Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 5 maja 2025 14:44
  • Data zakończenia: 5 maja 2025 15:14

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Określ rezultat wykonania zamieszczonego polecenia.

A. Wymuszona zmiana hasła na koncie Test w ustalonym terminie
B. Skonfigurowany czas aktywności konta Test
C. Zweryfikowana data ostatniego logowania na konto Test
D. Wyznaczona data wygaśnięcia konta Test
Ustawienie czasu aktywacji konta użytkownika nie jest związane z poleceniem przedstawionym w pytaniu. W rzeczywistości polecenie to dotyczy wygaśnięcia konta, a nie jego aktywacji. Czas aktywacji konta odnosi się do momentu, kiedy konto staje się aktywne i dostępne do logowania. W kontekście systemu Windows, opcja ta nie jest obsługiwana przez polecenie net user, ponieważ domyślnie konta są aktywowane w momencie ich tworzenia, chyba że zostały wprowadzone specjalne ograniczenia. Inna błędna odpowiedź wskazuje na sprawdzenie daty ostatniego logowania. Działanie to również nie jest możliwe za pomocą polecenia net user, które służy do modyfikacji atrybutów konta, a nie do raportowania informacji. Podobnie, wymuszenie zmiany hasła na koncie Test nie jest związane z podanym poleceniem. Wymuszenie zmiany hasła można osiągnąć za pomocą opcji /passwordchg, jednak nie ma to związku z datą wygaśnięcia konta. Wiele osób mylnie interpretuje działanie polecenia, co prowadzi do nieporozumień. Kluczowe jest zrozumienie funkcji polecenia oraz właściwego zastosowania odpowiednich opcji w kontekście administracji kontami użytkowników w systemie Windows.

Pytanie 2

Który z poniższych adresów stanowi adres rozgłoszeniowy dla sieci 172.16.64.0/26?

A. 172.16.64.0
B. 172.16.64.192
C. 172.16.64.255
D. 172.16.64.63
Adres 172.16.64.0 jest adresem sieci, co oznacza, że nie można go przypisać żadnemu z urządzeń w tej sieci. Adres ten jest kluczowy w strukturze sieciowej, ponieważ identyfikuje całą podsieć, a jego zrozumienie jest niezbędne dla administratorów sieci. Adres 172.16.64.192 jest z kolei adresem, który leży poza zakresem tej podsieci, ponieważ przy masce /26, adresy przypisane do tej sieci kończą się na 172.16.64.63. Ponadto, adres 172.16.64.255 również nie jest poprawny, ponieważ jest to adres rozgłoszeniowy dla sieci 172.16.64.0/24, a nie /26, co wskazuje na błąd w podstawowym rozumieniu maski podsieci. Typowym błędem jest mylenie adresów rozgłoszeniowych z adresami przypisanymi hostom, co może prowadzić do problemów z komunikacją w sieci. Ważne jest, aby dobrze rozumieć podział sieci i sposób identyfikacji adresów IP, co jest kluczowe w kontekście projektowania i zarządzania infrastrukturą IT. Dlatego też znajomość zasad przydzielania adresów IP oraz umiejętność korzystania z narzędzi do obliczania adresów podsieci są niezbędne dla efektywnego zarządzania siecią.

Pytanie 3

Która z poniższych topologii sieciowych charakteryzuje się centralnym węzłem, do którego podłączone są wszystkie inne urządzenia?

A. Siatka
B. Gwiazda
C. Pierścień
D. Drzewo
Topologia gwiazdy to jedna z najczęściej stosowanych struktur w sieciach komputerowych. W tej topologii wszystkie urządzenia są podłączone do jednego centralnego węzła, którym może być na przykład switch lub hub. Dzięki temu każde urządzenie komunikuje się bezpośrednio z centralnym punktem, co upraszcza zarządzanie siecią i diagnozowanie problemów. Główną zaletą takiej topologii jest to, że awaria jednego z urządzeń nie wpływa na działanie pozostałych, a uszkodzenie jednego kabla nie powoduje odłączania całej sieci. Jest to również elastyczne rozwiązanie, które pozwala na łatwe dodawanie nowych urządzeń bez zakłócania pracy sieci. Dodatkowo, centralizacja zarządzania przepływem danych umożliwia efektywne monitorowanie ruchu sieciowego i implementację polityk bezpieczeństwa. Praktyczne zastosowanie topologii gwiazdy można znaleźć w wielu nowoczesnych biurach i domach, gdzie centralny router lub switch łączy wszystkie urządzenia sieciowe, zapewniając im dostęp do internetu i umożliwiając łatwą komunikację między nimi. To wszystko razem sprawia, że topologia gwiazdy jest bardzo popularna i powszechnie stosowana w praktyce.

Pytanie 4

Rodzaj połączenia VPN obsługiwany przez system Windows Server, w którym użytkownicy są uwierzytelniani za pomocą niezabezpieczonych połączeń, a szyfrowanie zaczyna się dopiero po wymianie uwierzytelnień, to

A. IPSEC
B. PPTP
C. SSTP
D. L2TP
Wybór SSTP, L2TP czy IPSEC do opisania połączenia VPN, które najpierw korzysta z niezabezpieczonego połączenia, a następnie przechodzi w szyfrowane, jest niewłaściwy. SSTP (Secure Socket Tunneling Protocol) to protokół, który wykorzystuje HTTPS do ustanowienia bezpiecznego tunelu, co oznacza, że uwierzytelnienie i szyfrowanie odbywają się równolegle. Charakteryzuje się dużym poziomem bezpieczeństwa, jednak jego działanie nie odpowiada opisowi pytania, ponieważ nie ma etapu niezabezpieczonego połączenia. L2TP (Layer 2 Tunneling Protocol) często mylony jest z IPSEC, ponieważ zazwyczaj jest używany razem z nim do zapewnienia bezpiecznego transportu danych. L2TP sam w sobie nie ma mechanizmu szyfrowania, a więc wymaga dodatkowych protokołów, co również nie wpisuje się w schemat opisany w pytaniu. IPSEC to standardowy protokół zabezpieczający, który działa na poziomie sieciowym i służy do szyfrowania i uwierzytelniania pakietów IP. Choć IPSEC jest niezwykle skuteczny, również nie pasuje do koncepcji stopniowego przejścia od niezabezpieczonego do zabezpieczonego połączenia. Mylne przekonanie o funkcjonalności tych protokołów często wynika z ich skomplikowanej natury oraz różnorodności zastosowań w praktyce. Ważne jest, aby zrozumieć, że wybór odpowiedniego protokołu VPN zależy od specyficznych potrzeb i wymaganych standardów bezpieczeństwa, co dodatkowo podkreśla znaczenie świadomości dotyczącej zastosowań każdego z tych protokołów.

Pytanie 5

Który z interfejsów stanowi port równoległy?

A. IEEE1284
B. USB
C. RS232
D. IEEE1394
USB (Universal Serial Bus) to interfejs szeregowy, a nie równoległy. Choć USB jest szeroko stosowane w różnych urządzeniach, takich jak klawiatury, myszy czy pamięci masowe, działa na zasadzie przesyłania danych po jednym bicie w danym czasie, co nie odpowiada definicji portu równoległego. IEEE1394, znany również jako FireWire, jest innym interfejsem szeregowym, który obsługuje szybką transmisję danych, ale również nie jest portem równoległym. RS232 to standard komunikacji szeregowej, używany głównie w aplikacjach przemysłowych do komunikacji z urządzeniami takimi jak modemy, ale nie spełnia kryteriów portu równoległego. Pojęcie portu równoległego opiera się na koncepcji przesyłania wielu bitów danych jednocześnie, co jest niemożliwe w interfejsach szeregowych. Typowym błędem jest mylenie interfejsów szeregowych z równoległymi, co często wynika z nieznajomości podstawowych różnic w zakresie architektury przesyłania danych. Zrozumienie tych różnic jest kluczowe w kontekście projektowania i implementacji systemów komunikacyjnych.

Pytanie 6

Farad to jednostka

A. pojemności elektrycznej
B. mocy
C. natężenia prądu
D. rezystancji
Farad (F) jest podstawową jednostką pojemności elektrycznej w układzie SI. Oznacza zdolność kondensatora do gromadzenia ładunku elektrycznego. Przykładowo, kondensator o pojemności 1 farada zgromadzi 1 kulomb ładunku przy napięciu 1 wolt. Pojemność ma kluczowe znaczenie w różnych zastosowaniach, takich jak obwody elektroniczne, gdzie kondensatory są wykorzystywane do wygładzania napięcia, filtracji sygnałów, a także do przechowywania energii. W praktyce, aplikacje takie jak zasilacze impulsowe, audiofilskie systemy dźwiękowe, a nawet układy elektromagnetyczne wymagają precyzyjnego doboru kondensatorów o odpowiedniej pojemności. Warto również zauważyć, że w praktyce inżynierskiej stosowane są różne jednostki pojemności, a farad jest używany w kontekście dużych wartości; dla mniejszych zastosowań często używa się mikrofaradów (µF) oraz nanofaradów (nF).

Pytanie 7

W systemie Linux, polecenie usermod -s dla danego użytkownika umożliwia

A. zmianę jego powłoki systemowej
B. przypisanie go do innej grupy
C. blokadę jego konta
D. zmianę jego katalogu domowego
Polecenie usermod -s w systemie Linux jest używane do zmiany powłoki systemowej (shell) dla określonego użytkownika. Powłoka systemowa to program, który interpretuje polecenia wprowadzane przez użytkownika, a jej zmiana ma duże znaczenie w kontekście zarządzania użytkownikami oraz bezpieczeństwa. Przykładem zastosowania może być sytuacja, gdy administrator chce, aby użytkownik korzystał z innej powłoki, takiej jak /bin/bash zamiast domyślnej powłoki. Zmiana powłoki może wpływać na dostęp do różnych narzędzi czy skryptów, które są specyficzne dla danej powłoki. Dobre praktyki w zarządzaniu kontami użytkowników zalecają, aby powłoka była odpowiednia do zadań, jakie użytkownik ma wykonywać. Warto również zauważyć, że zmiana powłoki może wymagać ponownego zalogowania się użytkownika, aby zmiany mogły być w pełni zastosowane, co jest istotne w kontekście użytkowania systemu. Przykład użycia polecenia: 'usermod -s /bin/bash username', gdzie 'username' to nazwa konta użytkownika, którego powłokę chcemy zmienić.

Pytanie 8

Jaką usługę powinno się aktywować na ruterze, aby każda stacja robocza mogła wymieniać pakiety z siecią Internet, gdy dostępnych jest 5 adresów publicznych oraz 18 stacji roboczych?

A. WWW
B. VPN
C. FTP
D. NAT
NAT, czyli translacja adresów sieciowych, jest technologią, która pozwala na udostępnienie jednego lub kilku publicznych adresów IP dla wielu urządzeń w sieci lokalnej. W sytuacji, gdy mamy do dyspozycji 5 adresów publicznych i 18 stacji roboczych, NAT umożliwia stacjom roboczym komunikację z Internetem poprzez przypisanie im prywatnych adresów IP. NAT działa na zasadzie tłumaczenia adresów w pakietach wychodzących i przychodzących, co sprawia, że wiele stacji roboczych może korzystać z jednego adresu publicznego w danym momencie. Dzięki temu można efektywnie zarządzać dostępem do zasobów Internetu, co jest szczególnie ważne w sieciach o ograniczonej liczbie adresów IP. Przykładem zastosowania NAT jest sytuacja, w której mała firma z wieloma komputerami w sieci wewnętrznej korzysta z jednego adresu IP do łączenia się z Internetem. Dzięki NAT, użytkownicy mogą swobodnie przeglądać strony internetowe, korzystać z aplikacji online i komunikować się z innymi użytkownikami, mimo że ich prywatne adresy IP nie są widoczne w Internecie. NAT jest zgodny ze standardami IETF i jest powszechnie stosowany w praktykach zarządzania sieciami.

Pytanie 9

Urządzeniem, które chroni przed różnorodnymi atakami sieciowymi oraz może wykonywać dodatkowe zadania, takie jak szyfrowanie przesyłanych informacji lub automatyczne informowanie administratora o próbie włamania, jest

A. regenerator
B. punkt dostępowy
C. firewall sprzętowy
D. koncentrator
Firewall sprzętowy to super ważne urządzenie w każdej sieci. Jego najważniejsza rola to chronienie systemów przed niechcianymi atakami i dostępem osób, które nie powinny mieć dostępu. Działa to tak, że monitoruje ruch w sieci i sprawdza, co można puścić, a co lepiej zablokować. Przykłady? No, weźmy na przykład sieci w firmach, które chronią cenne dane przed złośliwcami z zewnątrz. Nowoczesne firewalle mają też inne fajne funkcje, jak szyfrowanie danych czy informowanie administratorów, jeśli coś nie tak się dzieje. W dzisiejszych czasach warto regularnie aktualizować reguły i oprogramowanie firewalli, żeby były na bieżąco i skuteczne przeciwko nowym zagrożeniom. W sumie, wdrożenie takich firewallow to często część większej strategii zabezpieczeń, jak Zero Trust, która zakłada, że każde połączenie może być podejrzane.

Pytanie 10

Posiadacz notebooka pragnie zainstalować w nim dodatkowy dysk twardy. Urządzenie ma jedynie jedną zatokę na HDD. Możliwością rozwiązania tego wyzwania może być użycie dysku z interfejsem

A. USB
B. SCSI
C. ATAPI
D. mSATA
mSATA to standard interfejsu, który umożliwia podłączenie dysków SSD w formacie mSATA bezpośrednio do płyty głównej. Jest to idealne rozwiązanie dla notebooków, które mają ograniczone miejsce, a także jedną zatokę na dysk HDD. Dzięki mSATA użytkownik może zainstalować dodatkowy dysk SSD, co znacznie zwiększa pojemność i wydajność przechowywania danych. Dyski mSATA charakteryzują się małymi wymiarami oraz wysoką szybkością transferu danych, co czyni je doskonałym wyborem do nowoczesnych komputerów przenośnych. Na przykład, w przypadku notebooków gamingowych lub przeznaczonych do obróbki multimediów, możliwość zamontowania dodatkowego dysku SSD w formacie mSATA może znacząco przyspieszyć ładowanie gier i aplikacji. Warto zwrócić uwagę, że korzystanie z mSATA jest zgodne z aktualnymi standardami branżowymi, co zapewnia wysoką kompatybilność i niezawodność. W przypadku chęci modernizacji notebooka, warto zasięgnąć informacji o dostępności złącza mSATA na płycie głównej, co umożliwi sprawną instalację.

Pytanie 11

Jaką funkcję należy wybrać, aby utworzyć kopię zapasową rejestru systemowego w edytorze regedit?

A. Eksportuj
B. Załaduj sekcję rejestru
C. Importuj
D. Kopiuj nazwę klucza
Wybór opcji 'Eksportuj' jest poprawny, ponieważ ta funkcja umożliwia użytkownikom edytora rejestru Windows (regedit) wykonanie kopii zapasowej konkretnych kluczy rejestru lub całych gałęzi. Eksportując dane, tworzony jest plik z rozszerzeniem .reg, który zawiera wszystkie niezbędne informacje, aby w razie potrzeby przywrócić stan rejestru do wcześniejszego momentu. Praktyka ta jest standardem w zarządzaniu systemem, ponieważ umożliwia użytkownikom zabezpieczenie się przed potencjalnymi problemami, które mogą wystąpić po wprowadzeniu zmian w rejestrze. Na przykład, przed instalacją nowego oprogramowania, które może wprowadzić zmiany w rejestrze, warto wykonać jego eksport, aby móc szybko cofnąć te zmiany, jeśli zajdzie taka potrzeba. Eksportowanie rejestru jest również często stosowane w zadaniach administracyjnych, gdzie wymagane jest przeniesienie ustawień systemowych pomiędzy różnymi komputerami. To podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania IT, gdzie regularne kopie zapasowe są kluczowe dla zapewnienia integralności systemu.

Pytanie 12

W systemie Linux komenda ifconfig odnosi się do

A. użycia protokołów TCP/IP do oceny stanu zdalnego hosta
B. narzędzia, które umożliwia wyświetlenie informacji o interfejsach sieciowych
C. określenia karty sieciowej
D. narzędzia do weryfikacji znanych adresów MAC/IP
Odpowiedź wskazująca, że ifconfig to narzędzie umożliwiające wyświetlenie stanu interfejsów sieciowych jest jak najbardziej prawidłowa. W systemie Linux, ifconfig jest używane do konfigurowania, kontrolowania oraz wyświetlania informacji o interfejsach sieciowych. Dzięki temu narzędziu administratorzy mogą uzyskać szczegółowe dane dotyczące adresów IP, maski podsieci, a także statusu interfejsów (np. czy są one aktywne). Przykładowe użycie to polecenie 'ifconfig eth0', które wyświetli informacje o interfejsie o nazwie eth0. Dodatkowo, ifconfig może być używane do przypisywania adresów IP oraz aktywacji lub dezaktywacji interfejsów. Narzędzie to jest zgodne z najlepszymi praktykami zarządzania siecią i jest standardowym elementem wielu skryptów administracyjnych, co czyni je niezbędnym w codziennej pracy specjalistów IT. Warto również zaznaczyć, że ifconfig jest często zastępowane przez nowsze narzędzia, takie jak 'ip' z pakietu iproute2, które oferują bardziej rozbudowane możliwości konfiguracyjne i diagnostyczne.

Pytanie 13

AES (ang. Advanced Encryption Standard) to?

A. wykorzystuje symetryczny algorytm szyfrujący
B. nie można go zaimplementować sprzętowo
C. jest poprzednikiem DES (ang. Data Encryption Standard)
D. nie może być używany do szyfrowania plików
AES, czyli Advanced Encryption Standard, jest jednym z najważniejszych algorytmów szyfrowania używanych w dzisiejszych systemach informatycznych. Kluczowym aspektem AES jest to, że wykorzystuje on symetryczny algorytm szyfrujący, co oznacza, że ten sam klucz jest używany zarówno do szyfrowania, jak i deszyfrowania danych. Symetryczne algorytmy szyfrowania są powszechnie stosowane w różnych aplikacjach, od ochrony danych osobowych po zabezpieczenie komunikacji w sieciach. Przykładowo, wiele systemów płatności online oraz protokołów komunikacyjnych, takich jak TLS (Transport Layer Security), wykorzystuje AES do zapewnienia poufności i integralności przesyłanych informacji. Ponadto, AES jest standardem zatwierdzonym przez NIST (National Institute of Standards and Technology), co podkreśla jego bezpieczeństwo i niezawodność w zastosowaniach komercyjnych oraz rządowych. Wybór AES jako algorytmu szyfrującego jest rekomendowany w dokumentach dotyczących najlepszych praktyk w obszarze bezpieczeństwa IT, co czyni go de facto standardem w branży.

Pytanie 14

Jakie elementy łączy okablowanie pionowe w sieci LAN?

A. Główny punkt rozdzielczy z punktami pośrednimi rozdzielczymi
B. Dwa sąsiadujące punkty abonenckie
C. Główny punkt rozdzielczy z gniazdem dla użytkownika
D. Gniazdo abonenckie z punktem pośrednim rozdzielczym
Odpowiedź wskazuje na główny punkt rozdzielczy (MDF - Main Distribution Frame), który jest kluczowym elementem w strukturze okablowania pionowego w sieci LAN. Taki punkt rozdzielczy łączy ze sobą różne segmenty sieci i pozwala na efektywne zarządzanie połączeniami z pośrednimi punktami rozdzielczymi (IDF - Intermediate Distribution Frame). Dzięki temu zapotrzebowanie na pasmo i zasoby sieciowe jest lepiej rozdzielane, co przekłada się na efektywność działania całego systemu. W praktyce oznacza to, że główny punkt rozdzielczy jest miejscem, gdzie zbiegają się wszystkie kable od poszczególnych IDF, co umożliwia zorganizowane i przemyślane zarządzanie okablowaniem. Zgodnie z normą ANSI/TIA-568, okablowanie pionowe powinno być projektowane z myślą o przyszłym rozwoju infrastruktury, co oznacza, że powinno być elastyczne i skalowalne. Dzięki odpowiedniemu planowaniu możemy uniknąć problemów związanych z ograniczoną przepustowością czy trudnościami w utrzymaniu sieci.

Pytanie 15

Które systemy operacyjne są atakowane przez wirusa MS Blaster?

A. MS Windows 2000/NT/XP
B. DOS
C. MS Windows 9x
D. Linux
Wirus MS Blaster, znany również jako Lovsan i MSBlast, był szczególnie niebezpiecznym złośliwym oprogramowaniem, które celowało w systemy operacyjne Microsoftu, a w szczególności w wersje takie jak Windows 2000, NT oraz XP. Jego głównym celem były luki w zabezpieczeniach systemów operacyjnych, które pozwalały na zdalne zainfekowanie komputera. Użytkownicy Windows 2000, NT i XP mogli być narażeni na atak w wyniku aktywacji usługi DCOM, która była odpowiedzialna za komunikację między aplikacjami. W momencie, gdy wirus zainfekował system, mógł wywołać nie tylko zakłócenia w pracy komputera, ale także aktywować masowy atak DDoS na serwer Windows Update. Aby zabezpieczyć się przed podobnymi zagrożeniami, zaleca się regularne aktualizowanie systemu operacyjnego oraz stosowanie zapór ogniowych i oprogramowania antywirusowego, co zgodne jest z najlepszymi praktykami w zakresie zabezpieczeń IT.

Pytanie 16

Jak wiele domen kolizyjnych oraz rozgłoszeniowych można dostrzec na schemacie?

Ilustracja do pytania
A. 1 domena kolizyjna i 9 domen rozgłoszeniowych
B. 4 domeny kolizyjne oraz 9 domen rozgłoszeniowych
C. 9 domen kolizyjnych oraz 1 domena rozgłoszeniowa
D. 9 domen kolizyjnych oraz 4 domeny rozgłoszeniowe
W schemacie sieciowym mamy różne urządzenia, jak przełączniki, routery i koncentratory, które razem tworzą naszą strukturę. Każdy przełącznik działa jak taki mały strażnik, który tworzy swoją własną domenę kolizyjną. Dzięki temu, kolizje są ograniczone tylko do jego segmentu. Widzimy, że mamy dziewięć przełączników, więc można powiedzieć, że mamy dziewięć różnych obszarów, gdzie te kolizje mogą się wydarzyć. Co do routerów, to one oddzielają domeny rozgłoszeniowe, ponieważ nie przepuszczają pakietów rozgłoszeniowych. W naszym schemacie mamy cztery routery, więc i cztery domeny rozgłoszeniowe. Myślę, że zrozumienie różnicy między tymi domenami jest mega ważne, szczególnie gdy projektujemy sieci, które mają być wydajne i łatwe do rozbudowy. Oddzielanie kolizji przez przełączniki i zarządzanie rozgłoszeniami przez routery to dobre praktyki. Pozwala to na lepsze wykorzystanie sieci i zmniejsza ryzyko kolizji oraz nadmiernego rozgłaszania pakietów.

Pytanie 17

Nowe komponenty komputerowe, takie jak dyski twarde czy karty graficzne, są umieszczane w metalizowanych opakowaniach foliowych, których głównym celem jest zabezpieczenie

A. elementów elektronicznych przed promieniowaniem słonecznym
B. komponentów przed nagłymi zmianami temperatur w trakcie transportu
C. komponentów przed wilgocią
D. elementów elektronicznych przed ładunkami elektrostatycznymi
Pakowanie podzespołów komputerowych w metalizowane opakowania foliowe to naprawdę ważna sprawa. Te opakowania chronią elementy elektroniczne przed ładunkami elektrostatycznymi, które mogą powstawać, gdy coś się z nimi styka, i to może skończyć się tragicznie, bo może uszkodzić delikatne układy. Metalizowane opakowania działają jak ekran, który zmniejsza pole elektryczne w środku. W praktyce, normy takie jak IEC 61340-5-1 mówią, jak powinno to wyglądać, a firmy coraz częściej korzystają z takich opakowań, bo to zapewnia, że ich produkty są bezpieczniejsze. Na przykład w branży półprzewodnikowej, gdzie wszystko jest na wagę złota, metalizowane folie są używane do transportowania i przechowywania chipów, co znacznie zmniejsza ryzyko uszkodzenia. Więc widzisz, odpowiednia ochrona przed ESD to nie tylko nowinki technologiczne, ale też klucz do lepszego zarządzania logistyką i magazynowaniem. Warto o tym pamiętać, bo stosując dobre materiały, można naprawdę wydłużyć życie podzespołów.

Pytanie 18

Jakie urządzenie stosuje technikę polegającą na wykrywaniu zmian w pojemności elektrycznej podczas manipulacji kursorem na monitorze?

A. trackpoint
B. mysz
C. touchpad
D. joystik
Wybór trackpointa, joysticka lub myszy jako urządzeń wykorzystujących metodę detekcji zmian pojemności elektrycznej jest błędny, ponieważ te technologie opierają się na innych zasadach działania. Trackpoint, znany z laptopów, działa na zasadzie mechanicznego przemieszczenia, gdzie użytkownik naciska na mały joystick, co przekłada się na ruch kursora na ekranie. Ta metoda nie wykorzystuje detekcji pojemnościowej, lecz opiera się na mechanizmie fizycznym. Joystick również nie korzysta z detekcji pojemnościowej; zamiast tego, jego ruchy są interpretowane przez mechaniczne lub elektroniczne czujniki, które mierzą nachylenie i kierunek, aby przesuwać kursor. Z kolei mysz, popularne urządzenie wskazujące, zwykle działa na zasadzie detekcji ruchu optycznego lub mechanicznego – w zależności od zastosowanej technologii. Mysz optyczna używa diod LED do detekcji ruchu na powierzchni, a nie zmiany pojemności. Zrozumienie tych podstawowych różnic jest kluczowe dla prawidłowego rozróżnienia technologii urządzeń wejściowych. Często mylone są one z touchpadami, które w pełni wykorzystują metodę pojemnościową, co prowadzi do nieporozumień w zakresie ich zastosowania i funkcjonalności.

Pytanie 19

Na podstawie wyników działania narzędzia diagnostycznego chkdsk, które są przedstawione na zrzucie ekranu, jaka jest wielkość pojedynczego klastra na dysku?

Typ systemu plików to FAT32.
Wolumin FTP utworzono 12-11-2005 18:31
Numer seryjny woluminu: 3CED-3B31
Trwa sprawdzanie plików i folderów...
Zakończono sprawdzanie plików i folderów.
Trwa sprawdzanie wolnego miejsca na dysku...
Zakończono sprawdzanie wolnego miejsca na dysku.
System Windows sprawdził system plików i nie znalazł żadnych problemów.
  8 233 244 KB całkowitego miejsca na dysku.
      1 KB w 13 plikach ukrytych.
      2 KB w 520 folderach.
  1 537 600 KB w 4 952 plikach.
  6 690 048 KB jest dostępnych.

      4 096 bajtów w każdej jednostce alokacji.
  2 058 311 ogółem jednostek alokacji na dysku.
  1 672 512 jednostek alokacji dostępnych na dysku.

C:\>

A. 2 140 kB
B. 4 kB
C. 1 972 kB
D. 8 kB
Odpowiedź 4 kB jest jak najbardziej ok, bo narzędzie chkdsk pokazuje, że rozmiar klastra to 4096 bajtów, czyli właśnie 4 kB. Klaster to taka najmniejsza jednostka, która przydziela miejsce na dysku w systemie plików, a jego rozmiar ma spory wpływ na to, jak przechowujemy i zarządzamy danymi. Mniejsze klastry mogą ograniczać marnotrawstwo przestrzeni, ale przez to trzeba więcej razy wykonywać operacje wejścia-wyjścia. Z kolei większe klastry przyspieszają operacje na dużych plikach, ale mogą powodować fragmentację, zwłaszcza jeśli mamy sporo małych plików. Stary system plików FAT32, który był używany w Windows 95 czy 98, ma swoje ograniczenia dotyczące rozmiaru i liczby klastrów, co z kolei wpływa na maksymalną pojemność dysków. Wiedza o tym, jak duży jest klaster, jest ważna, jeśli chcemy zoptymalizować wydajność systemu. W praktyce dobór rozmiaru klastra zależy od tego, co przechowujemy i jak korzystamy z danych, więc często stosuje się różne strategie do optymalizacji.

Pytanie 20

Jak wygląda schemat połączeń bramek logicznych?

Ilustracja do pytania
A. sterownik przerwań
B. multiplekser
C. sumator
D. przerzutnik
Kontroler przerwań nie jest związany z bramkami logicznymi w sposób przedstawiony na schemacie Kontrolery przerwań to specjalistyczne układy które służą do zarządzania żądaniami przerwań w systemach mikroprocesorowych Ich zadaniem jest priorytetyzacja i obsługa sygnałów przerwań co jest kluczowe dla efektywnego zarządzania zasobami procesora Multiplekser natomiast jest urządzeniem które wybiera jedną z wielu dostępnych linii wejściowych i przesyła ją do wyjścia na podstawie sygnałów sterujących choć używa bramek logicznych to jego schemat różni się od przedstawionego na rysunku Sumator to kolejny układ logiczny który realizuje operacje dodawania binarnego W jego najprostszej formie sumator służy do dodawania dwóch bitów generując sumę i przeniesienie Schemat sumatora również różni się od przedstawionego na rysunku i nie zawiera charakterystycznych sprzężeń zwrotnych które są kluczowe dla działania przerzutników Głównym błędem przy rozpoznawaniu poszczególnych układów jest nieodpowiednie zrozumienie ich funkcji i struktury W przypadku przerzutnika kluczowe jest jego działanie w zależności od sygnału zegara co nie ma miejsca w przypadku kontrolera przerwań czy multipleksera Poprawna identyfikacja układów wymaga zrozumienia ich roli w systemach cyfrowych oraz zdolności do rozpoznawania charakterystycznych cech każdego z tych układów

Pytanie 21

Z informacji przedstawionych w tabeli wynika, że efektywna częstotliwość pamięci DDR SDRAM wynosi

184 styki
64-bitowa szyna danych
Pojemność 1024 MB
Przepustowość 3200 MB/s

A. 266 MHz
B. 333 MHz
C. 400 MHz
D. 200 MHz
Nieprawidłowe odpowiedzi wynikają z niezrozumienia, jak efektywna częstotliwość pamięci DDR SDRAM jest obliczana. Częstotliwość efektywna jest wynikiem podwojenia częstotliwości zegara bazowego, co jest kluczową cechą technologii DDR (Double Data Rate), gdzie dane są przesyłane dwukrotnie w jednym cyklu zegara. Dla pamięci o przepustowości 3200 MB/s i 64-bitowej szerokości szyny, poprawną częstotliwością efektywną jest 400 MHz. Inne wartości jak 200 MHz, 266 MHz, czy 333 MHz nie odpowiadają tej przepustowości, ponieważ musiałyby mieć inną szerokość szyny danych lub inną przepustowość. Wartości te są charakterystyczne dla innych generacji DDR lub innych standardów pamięci. Typowym błędem jest mylenie częstotliwości bazowej z efektywną, co prowadzi do nieprawidłowych obliczeń. Zrozumienie różnic w technologii DDR i jej kolejnych generacjach (jak DDR2, DDR3) jest kluczowe, ponieważ każda z nich oferuje różne specyfikacje i standardy, które wpływają na wydajność systemu. Ważne jest, aby w praktyce umieć dobierać komponenty zgodnie z rzeczywistymi potrzebami i możliwościami systemu, co pozwala na osiągnięcie optymalnej wydajności i stabilności komputera. Znajomość specyfikacji technicznych pamięci RAM oraz ich wpływu na inne komponenty to kluczowa umiejętność w dziedzinie informatyki i inżynierii systemów komputerowych. Standardy, takie jak JEDEC, pomagają w precyzyjnym określeniu, jakie parametry powinna spełniać pamięć RAM, aby była kompatybilna z innymi komponentami systemu, co znacząco ułatwia integrację i optymalizację sprzętu komputerowego.

Pytanie 22

Jaki jest maksymalny transfer danych napędu CD przy prędkości x42?

A. 2400 KiB/s
B. 3600 KiB/s
C. 6000 KiB/s
D. 6300 KiB/s
Wybór innej wartości transferu danych może wynikać z nieporozumienia dotyczącego obliczeń związanych z prędkością odczytu napędu CD. Napędy te operują na określonym standardzie transferu, gdzie prędkość x1 to 150 KiB/s. Dlatego, błędne odpowiedzi mogą wynikać z nieprawidłowych założeń przy mnożeniu lub błędnego rozumienia, czym jest prędkość przesyłu. Na przykład, odpowiedzi 2400 KiB/s i 3600 KiB/s byłyby poprawne dla znacznie niższych prędkości odczytu, takich jak x16 czy x24, co sugeruje brak znajomości standardowych prędkości transferu napędów optycznych. Natomiast 6000 KiB/s, mimo że jest bliższe poprawnej odpowiedzi, nie uwzględnia rzeczywistej wydajności dla x42. Dlatego, jeśli ktoś przyjąłby, że prędkość ta jest liniowa i pomnożyłby 150 KiB/s tylko przez 40, popełniłby błąd, nie zdając sobie sprawy z tego, że przy x42 rzeczywista wydajność przekracza 6000 KiB/s. Zrozumienie tej zależności jest kluczowe, aby uniknąć pomyłek oraz stosować się do standardów przesyłania danych w branży technologii informacyjnej.

Pytanie 23

Zjawisko crosstalk, które występuje w sieciach komputerowych, polega na

A. utratach sygnału w drodze transmisyjnej
B. opóźnieniach w propagacji sygnału w ścieżce transmisyjnej
C. przenikaniu sygnału między sąsiadującymi parami przewodów w kablu
D. niedoskonałości toru wywołanej zmianami geometrii par przewodów
Przenikanie sygnału pomiędzy sąsiadującymi w kablu parami przewodów, znane również jako przesłuch, jest zjawiskiem, które negatywnie wpływa na jakość komunikacji w sieciach komputerowych, w szczególności w kablach typu twisted pair, takich jak kable Ethernet. Przesłuch występuje, gdy sygnał z jednej pary przewodów oddziałuje na sygnał w sąsiedniej parze, co może prowadzić do zakłóceń i błędów w przesyłanych danych. W kontekście standardów, takich jak IEEE 802.3, które definiują specyfikacje dla Ethernetu, zarządzanie przesłuchami jest kluczowym aspektem projektowania systemów transmisyjnych. Praktyczne podejście do minimalizacji przesłuchu obejmuje stosowanie technologii ekranowania, odpowiednie prowadzenie kabli oraz zapewnienie odpowiednich odstępów między parami przewodów. Zmniejszenie przesłuchu poprawia integralność sygnału, co jest niezbędne dla uzyskania wysokiej przepustowości i niezawodności połączeń w sieciach o dużej wydajności.

Pytanie 24

Oświetlenie oparte na diodach LED w trzech kolorach wykorzystuje skanery typu

A. CIS
B. CMYK
C. CCD
D. CMOS
Wybór odpowiedzi CCD (Charge-Coupled Device) w kontekście skanowania z zastosowaniem diod LED jest błędny, ponieważ technologia ta, chociaż powszechnie stosowana w fotografii i skanowaniu, różni się zasadniczo od CIS. CCD generuje obraz poprzez gromadzenie ładunków elektrycznych w matrycy, co wymaga bardziej skomplikowanego systemu zasilania i większej ilości komponentów, co wpływa na jego większe zużycie energii oraz rozmiar. W przeciwieństwie do CIS, CCD nie jest idealnym rozwiązaniem dla aplikacji wymagających niskiego poboru energii, co czyni go mniej efektywnym z punktu widzenia nowoczesnych systemów oświetleniowych LED, które preferują efektywność energetyczną. W przypadku CMOS (Complementary Metal-Oxide-Semiconductor), jest to technologia, która również jest stosowana w skanowaniu, lecz podobnie jak CCD, nie jest optymalna przy zastosowaniach LED ze względu na różnice w konstrukcji i wymagania dotyczące zasilania. Z kolei odpowiedź CMYK (Cyan, Magenta, Yellow, Black) odnosi się do modelu kolorów wykorzystywanego w druku, a nie w technologii skanowania. Zrozumienie tych różnic jest kluczowe, aby uniknąć nieporozumień w kontekście wyboru technologii odpowiedniej do danego zastosowania. W praktyce, błędne wnioski mogą wynikać z mylenia różnych rodzajów technologii obrazowania oraz ich zastosowań w systemach oświetleniowych, co prowadzi do nieefektywnych rozwiązań, które nie odpowiadają aktualnym standardom branżowym.

Pytanie 25

Na zamieszczonym zdjęciu widać

Ilustracja do pytania
A. taśmę barwiącą
B. kartridż
C. tusz
D. tuner
Taśma barwiąca, często stosowana w drukarkach igłowych oraz maszynach do pisania, pełni kluczową rolę w procesie druku. Jest to materiał eksploatacyjny, który przenosi tusz na papier za pomocą igieł drukarki lub uderzeń maszyny do pisania. W odróżnieniu od tuszów i kartridżów używanych w drukarkach atramentowych i laserowych, taśma barwiąca wykorzystuje fizyczny mechanizm transferu tuszu. Typowy przykład zastosowania to drukarki igłowe używane w miejscach, gdzie wymagane są trwałe i wielowarstwowe wydruki, takie jak faktury czy paragony. Przemysłowe standardy dotyczące taśm barwiących obejmują aspekt ich wytrzymałości i wydajności, co jest kluczowe dla zapewnienia długotrwałej jakości druku i minimalizacji kosztów operacyjnych. Przy wybieraniu taśmy barwiącej, warto zwracać uwagę na jej zgodność z urządzeniem oraz na jakość wydruku, jaką zapewnia. Prawidłowe stosowanie taśm barwiących wymaga również znajomości ich montażu oraz regularnej konserwacji sprzętu, co jest dobrym przykładem praktyki zgodnej z zasadami utrzymania technicznego urządzeń biurowych.

Pytanie 26

Urządzenie zaprezentowane na ilustracji jest wykorzystywane do zaciskania wtyków:

Ilustracja do pytania
A. BNC
B. SC
C. E 2000
D. RJ 45
Przyrząd przedstawiony na rysunku to zaciskarka do wtyków RJ 45 które są powszechnie stosowane w technologii Ethernet do tworzenia sieci komputerowych. Wtyk RJ 45 jest standardem w kablach kategorii 5 6 i 6a umożliwiając przesył danych z dużą szybkością. Proces zaciskania polega na umieszczeniu przewodów w odpowiednich kanałach wtyku a następnie użyciu zaciskarki do zabezpieczenia połączenia. Zaciskarka jest specjalnie zaprojektowana aby zapewnić równomierny nacisk na wszystkie piny dzięki czemu połączenie jest niezawodne i trwałe. Ważnym aspektem podczas pracy z RJ 45 jest przestrzeganie norm takich jak EIA/TIA 568 które definiują kolorystykę przewodów co zapobiega błędnym połączeniom. Zaciskanie wtyków RJ 45 jest kluczową umiejętnością w pracy technika sieciowego ponieważ bezpośrednio wpływa na jakość i stabilność połączenia sieciowego. Prawidłowe zaciskanie zapewnia minimalizację strat sygnału i poprawę wydajności sieci.

Pytanie 27

Liczba heksadecymalna 1E2F(16) w systemie oktalnym jest przedstawiana jako

A. 74274
B. 7277
C. 17057
D. 7727
Aby zrozumieć, dlaczego liczba heksadecymalna 1E2F(16) w systemie oktalnym to 17057, należy najpierw dokonać konwersji między systemami liczbowymi. W systemie heksadecymalnym 1E2F oznacza: 1*(16^3) + 14*(16^2) + 2*(16^1) + 15*(16^0), co daje 1*4096 + 14*256 + 2*16 + 15*1 = 4096 + 3584 + 32 + 15 = 7715 w systemie dziesiętnym. Następnie, tę wartość dziesiętną przekształcamy na system oktalny. Dzielimy 7715 przez 8, co daje 964 z resztą 3. Kontynuując, dzielimy 964 przez 8, co daje 120 z resztą 4. Dzieląc 120 przez 8, otrzymujemy 15 z resztą 0, a 15 dzielone przez 8 to 1 z resztą 7. Kończąc, przekształcamy liczby w porządku odwrotnym, co prowadzi do 17057 w systemie oktalnym. Zrozumienie konwersji między systemami liczbowymi jest kluczowe w programowaniu oraz w projektach inżynieryjnych, gdzie różne systemy numeryczne są często stosowane, a ich prawidłowe przekształcenie jest niezbędne do efektywnego zarządzania danymi.

Pytanie 28

W oznaczeniu procesora INTEL CORE i7-4790 liczba 4 wskazuje na

A. generację procesora
B. liczbę rdzeni procesora
C. wskaźnik wydajności Intela
D. specyficzną linię produkcji podzespołu
Cyfra 4 w oznaczeniu procesora INTEL CORE i7-4790 wskazuje na generację procesora. Intel stosuje system oznaczeń, w którym pierwsza cyfra po prefiksie CORE (i7 w tym przypadku) odnosi się do generacji, a to z kolei przekłada się na architekturę oraz możliwości technologiczne danej serii procesorów. Procesory z serii i7-4790 należą do czwartej generacji, znanej jako 'Haswell'. Generacja ma istotne znaczenie przy wyborze podzespołów, ponieważ nowsze generacje zazwyczaj oferują lepszą wydajność, efektywność energetyczną i wsparcie dla nowych technologii, takich jak pamięci DDR4 czy zintegrowane układy graficzne o wyższych osiągach. To oznaczenie jest kluczowe dla użytkowników i producentów sprzętu, aby mogli podejmować odpowiednie decyzje zakupowe, zwłaszcza w kontekście planowania modernizacji systemów komputerowych, które mogą wymagać specyficznych generacji procesorów dla zapewnienia zgodności z innymi komponentami. Ponadto, wybór odpowiedniej generacji może wpłynąć na długoterminową wydajność i stabilność systemu.

Pytanie 29

W sekcji zasilania monitora LCD, powiększone kondensatory elektrolityczne mogą prowadzić do uszkodzenia

A. układu odchylania poziomego
B. przycisków umiejscowionych na panelu monitora
C. przewodów sygnałowych
D. inwertera oraz podświetlania matrycy
Spuchnięte kondensatory elektrolityczne w sekcji zasilania monitora LCD są jednym z najczęstszych problemów, które mogą prowadzić do uszkodzenia inwertera oraz podświetlania matrycy. Kondensatory te mają za zadanie stabilizację napięcia i filtrację szumów w obwodzie zasilania. Gdy kondensator ulega uszkodzeniu, jego pojemność spada, co prowadzi do niestabilnego zasilania. W przypadku monitora LCD, niestabilne napięcie może zaburzyć pracę inwertera, który jest odpowiedzialny za zasilanie lamp podświetlających matrycę. Efektem tego może być całkowity brak podświetlenia lub nierównomierne jego rozłożenie, co znacząco wpływa na jakość wyświetlanego obrazu. W praktyce, regularne sprawdzanie kondensatorów w zasilaczach monitorów jest zalecane, a ich wymiana na nowe, o odpowiednich parametrach, powinna być przeprowadzana zgodnie z zasadami BHP oraz standardami branżowymi, co wydłuża żywotność urządzenia.

Pytanie 30

Program antywirusowy oferowany przez Microsoft bezpłatnie dla posiadaczy legalnych wersji systemu operacyjnego Windows to

A. Microsoft Free Antywirus
B. Windows Antywirus
C. Microsoft Security Essentials
D. Windows Defender
Nie ma czegoś takiego jak Windows Antywirus od Microsoftu, więc wybór tej opcji nie jest dobry. Możliwe, że ludzie mylą to z innymi programami, które nie są ich własnością. Często zdarza się, że szukając zabezpieczeń, natykają się na nieoficjalne aplikacje, które mogą wydawać się ok, ale nie spełniają standardów branżowych. Teraz mamy Windows Defender, który jest już wbudowany w Windows 10 i 11, więc takie mylenie nazw może sprawiać problemy. Z kolei Microsoft Free Antywirus sugeruje, że jest jakaś inna darmowa wersja antywirusowa, co jest nieprawdą. To błędne wyobrażenie o dostępnych narzędziach może prowadzić do złych decyzji, a to może narażać na poważne problemy, jak infekcje. Lepiej korzystać z uznanych rozwiązań zabezpieczających, które są wspierane przez producentów systemów i przestrzegają aktualnych norm bezpieczeństwa, żeby mieć pewność, że nasze urządzenia są dobrze chronione.

Pytanie 31

Jakie polecenie należy wykorzystać, aby w terminalu pokazać przedstawione informacje o systemie Linux?

Ilustracja do pytania
A. hostname
B. uptime
C. factor 22
D. uname -a
Polecenie 'uname -a' w systemie Linux służy do wyświetlenia szczegółowych informacji o systemie operacyjnym. Jest to bardzo przydatne w kontekście administracji systemem, ponieważ daje pełny obraz wersji jądra, nazwy hosta, architektury i innych kluczowych informacji. Na przykład, po wykonaniu 'uname -a', użytkownik otrzymuje dane takie jak wersja jądra, która jest istotna przy instalacji sterowników czy rozwiązywaniu problemów związanych z kompatybilnością oprogramowania. Zrozumienie znaczenia i struktury informacji zwracanych przez 'uname -a' jest kluczowe dla administratora systemu. Warto wiedzieć, że 'uname' można użyć z różnymi opcjami, np. 'uname -r' wyświetli tylko wersję jądra. Wiedza o jądrach i ich wersjach jest niezbędna do zarządzania systemem i zapewnienia jego bezpieczeństwa oraz sprawności działania. Jest to standardowe narzędzie w środowisku Unix/Linux, szeroko wykorzystywane w praktyce zawodowej.

Pytanie 32

Oznaczenie CE wskazuje, że

A. produkt jest zgodny z normami ISO
B. wyrób spełnia normy bezpieczeństwa użytkowania, ochrony zdrowia oraz ochrony środowiska
C. towar został wytworzony w obrębie Unii Europejskiej
D. producent ocenił towar pod kątem wydajności i ergonomii
Oznakowanie CE jest znakiem, który informuje, że wyrób spełnia wymagania unijne dotyczące bezpieczeństwa, zdrowia oraz ochrony środowiska. W ramach regulacji Unii Europejskiej, każdy produkt, który nosi ten znak, przeszedł odpowiednie procedury oceny zgodności, co zazwyczaj obejmuje testy i analizy wykonane przez producenta lub uprawnione jednostki notyfikowane. Przykładem mogą być urządzenia elektryczne, które muszą spełniać normy bezpieczeństwa określone w dyrektywie LVD (Low Voltage Directive) oraz EMC (Electromagnetic Compatibility Directive). Zastosowanie oznakowania CE nie tylko zapewnia konsumentom bezpieczeństwo użytkowania, ale również daje producentom przewagę konkurencyjną na rynku europejskim. Warto zauważyć, że oznakowanie CE jest wymagane dla szerokiej gamy produktów, w tym zabawek, urządzeń medycznych czy sprzętu ochrony osobistej, co czyni je kluczowym elementem regulacyjnym wpływającym na handel wewnętrzny w Unii Europejskiej.

Pytanie 33

Ustawienia wszystkich kont użytkowników na komputerze znajdują się w gałęzi rejestru oznaczonej akronimem

A. HKCC
B. HKCR
C. HKU
D. HKLM
Fajnie, że wybrałeś HKU, czyli "HKEY_USERS". To ta gałąź rejestru Windows, gdzie trzymane są profile użytkowników, wszystkie te ustawienia i preferencje dla każdego konta. Każdy użytkownik ma swój unikalny identyfikator SID, który jest powiązany z kluczem w HKU. Dzięki temu system może spersonalizować doświadczenie użytkownika, co jest naprawdę wygodne. Na przykład zmiany w ustawieniach pulpitu, jak tapeta czy układ ikon, są zapisywane właśnie tutaj. Użycie HKU jest super ważne, zwłaszcza w sytuacjach, kiedy na jednym komputerze pracuje więcej osób, bo to ułatwia zarządzanie profilami przez administratorów. Warto też wiedzieć, że rozumienie, jak działa gałąź HKU, jest kluczowe dla ochrony danych osobowych i wprowadzenia dobrych zasad bezpieczeństwa w organizacji. Moim zdaniem, to mega istotny element, który każdy powinien znać.

Pytanie 34

Kondygnacyjny punkt dystrybucyjny jest połączony za pomocą poziomego okablowania z

A. centralnym punktem dystrybucyjnym
B. centralnym punktem sieci
C. budynkowym punktem dystrybucyjnym
D. gniazdem abonenckim
Jak wybierzesz inne odpowiedzi, to możesz napotkać trochę błędnych przekonań na temat architektury systemów dystrybucyjnych. Gniazdo abonenckie to końcowy element, a nie punkt sieci, więc nie myl go z centralnym punktem, gdzie sygnały są zbierane i zarządzane. Centralne punkty dystrybucyjne są też ważne, ale ich rola jest inna, bo zbierają sygnały z różnych źródeł, podczas gdy KPD rozdziela je do końcowych użytkowników. Jeśli pomyślisz o centralnym punkcie w kontekście KPD, to możesz się pogubić w tym, jak sieć jest zbudowana. Kiedy budynkowy punkt dystrybucyjny rozdziela sygnały w obrębie budynku, to nie łączy ich bezpośrednio z gniazdami abonenckimi. Rozróżnienie pomiędzy tymi dwoma punktami jest mega istotne, jeśli chodzi o design i wdrażanie systemów telekomunikacyjnych. Dużo osób myśli, że KPD ma te same funkcje, co centralny punkt dystrybucyjny, co wprowadza bałagan w strukturze sieci i może prowadzić do problemów z przesyłaniem danych. Dlatego ważne jest, by stosować odpowiednie standardy i praktyki w projektowaniu skutecznych sieci telekomunikacyjnych.

Pytanie 35

Jakie polecenie należy wykorzystać w systemie Linux, aby zlokalizować wszystkie pliki z rozszerzeniem txt, które znajdują się w katalogu /home/user i mają w nazwie ciąg znaków abc?

A. ls /home/user/[abc].txt
B. ls /home/user/*abc*.txt
C. ls /home/user/[a-c].txt
D. ls /home/user/?abc?.txt
W przypadku poleceń przedstawionych w innych odpowiedziach pojawia się szereg błędnych koncepcji odnośnie do funkcji symboli wieloznacznych oraz sposobu, w jaki można wyszukiwać pliki w systemie Linux. Użycie '?abc?.txt' w pierwszej odpowiedzi jest niepoprawne, ponieważ '?' odpowiada za jeden pojedynczy znak, co oznacza, że będzie wyszukiwało pliki, które mają dokładnie jedną literę przed i jedną literę po ciągu 'abc', co jest zbyt restrykcyjne w kontekście poszukiwania plików. W drugiej odpowiedzi, '[abc].txt' również nie spełnia wymagań, ponieważ '[abc]' oznacza, że przed rozszerzeniem '.txt' musi być dokładnie jeden znak, który może być 'a', 'b' lub 'c'. Ostatnia odpowiedź, '[a-c].txt', jest równie myląca, jako że ogranicza wyszukiwanie do plików o nazwach, które zaczynają się od pojedynczego znaku z zakresu 'a' do 'c', co nie uwzględnia innych możliwości. Przy poszukiwaniu plików w systemie Linux kluczowe jest wykorzystywanie symboli wieloznacznych zgodnie z ich przeznaczeniem oraz zrozumienie ich działania, aby uniknąć nieprawidłowych wniosków. Dobrą praktyką jest także testowanie zapytań w bezpiecznym środowisku, aby upewnić się, że zwracane wyniki są zgodne z oczekiwaniami.

Pytanie 36

Komputer powinien działać jako serwer w sieci lokalnej, umożliwiając innym komputerom dostęp do Internetu poprzez podłączenie do gniazda sieci rozległej za pomocą kabla UTP Cat 5e. Na chwilę obecną komputer jest jedynie połączony ze switchem sieci lokalnej również kablem UTP Cat 5e oraz nie dysponuje innymi portami 8P8C. Jakiego komponentu musi on koniecznie nabrać?

A. O dodatkowy dysk twardy
B. O szybszy procesor
C. O większą pamięć RAM
D. O drugą kartę sieciową
Komputer, żeby móc działać jako serwer i dzielić połączenie z Internetem, musi mieć dwie karty sieciowe. Jedna z nich służy do komunikacji w lokalnej sieci (LAN), a druga przydaje się do łączenia z Internetem (WAN). Dzięki temu można spokojnie zarządzać przesyłem danych w obie strony. Takie rozwiązanie jest super ważne, bo pozwala np. na utworzenie serwera, który działa jak brama między komputerami w domu a Internetem. Warto wiedzieć, że posiadanie dwóch kart sieciowych to dobra praktyka, zwiększa to bezpieczeństwo i wydajność. Jeżeli chodzi o standardy IT, to takie podejście pomaga też w segregowaniu ruchu lokalnego i zewnętrznego, co ma duże znaczenie dla ochrony danych i wykorzystania zasobów. Dodatkowo, sporo systemów operacyjnych i rozwiązań serwerowych, takich jak Windows Server czy Linux, wspiera konfiguracje z wieloma kartami.

Pytanie 37

Która z poniższych opcji nie jest wykorzystywana do zdalnego zarządzania stacjami roboczymi?

A. program UltraVNC
B. pulpit zdalny
C. program Wireshark
D. program TeamViewer
Program Wireshark jest narzędziem do analizy ruchu sieciowego, które pozwala na monitorowanie i analizowanie danych przesyłanych przez sieci komputerowe. Używany jest głównie do diagnostyki problemów z siecią, analizy bezpieczeństwa oraz do nauki o protokołach komunikacyjnych. Wireshark działa na zasadzie przechwytywania pakietów, co pozwala na szczegółową analizę ruchu w czasie rzeczywistym. W kontekście zdalnego zarządzania stacjami roboczymi, Wireshark nie pełni funkcji umożliwiającej zdalną kontrolę nad komputerami. Zamiast tego, programy takie jak TeamViewer, pulpit zdalny czy UltraVNC są przeznaczone do tego celu, umożliwiając użytkownikom zdalny dostęp oraz interakcję z desktopem innego komputera. Warto podkreślić, że korzystając z Wiresharka, administratorzy sieci mogą identyfikować nieautoryzowane połączenia, co jest kluczowe dla utrzymania bezpieczeństwa infrastruktury IT.

Pytanie 38

Zasilacz UPS o mocy rzeczywistej 480 W nie jest przeznaczony do podłączenia

A. urządzeń sieciowych takich jak router
B. modemu ADSL
C. monitora
D. drukarki laserowej
Podłączenie urządzeń takich jak router, modem ADSL czy monitor do zasilacza UPS o mocy 480 W jest praktycznie akceptowalne i bezpieczne, ponieważ ich pobór mocy jest znacznie niższy niż możliwości tego urządzenia. Routery i modemy, jako urządzenia sieciowe, są zaprojektowane z myślą o niskim zużyciu energii, co sprawia, że mogą być bezpiecznie zasilane przez UPS na dłuższy czas, co w kryzysowych sytuacjach, takich jak przerwy w dostawie prądu, jest kluczowe dla utrzymania ciągłości pracy. Monitory, w zależności od technologii (LCD czy LED), również nie przekraczają zazwyczaj mocy, jaką może dostarczyć UPS o podanej mocy. Można jednak pomylić te urządzenia z bardziej wymagającymi pod względem energetycznym urządzeniami, co prowadzi do błędnego wniosku, że mogą być one niewłaściwie zasilane przez UPS. Kluczem do efektywnego korzystania z zasilaczy UPS jest zrozumienie wymaganej mocy poszczególnych urządzeń oraz ich charakterystyki poboru energii, co pozwala na właściwe dobieranie sprzętu i minimalizację ryzyka uszkodzeń. Typową pułapką myślową jest zakładanie, że wszystkie urządzenia biurowe pobierają podobną moc, co jest dalekie od prawdy. Właściwe podejście do zasilania urządzeń wymaga znajomości ich specyfikacji oraz zgodności z normami dotyczącymi zasilania awaryjnego, aby uniknąć awarii sprzętu.

Pytanie 39

Użytkownik systemu Windows może korzystając z programu Cipher

A. usunąć konto użytkownika wraz z jego profilem i dokumentami
B. wykonać przyrostową kopię zapasową plików systemowych
C. ochronić dane poprzez szyfrowanie plików
D. zeskanować system w celu wykrycia malware
Odpowiedź, że program Cipher umożliwia ochronę danych przez szyfrowanie plików, jest prawidłowa. Program Cipher to narzędzie wbudowane w system Windows, które pozwala na szyfrowanie i deszyfrowanie plików i folderów. Dzięki zastosowaniu szyfrowania, użytkownicy mogą zabezpieczyć swoje dane przed nieautoryzowanym dostępem, co jest szczególnie istotne w kontekście ochrony informacji wrażliwych. Przykładem zastosowania Cipher może być szyfrowanie plików zawierających dane osobowe lub finansowe, które powinny być chronione przed potencjalnymi naruszeniami bezpieczeństwa. Zastosowanie szyfrowania zgodnie z zasadami dobrych praktyk bezpieczeństwa IT, wyróżnia się tym, że nawet w przypadku fizycznego dostępu do komputera przez nieupoważnioną osobę, zaszyfrowane pliki pozostaną niedostępne bez odpowiedniego klucza. Warto też podkreślić, że Cipher korzysta z standardu szyfrowania AES (Advanced Encryption Standard), co zapewnia wysoki poziom bezpieczeństwa danych. Stosowanie szyfrowania jest nie tylko zalecane, ale w wielu branżach staje się wymogiem prawnym, co czyni umiejętność korzystania z narzędzi takich jak Cipher szczególnie cenną.

Pytanie 40

Na schemacie procesora rejestry mają za zadanie przechowywać adres do

Ilustracja do pytania
A. kolejnej instrukcji programu
B. wykonywania operacji arytmetycznych
C. przechowywania argumentów obliczeń
D. zarządzania wykonywanym programem
Rejestry to kluczowe elementy procesora, które pełnią różnorodne funkcje związane z obliczeniami. W kontekście przechowywania argumentów obliczeń rejestry działają jako szybki dostęp do danych potrzebnych w operacjach arytmetycznych i logicznych. Dzięki temu procesor nie musi każdorazowo pobierać danych z pamięci operacyjnej, co znacznie przyspiesza przetwarzanie danych. Przykładem zastosowania mogą być operacje dodawania, gdzie rejestry przechowują liczby do zsumowania, a wynik trafia do kolejnego rejestru. W standardach architektur jak x86 czy ARM rejestry są często używane do tymczasowego przechowywania wyników i parametrów funkcji. Dzięki rejestrom możliwe jest także bezpośrednie adresowanie, co jest kluczowe dla szybkiego wykonywania instrukcji. W branży IT uważa się za dobrą praktykę optymalne wykorzystanie rejestrów, co przekłada się na wydajność aplikacji. Wiedza o tym, jak rejestry przechowują argumenty obliczeń, jest fundamentalna dla każdego, kto chce zrozumieć efektywne działanie procesorów i ich architekturę.