższą temperaturą wrzenia?

A. DOT5
B. DOT4
C. DOT3
D. R3
Płyn hamulcowy DOT5 jest syntetycznym płynem, który posiada jedną z najwyższych temperatur wrzenia wśród dostępnych płynów hamulcowych. Temperatura wrzenia DOT5 wynosi około 260°C, co czyni go idealnym wyborem dla zastosowań, gdzie występują wysokie temperatury, takich jak sport motoryzacyjny oraz w zastosowaniach wyścigowych. Dzięki swoim właściwościom, DOT5 minimalizuje ryzyko zjawiska wrzenia płynu hamulcowego, co może prowadzić do utraty skuteczności hamulców. Jest on również odporny na wilgoć, co przyczynia się do dłuższej trwałości układu hamulcowego. DOT5 jest zalecany w pojazdach, które nie są narażone na kontakt z wodą, ponieważ zawiera silikon, który nie absorbuje wilgoci. W branży motoryzacyjnej standardy dotyczące płynów hamulcowych, takie jak FMVSS 116, określają wymagania dla płynów hamulcowych, co dodatkowo potwierdza wysoką jakość DOT5. W praktyce, stosowanie DOT5 może znacząco poprawić bezpieczeństwo i wydajność hamulców w ekstremalnych warunkach.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Sonda Lambda dokonuje pomiaru ilości

A. azotu
B. węgla
C. sadzy
D. tlenu
Sonda Lambda, znana również jako sonda tlenowa, jest kluczowym elementem systemu zarządzania silnikiem w pojazdach spalinowych. Jej głównym zadaniem jest pomiar stężenia tlenu w spalinach, co pozwala na optymalizację procesu spalania w silniku. Prawidłowy poziom tlenu w spalinach jest niezbędny do osiągnięcia efektywności energetycznej oraz redukcji emisji szkodliwych substancji. Na przykład, w silnikach z systemem wtrysku paliwa, sonda Lambda umożliwia dostosowanie wskazania mieszanki paliwowo-powietrznej do aktualnych warunków pracy silnika, co przekłada się na lepszą wydajność paliwową oraz mniejsze zanieczyszczenie środowiska. W praktyce oznacza to, że jeśli sonda wykryje zbyt niskie stężenie tlenu, system komputerowy silnika zwiększy ilość paliwa, a zbyt wysokie stężenie spowoduje jego redukcję. Dzięki tym działaniom, pojazdy spełniają normy emisji spalin, takie jak Euro 6, co jest istotne w kontekście ochrony środowiska i przepisów prawnych.

Pytanie 10

W trakcie jazdy próbnej zaobserwowano drgania w kierownicy samochodu w określonym zakresie prędkości. W takiej sytuacji najpierw należy

A. wymienić końcówki drążków kierowniczych
B. wymienić łożyska kół
C. wymienić łączniki stabilizatora
D. wyważyć koła
Drgania na kierownicy podczas jazdy próbnej są często wynikiem niewłaściwego wyważenia kół. Wyważenie kół polega na równomiernym rozłożeniu masy całego koła, co zapewnia stabilność pojazdu w czasie jazdy. Jeśli koła są niewyważone, mogą występować drgania, które są odczuwalne w kierownicy, szczególnie przy określonych prędkościach. Problemy te mogą prowadzić nie tylko do nieprzyjemnych odczuć podczas prowadzenia, ale również do szybszego zużycia opon oraz podzespołów zawieszenia. W praktyce, wyważenie kół powinno być wykonywane po każdej wymianie opon lub gdy zauważysz oznaki drgań. Używa się do tego specjalistycznego sprzętu, który precyzyjnie mierzy nierównomierność masy i pozwala na dodanie odpowiednich ciężarków. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne sprawdzanie wyważenia kół jako elementu zapewniającego bezpieczeństwo i komfort jazdy.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Ostatnia obróbka cylindra w silniku spalinowym to

A. toczenie
B. honowanie
C. szlifowanie
D. planowanie
Szlifowanie, planowanie i toczenie to różne techniki obróbcze, ale nie do końca sprawdzą się w obróbce cylindrów silnika spalinowego. Szlifowanie może wygładzać, ale nie osiągnie tak precyzyjnego efektu jak honowanie, bo nie da takiej chropowatości, a to jest kluczowe dla działania silnika. Planowanie jest bardziej do prostych powierzchni, więc nie pasuje do cylindrów o skomplikowanym kształcie. Toczenie to też proces, w którym materiał jest usuwany, ale to nie to samo, co potrzebujemy do wnętrza cylindrów. Często ludzie mylą te ogólne techniki z tym, co jest naprawdę potrzebne w danej sytuacji. W przypadku cylindrów ważne jest nie tylko usunięcie materiału, ale też precyzyjne formowanie powierzchni, żeby silnik działał prawidłowo. Zrozumienie, jaką rolę ma honowanie, jest kluczowe dla jakości i wydajności silników spalinowych.

Pytanie 13

Demontaż za pomocą klucza hakowego odbywa się przy użyciu

A. łożyska ślizgowego
B. filtra oleju
C. wtryskiwacza
D. łożyska tocznego
Demontaż wtryskiwacza, łożyska tocznego czy łożyska ślizgowego za pomocą klucza hakowego jest niewłaściwy, ponieważ każde z tych elementów silnika wymaga zastosowania innych narzędzi oraz technik. W przypadku wtryskiwaczy, które są precyzyjnymi komponentami, klucz hakowy nie zapewni odpowiedniego uchwytu ani stabilności. Do ich demontażu zazwyczaj używa się kluczy nasadowych, które pozwalają na dokładne dopasowanie i nie powodują uszkodzeń wtryskiwacza ani jego mocowania. Z kolei łożyska toczne i ślizgowe nie są projektowane do wykręcania ani demontażu za pomocą tego rodzaju narzędzi, ponieważ wymagają one specjalistycznych narzędzi takich jak ściągacze, które są skonstruowane do usuwania łożysk z wałów lub obudów. Użycie klucza hakowego w tych przypadkach może prowadzić do uszkodzenia łożysk lub ich mocowań oraz generować dodatkowe koszty związane z naprawą. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują brak zrozumienia specyfiki danego narzędzia oraz jego zastosowania w kontekście pracy mechanicznej. W mechanice niezwykle ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem, co nie tylko zapewnia efektywność pracy, ale również zwiększa bezpieczeństwo i trwałość naprawianych elementów. Przestrzeganie standardów i dobrych praktyk w doborze narzędzi znacznie podnosi jakość wykonania usługi mechanicznej.

Pytanie 14

Termostat aktywuje przepływ płynu chłodzącego do dużego obiegu

A. tuż po uruchomieniu silnika
B. po uruchomieniu ogrzewania wnętrza
C. gdy temperatura płynu chłodzącego jest wysoka
D. gdy temperatura płynu chłodzącego jest niska
Termostat pełni kluczową rolę w zarządzaniu obiegiem cieczy chłodzącej w silniku. Otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy osiąga odpowiedni, wysoki poziom. Wysoka temperatura jest wskaźnikiem, że silnik osiągnął optymalną temperaturę pracy, co zapobiega jego przegrzewaniu. Dzięki temu, gdy temperatura cieczy chłodzącej wzrasta, termostat pozwala na cyrkulację cieczy przez chłodnicę, co skutkuje efektywnym odprowadzaniem ciepła. Przykładem zastosowania tego mechanizmu jest samochód osobowy, w którym termostat otwiera się przy około 90-95°C, co jest zgodne z normami branżowymi dla większości silników spalinowych. Umożliwia to utrzymanie temperatury roboczej silnika na stałym poziomie, co jest istotne dla jego wydajności i żywotności. Zrozumienie tego procesu jest kluczowe dla każdego, kto zajmuje się diagnostyką i naprawą systemów chłodzenia w pojazdach.

Pytanie 15

Do jakiego celu służy synchronizator używany w skrzyni biegów?

A. wyrównanie prędkości obrotowych załączanych elementów
B. ochrona załączonego biegu przed rozłączeniem
C. modyfikacja prędkości kół napędowych
D. ograniczenie momentu obrotowego przekazywanego na koła
Synchronizator w skrzyni biegów odgrywa kluczową rolę w zapewnieniu płynności zmiany biegów przez wyrównanie prędkości obrotowych załączanych elementów, co pozwala na ich bezproblemowe połączenie. W momencie zmiany biegu, synchronizator synchronizuje prędkości obrotowe wałka napędowego i koła zębatego, eliminując ryzyko uszkodzenia elementów skrzyni biegów oraz zwiększając komfort jazdy. Przykładami zastosowania są manualne skrzynie biegów w samochodach osobowych, gdzie kierowca zmienia biegi, a synchronizatory zapewniają, że nie występują zgrzyty ani inne nieprzyjemne dźwięki związane z niewłaściwym połączeniem. Rozwiązania te oparte są na standardach inżynierii mechanicznej, które podkreślają znaczenie precyzyjnego dopasowania elementów mechanicznych oraz poprawnego doboru materiałów. W praktyce, odpowiednio zaprojektowane synchronizatory zmniejszają zużycie elementów układu napędowego, co przekłada się na dłuższą żywotność pojazdu oraz niższe koszty eksploatacji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 10%
B. 40%
C. 20%
D. 30%
Wybór innej wartości jako maksymalnej dopuszczalnej różnicy sił hamowania między kołami tej samej osi może wynikać z nieporozumień dotyczących znaczenia równoważenia sił hamowania oraz ich wpływu na stabilność pojazdu. Odpowiedzi sugerujące wyższe limity, takie jak 40% czy 20%, mogą wydawać się odpowiednie z perspektywy ogólnego zrozumienia działania układu hamulcowego, ale w rzeczywistości mogą prowadzić do poważnych problemów z bezpieczeństwem. Osiąganie zbyt dużych różnic w sile hamowania może skutkować nierównomiernym zużyciem opon oraz zwiększonym ryzykiem poślizgu, zwłaszcza w sytuacjach awaryjnych. W praktyce, nieprawidłowe wartości mogą wpłynąć na dynamikę pojazdu, powodując trudności w prowadzeniu oraz wydłużenie drogi hamowania. Ponadto, taki stan rzeczy może być źródłem niezgodności z przepisami prawnymi dotyczącymi stanu technicznego pojazdów. Kluczowe jest, aby mechanicy i właściciele pojazdów byli świadomi znaczenia tego parametru w kontekście ogólnego bezpieczeństwa na drodze oraz regularnie kontrolowali układ hamulcowy, aby zapewnić jego prawidłowe funkcjonowanie i pełną sprawność. Dbanie o równowagę sił hamowania jest fundamentalne dla zapewnienia bezpieczeństwa jazdy i komfortu użytkowania pojazdu.

Pytanie 18

Jaka powinna być minimalna grubość okładzin ściernych klocków hamulcowych?

A. od 0,5 cm do 1 cm
B. od 0,5 mm do 1 mm
C. od 1,5 mm do 2 mm
D. od 1,5 cm do 2 cm
Minimalna grubość okładzin ściernych klocków hamulcowych, wynosząca od 1,5 mm do 2 mm, jest kluczowym parametrem zapewniającym bezpieczeństwo i efektywność układu hamulcowego. Grubość ta została określona na podstawie standardów branżowych, które uwzględniają zarówno wymogi dotyczące bezpieczeństwa, jak i wydajności. W praktyce, grubość okładzin poniżej 1,5 mm może prowadzić do nieodpowiedniego hamowania, zwiększonego zużycia elementów układu oraz ryzyka uszkodzenia tarczy hamulcowej. Regularna kontrola grubości okładzin jest konieczna, aby zapewnić ich odpowiednią efektywność i uniknąć niebezpiecznych sytuacji na drodze. Przykładowo, w samochodach osobowych, zaleca się wymianę klocków hamulcowych, gdy osiągną one minimalną grubość, zwłaszcza w kontekście intensywnego użytkowania lub jazdy w trudnych warunkach. Tylko przestrzeganie tych standardów zapewnia nieprzerwaną skuteczność hamowania oraz bezpieczeństwo podróżujących.

Pytanie 19

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. czarnym
B. czerwonym
C. niebieskim
D. białym
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby ocenić poziom zużycia tulei cylindrowej silnika spalinowego, należy przeprowadzić pomiar jej średnicy?

A. średnicówką czujnikową
B. czujnikiem zegarowym
C. suwmiarką uniwersalną
D. mikrometrem do otworów
Suwmiarka uniwersalna, mikrometr do otworów oraz czujnik zegarowy, mimo że są powszechnie stosowane w pomiarach, nie są optymalnymi narzędziami do oceny stopnia zużycia tulei cylindrowej silnika spalinowego. Suwmiarka, z racji swojej konstrukcji, oferuje ograniczoną dokładność pomiaru, często nie wystarczającą do analizy precyzyjnych wymiarów, jakimi są średnice cylindrów. Jej błąd pomiarowy może wynosić kilka setnych milimetra, co w kontekście silników spalinowych może prowadzić do błędnych wniosków na temat stanu technicznego. Mikrometr do otworów również ma swoje ograniczenia, ponieważ nie zawsze umożliwia pełne i dokładne pomiary wewnętrznych średnic tulei, zwłaszcza w miejscach, gdzie geometria może być złożona lub gdzie występują zniekształcenia. Z kolei czujnik zegarowy, chociaż przydatny do pomiaru odchyleń od normy lub do pomiaru ruchu liniowego, nie jest narzędziem przeznaczonym do dokładnego pomiaru średnicy, co zwęża jego zastosowanie w kontekście diagnostyki silników. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędnych ocen i niewłaściwych decyzji dotyczących napraw czy wymiany elementów silnika.

Pytanie 23

Podczas przyjmowania pojazdu do diagnostyki, autoryzowany serwis obsługi identyfikuje go na podstawie

A. rodzaju nadwozia
B. numeru VIN
C. roku produkcji
D. modelu silnika
Numer VIN to taki unikalny kod, który identyfikuje każdy samochód. Składa się z 17 znaków, w tym literek i cyferek. Dzięki niemu serwisy mogą bez problemu sprawdzić, co się dzieje z autem, czy to potrzebuje jakiejś naprawy. W VIN-ie mamy mnóstwo ważnych info, jak np. kto wyprodukował pojazd, gdzie go zrobiono, jaki jest model i kiedy zejście z linii produkcyjnej miało miejsce. VIN przydaje się też, gdy chcemy poznać historię auta lub sprawdzić, czy nie ma jakichś wezwań do serwisu związanych z bezpieczeństwem. Dodatkowo, dzięki standardom ISO, ten system działa wszędzie na świecie, co ułatwia życie serwisom i producentom. Z mojego doświadczenia, dobrze jest zawsze sprawdzać VIN, bo to daje pewność, że wiemy, z czym mamy do czynienia i jak najlepiej pomóc klientowi.

Pytanie 24

Rezystancję oblicza się jako

A. iloraz napięcia do natężenia prądu elektrycznego
B. różnicę natężenia oraz napięcia prądu elektrycznego
C. sumę natężenia oraz napięcia prądu elektrycznego
D. iloczyn napięcia oraz natężenia prądu elektrycznego
Wartość rezystancji jest definiowana przez prawo Ohma, które mówi, że rezystancja (R) jest równa ilorazowi napięcia (U) do natężenia prądu (I). Matematycznie można to zapisać jako R = U/I. Ta zależność jest kluczowa w elektroenergetyce i inżynierii elektrycznej, gdzie pozwala na projektowanie i analizowanie obwodów elektrycznych. Przykładem zastosowania tej zasady jest obliczanie wartości rezystorów w układach elektronicznych, aby zapewnić odpowiednie działanie komponentów elektronicznych, takich jak diody czy tranzystory. W praktyce, zrozumienie tego związku umożliwia również dobieranie odpowiednich wartości komponentów do określonych zastosowań, co jest niezwykle istotne w kontekście projektowania układów zasilania oraz systemów automatyki. Wiedza na temat rezystancji i jej obliczania jest również niezbędna w kontekście oceny efektywności energetycznej, co jest istotne dla zrównoważonego rozwoju oraz oszczędności energetycznych w różnych aplikacjach przemysłowych oraz domowych.

Pytanie 25

W klasyfikacji olejów American Petroleum Institute /API/ olej oznaczony symbolem GL to olej

A. do silników o ZI
B. hydrauliczny
C. do silników o ZS
D. przekładniowy
Istnieje kilka błędnych koncepcji związanych z odpowiedziami, które można by uznać za poprawne. Pierwsza z nich dotyczy olejów do silników o zapłonie samoczynnym (ZS). Oleje te, zwane również olejami silnikowymi, są przeznaczone do smarowania silników diesla i charakteryzują się specyficznymi właściwościami, które różnią się od wymagań dla olejów przekładniowych. Ważne jest zrozumienie, że oleje te są klasyfikowane według innych standardów, takich jak API CJ-4 czy ACEA E9, które są dostosowane do eksploatacji w silnikach o zapłonie samoczynnym. Drugą mylną koncepcją są oleje hydrauliczne. Oleje te również różnią się od olejów przekładniowych, gdyż są zaprojektowane do pracy w systemach hydraulicznych, gdzie kluczowe są takie właściwości jak niska lepkość oraz doskonałe właściwości przeciwzużyciowe, a także odporność na działanie wody. Oleje hydrauliczne są klasyfikowane według norm takich jak ISO 32, 46, 68, które wskazują na ich lepkość. Ostatnia z wymienionych opcji to oleje do silników o zapłonie iskrowym (ZI), które są z kolei dedykowane silnikom benzynowym. Oleje te powinny spełniać różne wymagania, takie jak API SN, co nie ma związku z olejami przekładniowymi. Błąd w rozumieniu klasyfikacji olejów API może prowadzić do nieprawidłowego doboru oleju, co z kolei może skutkować uszkodzeniem komponentów pojazdu. Dlatego tak istotne jest posługiwanie się właściwymi oznaczeniami i klasyfikacjami przy wyborze olejów do różnych zastosowań w motoryzacji.

Pytanie 26

Zgodnie z informacjami od producenta, właściwa zbieżność kół przednich pojazdu powinna wynosić
1,5 mm ± 1,5 mm. Która z podanych wartości nie mieści się w zakresie tolerancji?

A. 1 mm
B. 2 mm
C. 4 mm
D. 3 mm
Odpowiedź 3 mm jest poprawna, ponieważ znajduje się ona poza zakresem tolerancji podanym przez producenta, który wynosi 1,5 mm ± 1,5 mm, co oznacza, że akceptowalne wartości powinny mieścić się w przedziale od 0 mm do 3 mm. Wartość 4 mm przekracza maksymalny dopuszczalny limit tolerancji, co może prowadzić do problemów z geometrią zawieszenia, a w efekcie wpływać na bezpieczeństwo i komfort jazdy. Utrzymanie właściwej zbieżności kół jest kluczowe dla równomiernego zużycia opon oraz optymalnej przyczepności pojazdu. Należy regularnie monitorować zbieżność kół, zwłaszcza po wymianie opon lub po kolizjach, aby zapewnić ich prawidłowe ustawienie. W praktyce serwisowej zaleca się korzystanie z profesjonalnych narzędzi do pomiaru zbieżności, które pozwalają na precyzyjne dostosowanie ustawień pojazdu według norm producenta.

Pytanie 27

Jaką kwotę należy zapłacić za wymianę piasty koła w pojeździe, jeżeli cena piasty wynosi 250 zł, czas pracy to 1,4 godziny, a koszt roboczogodziny to 150 zł? Uwaga: uwzględnij 5% rabat na części zamienne oraz usługi.

A. 360 zł
B. 437 zł
C. 460 zł
D. 210 zł
Aby właściwie obliczyć całkowity koszt wymiany piasty koła, kluczowe jest uwzględnienie wszystkich elementów składających się na finalną cenę. Proste sumowanie kosztów części i robocizny bez uwzględnienia rabatu może prowadzić do znacznych błędów. Na przykład, jeśli ktoś obliczy tylko koszt robocizny, nie biorąc pod uwagę ceny piasty, może dojść do błędnego wniosku o niskim kosztach, co nie odzwierciedla rzeczywistości. W prezentowanych odpowiedziach, takie podejście mogło skutkować niepoprawną oceną całkowitego kosztu naprawy. Ponadto, przy obliczaniu rabatu, ważne jest, aby zastosować go do całkowitego kosztu, a nie tylko do samej części zamiennej lub robocizny. Takie błędne podejście sprawia, że koszty wydają się niższe, co może wprowadzać w błąd. Należy również podkreślić, iż w praktyce warsztatowej, zachowanie przejrzystości w kalkulacji kosztów jest kluczowe, aby klienci mieli pełną świadomość, za co płacą. To pozwala uniknąć nieporozumień i zapewnia zaufanie do usług oferowanych przez warsztaty. Ostatecznie, umiejętność prawidłowego obliczania kosztów, w tym uwzględnianie rabatów oraz analizowanie elementów składowych kosztów, jest podstawą efektywnego zarządzania finansami w serwisach motoryzacyjnych.

Pytanie 28

Podczas demontażu świec zapłonowych, mechanik zauważył na jednej z nich suchy czarny osad oraz występujący nagar. Opisane symptomy mogą wskazywać na

A. zbyt bogatą mieszankę paliwową
B. zbyt wysoki poziom oleju
C. uszkodzenie zaworów silnikowych
D. zbyt ubogą mieszankę paliwową
Zbyt bogata mieszanka paliwowa to sytuacja, w której proporcja paliwa do powietrza jest zbyt duża, co prowadzi do niedostatecznego spalania mieszanki w komorze spalania. Objawy, które zaobserwował mechanik, takie jak czarny, suchy osad oraz nagar, są typowe dla zbyt dużej ilości paliwa, które nie ulega pełnemu spaleniu. W takich warunkach paliwo osadza się na świecach zapłonowych, co może prowadzić do ich uszkodzenia oraz problemów z uruchomieniem silnika. Przykładami skutków zbyt bogatej mieszanki są zwiększone zużycie paliwa, emisja szkodliwych substancji, a także zmniejszenie mocy silnika. W praktyce, mechanicy często zalecają sprawdzenie ustawień wtrysku paliwa oraz stanu układu dolotowego powietrza, aby zdiagnozować przyczyny takiej sytuacji. Zgodnie z dobrą praktyką, regularna konserwacja oraz przeglądy instalacji paliwowej mogą pomóc w uniknięciu tego typu problemów, co prowadzi do lepszej efektywności silnika oraz obniżenia kosztów eksploatacji.

Pytanie 29

Częścią systemu chłodzenia nie jest

A. przekładnia ślimakowa
B. czujnik temperatury
C. termostat
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia silnika, ponieważ pełni zupełnie inną funkcję, związana głównie z przenoszeniem napędu i momentu obrotowego w mechanizmach. Układ chłodzenia silnika składa się z takich elementów jak pompa wody, czujnik temperatury oraz termostat, które współpracują w celu utrzymania optymalnej temperatury pracy silnika. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego w obiegu, co jest kluczowe dla efektywnego odprowadzania ciepła. Czujnik temperatury monitoruje temperaturę płynu chłodzącego, co pozwala na bieżąco kontrolować działanie układu. Termostat natomiast reguluje przepływ płynu chłodzącego, otwierając lub zamykając obieg, co zapobiega przegrzaniu silnika. W związku z tym, zrozumienie roli każdego z tych elementów oraz ich współpracy jest kluczowe dla prawidłowego funkcjonowania silnika i jego układu chłodzenia.

Pytanie 30

Po zainstalowaniu nowego, zewnętrznego przegubu napędowego na półosi, powinno się go nasmarować odpowiednim smarem

A. łożyskowym
B. molibdenowym
C. miedziowym
D. grafitowym
Smar molibdenowy jest idealnym wyborem do smarowania zewnętrznych przegubów napędowych, ponieważ charakteryzuje się doskonałą odpornością na wysokie temperatury oraz dużą stabilnością w trudnych warunkach eksploatacyjnych. Dzięki swoim właściwościom, smar ten skutecznie zmniejsza tarcie między ruchomymi częściami, co przekłada się na wydłużenie żywotności przegubów oraz poprawę ich efektywności. Przykładowo, w zastosowaniach motoryzacyjnych, smar molibdenowy jest powszechnie stosowany w układach przeniesienia napędu, gdzie doświadczają one intensywnego obciążenia oraz zmiennych warunków pracy. Warto również zwrócić uwagę na to, że standardy branżowe, takie jak SAE (Society of Automotive Engineers), często rekomendują stosowanie smarów zawierających dwusiarczek molibdenu w aplikacjach, gdzie ważna jest ochrona przed zużyciem oraz zapewnienie długotrwałej wydajności. Właściwe smarowanie przegubów przyczynia się do zmniejszenia kosztów eksploatacyjnych oraz zwiększenia bezpieczeństwa pojazdu.

Pytanie 31

W współczesnych silnikach benzynowych stopień kompresji to mniej więcej

A. 6:1
B. 1:6
C. 1:11
D. 11:1
Stopień sprężania 11:1 w nowoczesnych silnikach benzynowych to teraz norma w motoryzacji. Dzięki temu silniki lepiej wykorzystują paliwo, co sprawia, że mają większą moc, a jednocześnie zużywają mniej paliwa. Wyższy stopień sprężania poprawia też spalanie mieszanki paliwowo-powietrznej, co wpływa na lepszą efektywność energetyczną. Można tu podać przykłady silników sportowych, które wykorzystują nowinki technologiczne, takie jak bezpośredni wtrysk paliwa czy zmienna geometria dolotu, żeby osiągnąć lepsze wyniki przy mniejszej emisji spalin. Warto pamiętać, że silniki z wyższym stopniem sprężania potrzebują paliwa o dużej liczbie oktanowej, co zapewnia stabilne spalanie i zmniejsza ryzyko detonacji. To naprawdę ważne, żeby przestrzegać tych zasad, bo pozwalają one na uzyskanie najlepszych rezultatów w motoryzacji.

Pytanie 32

Czym charakteryzuje się sprzęgło w samochodzie?

A. nie pozwala na płynne łączenie oraz rozłączanie części układu napędowego
B. pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
C. nie pozwala na płynne łączenie oraz rozłączanie silnika spalinowego z innymi komponentami układu napędowego
D. stanowi trwałe połączenie silnika spalinowego z innymi elementami układu napędowego
Sprzęgło samochodowe jest kluczowym elementem układu napędowego, który umożliwia płynne łączenie i rozłączanie silnika spalinowego z pozostałymi komponentami, takimi jak skrzynia biegów. Główna funkcja sprzęgła polega na przenoszeniu momentu obrotowego z silnika na koła, co jest niezbędne podczas zmian biegów oraz uruchamiania pojazdu. Dzięki zastosowaniu sprzęgła, kierowca może kontrolować moment przeniesienia mocy, co pozwala na wygodne manewrowanie oraz uniknięcie szarpania podczas jazdy. W praktyce, dobrej jakości sprzęgło powinno charakteryzować się niskim zużyciem, odpornością na wysokie temperatury oraz zdolnością do przenoszenia dużych obciążeń. W branży motoryzacyjnej stosowane są różne typy sprzęgieł, w tym sprzęgła suche, mokre oraz wielotarczowe, z których każdy ma swoje zastosowanie w zależności od specyfikacji pojazdu. Warto również zaznaczyć, że regularna kontrola i serwisowanie sprzęgła są kluczowe dla utrzymania sprawności układu napędowego oraz zwiększenia bezpieczeństwa na drodze.

Pytanie 33

Zrealizowanie zasady Ackermana skutkuje

A. mechanizm zwrotniczy w kształcie trapezu
B. identyczne kąty skrętu kół osi kierowanej w trakcie jazdy po łuku
C. tylko układ kierowniczy z przekładnią zębatkową
D. utrata przyczepności kół osi kierowanej podczas pokonywania łuku
Trapezowy mechanizm zwrotniczy to zaawansowane rozwiązanie inżynieryjne, które zapewnia poprawne skręcanie kół osi kierowanej. Jego konstrukcja opiera się na trapezowym kształcie, który pozwala na synchronizację ruchu obu kół w czasie skrętu. Dzięki temu mechanizmowi, pojazdy mogą osiągać lepszą stabilność i manewrowość podczas jazdy po łuku. Przykłady zastosowania trapezowego mechanizmu zwrotniczego można znaleźć w nowoczesnych samochodach osobowych oraz pojazdach użytkowych. W branży motoryzacyjnej stosowanie tego typu rozwiązań jest zgodne z dobrymi praktykami w zakresie inżynierii mechanicznej oraz bezpieczeństwa ruchu drogowego. Dzięki trapezowej formie mechanizm ten minimalizuje ryzyko utraty przyczepności, co jest kluczowe dla zapewnienia bezpieczeństwa pasażerów oraz stabilności pojazdu. Dodatkowo, stosowanie trapezowego mechanizmu zwrotniczego umożliwia łatwiejszą obsługę i konserwację układu kierowniczego, co jest istotne z punktu widzenia eksploatacji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Podaj właściwą sekwencję działań diagnostycznych przeprowadzanych podczas regularnego przeglądu technicznego pojazdu osobowego.

A. Ustawienie ciśnienia w oponach, ustawienie świateł, weryfikacja amortyzatorów, weryfikacja hamulców
B. Ustawienie świateł, ustawienie ciśnienia w oponach, weryfikacja hamulców, weryfikacja amortyzatorów
C. Weryfikacja amortyzatorów, weryfikacja hamulców, ustawienie świateł, ustawienie ciśnienia w oponach
D. Weryfikacja hamulców, weryfikacja amortyzatorów, ustawienie ciśnienia w oponach, ustawienie świateł
Wskaźnik numer 3 pokazuje, jak powinno się przeprowadzać badanie techniczne samochodu. Na początek warto zająć się ciśnieniem w oponach, bo to naprawdę ma znaczenie dla bezpieczeństwa jazdy i zużycia paliwa. Kiedy opony mają złe ciśnienie, to mogą się szybciej zużywać i łatwiej o niebezpieczne sytuacje na drodze. Potem trzeba ogarnąć regulację świateł, bo dobre oświetlenie jest kluczowe, żeby inni kierowcy wiedzieli, co zamierzamy zrobić. Sprawdzanie amortyzatorów to kolejny ważny krok, bo to wpływa na komfort i stabilność podczas jazdy. No i na koniec – hamulce, bo skuteczność hamowania to podstawa bezpieczeństwa. Jeśli będziemy to wszystko robić w takiej kolejności, to zgodnie z obowiązującymi normami i dobrymi praktykami w motoryzacji, będziemy na dobrej drodze do bezpiecznej jazdy.

Pytanie 36

Zauważalny wzrost ciśnienia sprężania silnika podczas testu olejowego wskazuje na uszkodzenie

A. prowadnic zaworowych
B. pierścieni tłokowych
C. przylgni zaworowych
D. uszczelki podgłowicowej
Wzrost ciśnienia sprężania podczas próby olejowej w silniku spalinowym jest kluczowym wskaźnikiem stanu pierścieni tłokowych. Pierścienie tłokowe mają za zadanie skutecznie uszczelniać przestrzeń między tłokiem a cylindrem, co pozwala na osiągnięcie odpowiedniego ciśnienia sprężania. Kiedy pierścienie są zużyte, pęknięte lub nieprawidłowo zamontowane, olej silnikowy może dostawać się do komory spalania, co prowadzi do wzrostu ciśnienia sprężania. Przeprowadzenie próby olejowej, polegającej na dodaniu oleju do cylindrów, pozwala na zdiagnozowanie problemu. Jeżeli po dodaniu oleju ciśnienie wzrasta, to wskazuje na uszkodzenie pierścieni tłokowych, co jest zgodne z najlepszymi praktykami diagnostycznymi w branży motoryzacyjnej. Wysoka wartość ciśnienia sprężania po dodaniu oleju musi być traktowana jako sygnał do przeprowadzenia dalszych badań i ewentualnej wymiany pierścieni, co z kolei przekłada się na poprawę efektywności pracy silnika oraz jego żywotności.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Podczas analizy komputerowej systemów pojazdu, który z poniższych błędów może wskazywać na problem z wtryskiwaczem paliwa?

A. Uszkodzenie układu ABS
B. Błąd mieszanki paliwowo-powietrznej
C. Niska wydajność alternatora
D. Brak ciśnienia oleju
Błąd mieszanki paliwowo-powietrznej jest często związany z problemami z wtryskiwaczami paliwa. Wtryskiwacze odpowiadają za precyzyjne dostarczanie paliwa do komór spalania w odpowiednich proporcjach względem powietrza. Jeśli wtryskiwacz działa nieprawidłowo, może dostarczać zbyt dużo lub zbyt mało paliwa, co prowadzi do nieoptymalnej mieszanki paliwowo-powietrznej. Taka sytuacja może skutkować problemami z pracą silnika, zwiększonym zużyciem paliwa oraz emisją szkodliwych substancji. Diagnostyka komputerowa pojazdu może wykryć takie anomalie w mieszance, co jest cenną wskazówką dla mechanika. W praktyce, problemy z wtryskiwaczami mogą być spowodowane ich zanieczyszczeniem, zużyciem mechanicznym lub awarią sterowania. Warto regularnie kontrolować stan wtryskiwaczy i stosować odpowiednie środki czyszczące, aby utrzymać ich sprawność. W systemach OBD (On-Board Diagnostics), błędy związane z mieszanką często są oznaczane jako P0171 (za uboga mieszanka) lub P0172 (za bogata mieszanka). Dlatego, moim zdaniem, precyzyjna diagnostyka i utrzymanie wtryskiwaczy w dobrym stanie to klucz do efektywnej pracy silnika.

Pytanie 39

Współczynnik absorpcji światła to parametr, który wskazuje na stopień

A. zadymienia spalin
B. poziomu tlenku węgla w spalinach
C. nadużycia tlenu
D. węglowodorów
Ocena poziomu nadmiaru tlenu w spalinach opiera się na analizie zawartości O2, co ma kluczowe znaczenie dla efektywności spalania i minimalizacji emisji zanieczyszczeń. W przypadku węglowodorów, ich obecność w spalinach jest ściśle związana z niepełnym spalaniem paliwa, co również nie jest bezpośrednio związane ze współczynnikiem pochłaniania światła, lecz z analizą składu chemicznego spalin. W odniesieniu do tlenku węgla, jego pomiar służy do oceny toksyczności spalin, jednakże również nie ma bezpośredniej korelacji z pochłanianiem światła. Te błędne koncepcje wynikają z nieporozumienia dotyczącego zasadności pomiarów oraz ich zastosowań. W praktyce, aby poprawnie ocenić jakość spalin, istotne jest zrozumienie, że każdy z tych parametrów odgrywa swoją unikalną rolę, a ich pomiar powinien być wykonany w kontekście określonych norm i przepisów, takich jak norma PN-EN 14181 dotycząca oceny emisji z pieców przemysłowych. Właściwe zrozumienie różnic między tymi parametrami jest kluczowe dla skutecznej analizy i interpretacji wyników badań, co w konsekwencji wpływa na podejmowane decyzje w zakresie poprawy jakości powietrza i ochrony środowiska.

Pytanie 40

W silnikach chłodzonych wykorzystuje się cylindry użebrowane oraz głowice

A. olejem
B. płynem hamulcowym
C. powietrzem
D. cieczą
Odpowiedzi związane z chłodzeniem silników za pomocą płynu hamulcowego, oleju czy cieczy pokazują, że jest tu sporo nieporozumień. Chłodzenie płynem hamulcowym jest raczej bez sensu, bo on ma inny cel - przenoszenie siły w układach hamulcowych, a nie schładzanie silnika. Olej też głównie smaruje, a nie chłodzi, i czasem nawet podnosi temperaturę silnika, co wymaga dodatkowych systemów chłodzenia. Silniki chłodzone cieczą, mimo że są popularne, nie używają użebrowanych cylindrów i głowic tak jak te chłodzone powietrzem. W ich przypadku zamiast użebrowania, montuje się chłodnice, które lepiej przenoszą ciepło. Warto zrozumieć, że wybór metody chłodzenia silnika musi być dopasowany do jego specyfiki i zastosowania, bo każda metoda ma swoje plusy i minusy.