Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 22 maja 2025 16:12
  • Data zakończenia: 22 maja 2025 16:26

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. niestabilne materiały wybuchowe.
B. gazy utleniające, kategoria zagrożenia 1.
C. gazy łatwopalne, kategoria zagrożenia 1.
D. sprężone gazy pod ciśnieniem.
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 2

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Zaklejenie miejsca plastrem
B. Posypanie miejsca solą kuchenną
C. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
D. Pocieranie miejsca kontaktu papierowym ręcznikiem
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 3

W wypadku oblania skóry kwasem mrówkowym należy

Wyciąg z karty charakterystyki
Skład: kwas mrówkowy 80%, woda 11-20%
Pierwsza pomoc.
Po narażeniu przez drogi oddechowe. Natychmiast wezwać lekarza.
Po kontakcie ze skórą. Zanieczyszczoną skórę natychmiast przemyć dużą ilością wody.

A. zastosować na skórę mydło w płynie.
B. przemyć skórę dużą ilością wody.
C. polać skórę środkiem zobojętniającym.
D. podać do picia dużą ilość schłodzonej wody.
Przemycie skóry dużą ilością wody w przypadku kontaktu z kwasem mrówkowym jest kluczowym działaniem, które ma na celu minimalizację uszkodzeń. Woda działa jak rozcieńczalnik, co pozwala na szybsze usunięcie szkodliwej substancji z powierzchni skóry. Zgodnie z wytycznymi zawartymi w standardach pierwszej pomocy, każdy przypadek kontaktu skóry z substancjami żrącymi powinien być traktowany jako sytuacja wymagająca natychmiastowej reakcji. W praktyce, jeśli dojdzie do kontaktu z kwasem mrówkowym, należy jak najszybciej przemyć zanieczyszczoną skórę wodą o temperaturze pokojowej przez co najmniej 15 minut. Ważne jest, aby nie stosować innych substancji ani środków chemicznych, które mogłyby reagować z kwasem, co mogłoby prowadzić do powstania dodatkowych, szkodliwych związków chemicznych. Warto również pamiętać, że w przypadku poważniejszych oparzeń chemicznych należy zawsze skontaktować się z profesjonalną pomocą medyczną, aby ocenić stan pacjenta i podjąć dalsze działania. Przechowywanie odpowiednich materiałów pierwszej pomocy w miejscach, gdzie mogą wystąpić takie wypadki, jest również zalecane jako dobra praktyka. Przykładem zastosowania jest sytuacja w laboratoriach chemicznych, gdzie pracownicy są szkoleni w zakresie reagowania na wypadki z substancjami chemicznymi.

Pytanie 4

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. paralaksy
B. losowym
C. dokładności
D. instrumentalnym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 5

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. sublimacji
B. krystalizacji
C. destylacji
D. ekstrakcji
Ekstrakcja to technika, która polega na wydobywaniu substancji z jednego medium do innego, zwykle wykorzystując różnice w rozpuszczalności. Choć jest to proces użyteczny w analizie chemicznej, nie jest on skuteczny dla zatężania roztworów soli. Nie pomaga on w uzyskaniu większego stężenia roztworu, co jest kluczowe w tym kontekście. Sublimacja to proces, w którym substancja przechodzi ze stanu stałego bezpośrednio w gazowy. Ta metoda jest stosowana do oddzielania substancji, które łatwo sublimują, ale nie ma zastosowania w zatężaniu roztworów wodnych. Krystalizacja polega na wytrącaniu substancji w postaci kryształów, co może prowadzić do uzyskania czystszych substancji, jednak nie jest to proces, który efektywnie redukuje objętość roztworu. Typowym błędem myślowym przy wyborze tych metod jest mylenie procesu separacji z procesem zatężania. Należy pamiętać, że skuteczne zatężanie wymaga zastosowania metod, które pozwalają na usunięcie rozpuszczalnika, co jest charakterystyczne dla destylacji. W związku z tym, odpowiednie zrozumienie i zastosowanie metod separacji lub zatężania jest kluczowe w pracy laboratoryjnej.

Pytanie 6

Jakie urządzenie jest wykorzystywane do procesu ekstrakcji?

A. aparat Kippa
B. pompa próżniowa
C. aparat Soxhleta
D. kolba ssawkowa
Aparat Soxhleta jest specjalistycznym urządzeniem wykorzystywanym w procesach ekstrakcji, szczególnie w laboratoriach chemicznych i analitycznych. Działa na zasadzie ciągłej ekstrakcji substancji rozpuszczalnych z materiałów stałych, co umożliwia uzyskanie wysokiej wydajności ekstrakcji. Ekstrakcja w aparacie Soxhleta polega na cyklicznym podgrzewaniu rozpuszczalnika, który paruje, a następnie skrapla się w kondensatorze, opadając z powrotem na próbkę. Taki proces pozwala na efektywne wydobycie substancji, takich jak oleje, tłuszcze czy inne składniki aktywne z roślin. Zastosowanie tego aparatu jest powszechne w przemyśle farmaceutycznym, kosmetycznym oraz przy badaniach jakości surowców naturalnych. Standardy branżowe, takie jak ISO, zalecają korzystanie z metod ekstrakcji, które zapewniają powtarzalność i dokładność wyników, co czyni aparat Soxhleta doskonałym narzędziem w tej dziedzinie.

Pytanie 7

Aby oddzielić połączenia szlifów, należy w miejscu ich styku wprowadzić

A. wodorotlenek potasu
B. kwas fluorowodorowy
C. glicerynę
D. wodorotlenek sodu
Gliceryna jest substancją, która doskonale sprawdza się w procesie rozdzielania zapieczonych połączeń szlifów. Jej zastosowanie wynika z właściwości chemicznych, które pozwalają na skuteczne działanie w trudnych warunkach. Gliceryna jest środkiem niejonowym, co oznacza, że nie wywołuje reakcji z materiałami, z którymi współdziała. W praktyce, podczas zastosowania gliceryny na strefie połączenia szlifów, zwiększa się elastyczność otaczających materiałów, co ułatwia ich oddzielenie bez ryzyka uszkodzenia. Gliceryna ma również właściwości nawilżające, co dodatkowo sprzyja procesowi rozdzielania, zapewniając lepszą penetrację w obszary o dużym skurczeniu. W branżach zajmujących się szlifowaniem i obróbką materiałów, takich jak przemysł motoryzacyjny czy lotniczy, stosowanie gliceryny jako środka pomocniczego w rozdzielaniu połączeń jest zgodne z najlepszymi praktykami, co potwierdzają liczne standardy jakości. Dodatkowo, gliceryna jest substancją nietoksyczną, co czyni ją bezpiecznym wyborem w porównaniu do innych chemikaliów.

Pytanie 8

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. roztwarzalność
B. jednorodność
C. reprezentatywność
D. rozpuszczalność
Odpowiedź "reprezentatywność" jest kluczowa w kontekście próbki analitycznej, gdyż oznacza, że próbka powinna odzwierciedlać charakterystyki całego materiału badanego. W praktyce oznacza to, że próbka musi być pobrana w sposób, który gwarantuje, że jej skład i właściwości są zgodne z właściwościami całej partii materiału. Przykładem zastosowania reprezentatywności może być proces pobierania próbek w analizie jakościowej gleby, gdzie ważne jest, aby próbki były pobierane z różnych miejsc w polu, aby uzyskać dokładny obraz stanu całej gleby. Standardy takie jak ISO 5667 dostarczają wytycznych na temat pobierania próbek w różnych środowiskach, co podkreśla znaczenie reprezentatywności. Bez zapewnienia, że próbka jest reprezentatywna, wyniki badania mogą być mylące, co może prowadzić do błędnych decyzji w procesach przemysłowych czy badaniach naukowych.

Pytanie 9

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 2,5%
B. 20%
C. 75%
D. 25%
Wiele osób, analizując problem stężenia roztworu, może popełnić typowe błędy w obliczeniach, które prowadzą do niewłaściwych wyników. Na przykład, wybierając odpowiedź 75%, można pomylić się w interpretacji proporcji masy jodku potasu do masy wody, nie uwzględniając całkowitej masy roztworu. Często zdarza się również zignorowanie faktu, że masa rozpuszczalnika (wody) i masa substancji rozpuszczonej (jodku potasu) muszą być sumowane, aby obliczyć całkowitą masę roztworu. Osoby, które wskazują na 25% stężenie, mogą błędnie obliczać stężenie, przyjmując masę jodku potasu za masę roztworu, co jest oczywistym błędem logicznym. W przypadku opcji 2,5% może wystąpić nieporozumienie związane z myleniem jednostek miary, gdzie mogą być stosowane niewłaściwe wartości masy przy obliczeniach. Ważne jest, aby uwzględnić wszystkie składniki roztworu, aby uzyskać prawidłowe wyniki. Przy obliczaniu stężenia procentowego, kluczowe jest zrozumienie definicji oraz umiejętność prawidłowego sumowania mas, co jest fundamentem chemii i niezbędne w laboratoriach. Użycie odpowiednich jednostek oraz precyzyjnych obliczeń jest kluczowe w naukach chemicznych, zwłaszcza w kontekście norm jakościowych i standardów branżowych.

Pytanie 10

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. na powierzchni wody, w centralnej części zbiornika
B. w najgłębszym punkcie, z którego czerpana jest woda
C. na powierzchni wody, w pobliżu brzegu zbiornika
D. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
Prawidłowa odpowiedź wskazuje na konieczność pobierania próbek wody w miejscu i na głębokości, w którym następuje pobór wody. Jest to kluczowe dla zapewnienia, że próbki odzwierciedlają rzeczywiste warunki wody, jaka jest dostarczana do użytkowników. W praktyce oznacza to, że próbki należy pobierać w punktach, gdzie woda jest zasysana przez system wodociągowy, co pozwala na dokładne monitorowanie jakości wody oraz jej ewentualnych zanieczyszczeń. Zgodnie z normami i zaleceniami takich organizacji jak WHO czy EPA, próbki powinny być zbierane w sposób, który minimalizuje ryzyko zanieczyszczenia próbek. W praktyce, pobieranie próbek na głębokości w miejscu poboru wody jest niezbędne, aby uwzględnić różne warstwy wody oraz potencjalne różnice w jej jakości. Przykładem zastosowania tej wiedzy jest kontrola jakości wody pitnej, gdzie regularne badania próbek w różnych warunkach pozwalają na odpowiednie reagowanie na zmiany i zapewnienie bezpieczeństwa zdrowotnego mieszkańców.

Pytanie 11

Gdzie należy przechowywać cyjanek potasu KCN?

A. w pojemniku, z dala od źródeł ciepła
B. w stalowej szafie, zamkniętej na klucz
C. w warunkach chłodniczych
D. w szczelnie zamkniętym eksykatorze
Przechowywanie cyjanku potasu (KCN) w stalowej szafie zamkniętej na klucz jest kluczowym aspektem zapewnienia bezpieczeństwa w laboratoriach i miejscach pracy, ponieważ jest to substancja silnie toksyczna. Właściwe przechowywanie tego związku chemicznego minimalizuje ryzyko przypadkowego kontaktu z osobami nieuprawnionymi oraz zapobiega przypadkowemu uwolnieniu substancji do otoczenia. Stalowe szafy przeznaczone do przechowywania substancji niebezpiecznych muszą być zgodne z normami bezpieczeństwa, takimi jak OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), które nakładają obowiązki dotyczące ochrony zdrowia i środowiska. Przykładem dobrej praktyki jest stosowanie systemów monitorowania, które informują o ewentualnych nieprawidłowościach w temperaturze czy wilgotności w miejscu przechowywania. Umożliwia to wczesne wykrywanie zagrożeń oraz odpowiednie działania w celu ich minimalizacji, co jest niezbędne w zarządzaniu substancjami chemicznymi o wysokim ryzyku. Ponadto, regularne szkolenia pracowników z zakresu obsługi substancji niebezpiecznych wspierają kulturę bezpieczeństwa w organizacji.

Pytanie 12

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. chromatografia cieczowa
B. destylacja
C. ekstrakcja w systemie ciecz - ciecz
D. adsorpcja
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 13

Reagenty o czystości na poziomie 99,999% — 99,9999% to reagenty

A. czyste
B. czyste do badań
C. spektralnie czyste
D. czyste chemicznie
Odczynniki o poziomie czystości 99,999% — 99,9999% są klasyfikowane jako spektralnie czyste, ponieważ ich wysoka czystość zapewnia minimalną ilość zanieczyszczeń, które mogą wpłynąć na wyniki analizy spektroskopowej. Spektralna czystość jest kluczowa w technikach analitycznych, takich jak spektroskopia UV-Vis, IR oraz NMR, gdzie obecność nawet śladowych zanieczyszczeń może prowadzić do zniekształcenia widm analitycznych. Przykładem zastosowania spektralnie czystych odczynników jest ich użycie w badaniach biologicznych, gdzie dokładne pomiary są niezbędne do analizy interakcji między biomolekułami. W przemyśle chemicznym i farmaceutycznym, stosowanie takich odczynników jest ściśle regulowane i zgodne z normami jakości, takimi jak ISO 17025, które wymagają wysokiej jakości i powtarzalności wyników. Zastosowanie spektralnie czystych odczynników nie tylko poprawia wiarygodność analiz, ale także pozwala na uzyskanie wyników o wysokiej precyzji, co jest kluczowe w badaniach naukowych oraz rozwoju nowych produktów.

Pytanie 14

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w ustaleniu się kontrakcji objętości
B. potrzebą wyrównania temperatury roztworu z otoczeniem
C. koniecznością dokładnego wymieszania roztworu
D. opóźnieniem w osiągnięciu równowagi dysocjacji
Odpowiedź dotycząca konieczności wyrównania temperatury roztworu i otoczenia jest prawidłowa, ponieważ temperatura ma kluczowe znaczenie dla dokładności pomiarów oraz właściwości fizykochemicznych roztworów. Po rozpuszczeniu substancji w kolbie miarowej, ważne jest, aby roztwór osiągnął równowagę temperaturową przed dopełnieniem do kreski. Różnice temperatur mogą prowadzić do błędów w objętości, ponieważ cieczy o wyższej temperaturze mają tendencję do rozszerzania się. W praktyce, standardy laboratoryjne, takie jak normy ISO dotyczące przygotowywania roztworów, zalecają odczekiwanie, aby uniknąć nieprecyzyjnych wyników analitycznych. Na przykład, w chemii analitycznej, nawet niewielkie różnice w objętości mogą wpłynąć na stężenie roztworu, co ma bezpośredni wpływ na wyniki pomiarów spektroskopowych czy titracji. Przygotowując roztwory, należy także brać pod uwagę efekty, takie jak rozpuszczalność substancji w różnych temperaturach, co może wpływać na ostateczny skład roztworu. Dlatego przestrzeganie protokołów dotyczących wyrównania temperatury jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników w laboratoriach.

Pytanie 15

Destylacja to metoda

A. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
B. syntezy substancji zachodząca w obecności katalizatora
C. transformacji ciała z formy ciekłej w stałą
D. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 16

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. sztywny
B. średni
C. utwardzony
D. miękki
Odpowiedź 'miękki' jest prawidłowa, ponieważ do przesączania galaretowatego osadu najlepiej zastosować sączek o właściwościach umożliwiających skuteczne oddzielanie cieczy od stałych cząstek. Miękkie sączki charakteryzują się zdolnością do wchłaniania większych cząstek, co czyni je odpowiednim wyborem w przypadku substancji o konsystencji galaretowatej. Przykładem sączków miękkich są te wykonane z papieru filtracyjnego, które mają wysoką porowatość i są w stanie zatrzymać cząstki, jednocześnie pozwalając na przepływ cieczy. W zastosowaniach laboratoryjnych, takie jak analiza chemiczna lub mikrobiologiczna, użycie odpowiednich sączków jest kluczowe dla uzyskania czystych i precyzyjnych wyników. Ponadto, użycie miękkiego sączka minimalizuje ryzyko uszkodzenia delikatnych cząstek, co jest istotne w przypadku analizy próbek, w których struktura materiału jest istotna dla dalszych badań. Zgodnie z normami ISO i dobrą praktyką laboratoryjną, dobór odpowiedniego sączka jest kluczowym etapem procesu filtracji.

Pytanie 17

Jaką próbkę stanowi woreczek gleby pobranej zgodnie z instrukcją?

Instrukcja pobierania próbek glebowych
Próbki pierwotne pobiera się laską glebową z wierzchniej warstwy gleby 0-20 cm, kolejno wykonując czynności:
– w miejscu pobierania próbki pierwotnej (pojedynczej), rolę świeżo zaoraną przydeptać,
– pionowo ustawić laskę do powierzchni gleby,
– wcisnąć laskę do oporu (na wysokość poprzeczki ograniczającej),
– wykonać pełny obrót i wyjąć laskę,
– zawartość wgłębienia (zasobnika) przenieść do pojemnika skrobaczki.
Po pobraniu próbek pojedynczych, całość wymieszać i napełnić kartonik lub woreczek.

A. Laboratoryjną.
B. Jednostkową.
C. Analityczną.
D. Ogólną.
Woreczek gleby pobrany zgodnie z instrukcją stanowi próbkę ogólną, ponieważ jego celem jest uzyskanie reprezentatywnej analizy gleby z określonego obszaru. Przykładowo, jeżeli pobieramy próbki z pola uprawnego, wykonujemy to w różnych punktach, aby uwzględnić zmienność gleby, jak np. różnice w składzie mineralnym, wilgotności czy strukturze. Próbka ogólna, będąca wynikiem połączenia kilku próbek jednostkowych, pozwala na dokładniejsze zrozumienie średnich właściwości gleby, co jest kluczowe dla rolnictwa, oceny jakości gleby oraz zrównoważonego zarządzania zasobami naturalnymi. Zgodnie z normami ISO, takie podejście do pobierania próbek jest standardem w ocenie jakości gleby, co potwierdza znaczenie próbki ogólnej w badaniach środowiskowych oraz rolniczych.

Pytanie 18

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
B. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
C. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
D. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego. Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze C1V1 = C2V2, gdzie C1 i V1 to stężenie i objętość stężonego kwasu, a C2 i V2 – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 19

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
B. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
C. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
D. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 20

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
B. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
C. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
D. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
Wybór odpowiedzi dotyczącej probówki nr 3 jako roztworu wodorotlenku sodu jest poprawny z kilku powodów. Uniwersalny papier wskaźnikowy to narzędzie, które zmienia kolor w zależności od pH roztworu. W przypadku wodorotlenku sodu, który jest silnym zasadowym elektrolitem, kątem pH może osiągać wartości powyżej 12, co powoduje, że papier zmienia kolor na niebieski. Fenoloftaleina, również stosowana w tym przypadku, zmienia kolor na malinowy w pH powyżej 8,2, co dodatkowo potwierdza obecność wodorotlenku sodu. W praktyce, umiejętność identyfikacji substancji na podstawie ich odczynu jest niezbędna w laboratoriach chemicznych, gdzie konieczne jest precyzyjne określenie właściwości chemicznych roztworów. Zgodnie z dobrymi praktykami, stosowanie wskaźników pH jest kluczowe w procesach analitycznych, a ich interpretacja pozwala na właściwe dobieranie reagentów w dalszych etapach eksperymentu.

Pytanie 21

Dekantacja to metoda

A. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
B. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
C. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
D. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 22

Rozpuszczalność siarczanu(VI) potasu przy temperaturze 30oC wynosi 13 g na 100 g wody. Jaką masę tego związku należy dodać do wody, aby uzyskać 500 g roztworu nasyconego?

A. 57,5 g
B. 52,0 g
C. 74,4 g
D. 65,0 g
Poprawna odpowiedź to 57,5 g siarczanu(VI) potasu, co wynika z obliczeń opartych na danych dotyczących rozpuszczalności tej substancji. Rozpuszczalność siarczanu(VI) potasu w temperaturze 30°C wynosi 13 g na 100 g wody. Aby uzyskać 500 g roztworu nasyconego, należy najpierw określić masę wody, która wchodzi w skład roztworu. Przyjmując, że masa roztworu to suma masy solwentu (wody) i masy rozpuszczonego solutu (siarczanu(VI) potasu), można przyjąć, że masa wody w roztworze wynosi 500 g - m, gdzie m to masa siarczanu. Z równania 13 g/100 g wody, możemy zbudować proporcję: m / (500 g - m) = 13/100. Rozwiązując to równanie, uzyskujemy, że m wynosi 57,5 g. Tego rodzaju obliczenia są kluczowe w chemii, szczególnie w kontekście przygotowywania roztworów nasyconych, co ma zastosowanie w laboratoriach chemicznych oraz w przemyśle farmaceutycznym. Zrozumienie tego procesu pozwala na precyzyjne przygotowanie roztworów o wymaganych stężeniach, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa produktów chemicznych oraz farmaceutycznych.

Pytanie 23

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510

A. Tylko 1 i 2.
B. Wszystkie.
C. Żadne.
D. Tylko 3.
Odpowiedź "Wszystkie" jest jak najbardziej na miejscu! Wszystkie opakowania (1, 2 i 3) spełniają normy klasy A według wymagań produktu. Zawierają bezbarwną ciecz, która przeszła testy na substancje chemiczne. To ważne, bo każde z tych opakowań mieści się w granicach określonych w normach, co znaczy, że są zgodne z wymaganiami jakościowymi. Z mojego doświadczenia, normy klasy A są kluczowe w wielu branżach, szczególnie w chemii czy farmacji, gdzie jakość i bezpieczeństwo to podstawa. Dobrze jest też pamiętać, że trzymanie się norm w pakowaniu jest mega ważne, bo złe opakowanie może zaszkodzić produktowi. Dlatego każdy, kto pracuje w produkcji, powinien znać te normy i się ich trzymać, żeby zapewnić najwyższą jakość i bezpieczeństwo produktów.

Pytanie 24

Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO₃
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1-2 z użyciem H₂SO₄
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO₃
ŻelazopH 1-2 z użyciem HNO₃
UtlenialnośćpH1-2 z użyciem H₂SO₄. Przechowywać w ciemności

A. kwasu siarkowego(VI).
B. kwasu fosforowego(V).
C. kwasu solnego.
D. kwasu azotowego(V).
Odpowiedź kwasu azotowego(V) jako środka utrwalającego próbki wody jest zgodna z zasadami analizy chemicznej, szczególnie w kontekście oznaczania metali, takich jak glin i żelazo. Kwas azotowy(V) (HNO3) jest powszechnie stosowany w laboratoriach ze względu na swoje silne właściwości utleniające, które pomagają w stabilizacji próbek przed dalszymi analizami. Utrwalenie próbki za pomocą kwasu azotowego zapobiega osadzaniu się metali oraz ich utlenieniu, co ma kluczowe znaczenie w uzyskaniu dokładnych i wiarygodnych wyników. Ponadto, zgodnie z zaleceniami standardów takich jak ISO 5667, odpowiednie przygotowanie próbek jest kluczowe dla zapewnienia jakości badań. Kwas azotowy pozwala na zachowanie integralności chemicznej metali w próbce, co jest niezbędne w analizach spektroskopowych, takich jak ICP-OES czy AAS. Rekomendowane praktyki laboratoryjne podkreślają również konieczność stosowania HNO3 w odpowiednich stężeniach, aby osiągnąć najlepsze wyniki analityczne.

Pytanie 25

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu azotowego(V).
B. kwasu fosforowego(V).
C. kwasu solnego.
D. kwasu siarkowego(VI).
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 26

Która z metod pozwala na oddzielanie składników mieszaniny na podstawie różnic w ich zachowaniu w układzie składającym się z dwóch faz, z których jedna jest fazą stacjonarną, a druga porusza się w określonym kierunku względem niej?

A. Krystalizacja
B. Destylacja
C. Sublimacja
D. Chromatografia
Chromatografia to technika analityczna, która wykorzystuje różnice w zachowaniu się poszczególnych związków chemicznych w układzie dwufazowym. W tym procesie jedna z faz, nazywana fazą stacjonarną, jest nieruchoma, podczas gdy druga faza, faza ruchoma, przemieszcza się w określonym kierunku. Działa to na zasadzie interakcji między składnikami mieszaniny a tymi fazami. Różne substancje w mieszaninie mają różne affinności do fazy stacjonarnej, co prowadzi do ich rozdzielenia. Przykładem zastosowania chromatografii jest analiza składników chemicznych w próbkach wody, gdzie różne zanieczyszczenia mogą być oddzielane i identyfikowane. Chromatografia jest szeroko stosowana w przemyśle farmaceutycznym, biotechnologii oraz w laboratoriach analitycznych do oceny czystości substancji chemicznych. Technika ta jest zgodna z międzynarodowymi standardami jakości, co czyni ją kluczowym narzędziem w badaniach i kontrolach jakości.

Pytanie 27

Aby przygotować zestaw do filtracji, należy zebrać

A. bagietkę, zlewkę, łapę metalową, statyw metalowy
B. szkiełko zegarkowe, tryskawkę, kolbę stożkową
C. biuretę, statyw metalowy, zlewkę
D. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 28

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. demineralizowanej
B. destylowanej
C. redestylowanej
D. mineralizowanej
Woda demineralizowana to woda, z której usunięto praktycznie wszystkie rozpuszczone sole mineralne, dzięki procesowi wymiany jonów. W laboratoriach chemicznych wykorzystywana jest w wielu zastosowaniach, takich jak przygotowywanie roztworów, przeprowadzanie reakcji chemicznych czy jako medium w analizach chemicznych. Standardy branżowe, takie jak ISO 3696, definiują jakość wody demineralizowanej, co zapewnia jej wysoką czystość chemiczną i minimalne zanieczyszczenia, co jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Przykłady zastosowania obejmują przygotowanie prób do spektroskopii i analizy chromatograficznej, gdzie obecność jonów może zafałszować wyniki. Woda demineralizowana jest również używana w procesach chłodzenia oraz w urządzeniach takich jak kotły, gdzie zanieczyszczenia mogą prowadzić do korozji. W związku z tym, posiadanie wody demineralizowanej w laboratorium jest niezbędne dla zapewnienia jakości i integralności prowadzonych badań.

Pytanie 29

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. mutagenna.
B. rakotwórcza.
C. nieszkodliwa.
D. żrąca.
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 30

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Liofilizację.
B. Oznaczanie wilgoci.
C. Utrwalanie.
D. Wstępne suszenie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 31

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. chemiczne
B. dla środowiska
C. dla człowieka
D. fizyczne
Odpowiedź "dla człowieka" jest prawidłowa, ponieważ etykiety substancji chemicznych zawierają zwroty H (H-phrases), które odnoszą się do zagrożeń, jakie dany związek chemiczny może stanowić dla zdrowia ludzi. Na przykład, oznaczenie H3 mówi o tym, że substancja może być szkodliwa w przypadku wdychania, połknięcia lub kontaktu ze skórą. W praktyce, znajomość tych oznaczeń jest kluczowa dla pracowników w laboratorach, przemysłach chemicznych oraz w obszarach zajmujących się transportem substancji chemicznych. Dlatego w ramach BHP oraz oceny ryzyka, pracownicy powinni być odpowiednio przeszkoleni w zakresie interpretacji tych etykiet oraz stosowania odpowiednich środków ochrony osobistej. Standardy takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) wyznaczają wytyczne dotyczące klasyfikacji zagrożeń, co pozwala na skuteczniejsze zarządzanie bezpieczeństwem w miejscu pracy.

Pytanie 32

Urządzeniem pomiarowym nie jest

A. pehametr
B. konduktometr
C. termometr
D. eksykator
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 33

Aby w badanej próbie w trakcie zmiany pH nastąpiła zmiana barwy na malinową, należy użyć

Zmiany barw najważniejszych wskaźników kwasowo-zasadowych
WskaźnikBarwa w środowiskuZakres pH zmiany barwy
KwasowymObojętnymZasadowym
oranż metylowyczerwonażółtażółta3,2÷4,4
lakmus
(mieszanina substancji)
czerwonafioletowaniebieska4,5÷8,2
fenoloftaleinabezbarwnabezbarwnamalinowa8,2÷10,0
wskaźnik uniwersalny
(mieszanina substancji)
czerwona
(silnie kwaśne)
pomarańczowa
(słabo kwaśne)
żółtaniebieska
(silnie zasadowe)
zielona
(słabo zasadowe)
co jeden stopień skali
herbatażółtaczerwona-brunatnabrązowa
sok z czerwonej kapustyfioletowaniebieskazielona

A. wskaźnika uniwersalnego.
B. lakmusu.
C. oranżu metylowego.
D. fenoloftaleiny.
Fenoloftaleina to naprawdę fajny wskaźnik pH, który zmienia kolor z bezbarwnego na malinowy, gdy pH jest w granicach od 8,2 do 10,0. Więc jeśli pH jest niższe niż 8,2, to zostaje bezbarwna. To sprawia, że jest super do wykrywania zasadowego środowiska. Używamy jej w laboratoriach chemicznych, szczególnie przy titracji, bo tam zmiany pH są kluczowe. Zauważyłem też, że fenoloftaleina jest przydatna w różnych branżach, na przykład w farmacji i w analizach wody, bo pomaga ocenić, czy próbki są zasadowe. Z moich doświadczeń wynika, że przed wyborem wskaźnika warto dokładnie obliczyć pH próbki, żeby dobrze zrozumieć wyniki. No i trzeba ostrożnie podchodzić do fenoloftaleiny, bo w większych stężeniach może być szkodliwa dla organizmów wodnych.

Pytanie 34

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi do badań
B. czystymi spektralnie
C. czystymi
D. czystymi chemicznie
Odpowiedź 'czyste' jest poprawna, ponieważ odnosi się do odczynników chemicznych o wysokiej czystości, które są powszechnie stosowane w laboratoriach do prac preparatywnych i analitycznych. Odczynniki te charakteryzują się czystością wynoszącą od 99% do 99,9%, co czyni je odpowiednimi do wykonywania precyzyjnych pomiarów i analiz chemicznych. Przykładem zastosowania takich odczynników może być ich użycie w chromatografii czy spektroskopii, gdzie zanieczyszczenia mogą znacząco wpłynąć na wyniki eksperymentu. W laboratoriach analitycznych przestrzega się standardów takich jak ISO lub ASTM, które nakładają obowiązek stosowania odczynników o określonej czystości, aby zminimalizować ryzyko błędów w analizach. Czystość odczynników jest kluczowa w kontekście reprodukowalności wyników oraz zgodności z procedurami badawczymi, co jest niezbędne dla uzyskania wiarygodnych danych.

Pytanie 35

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 0,01 mg
B. 10 g
C. 10 mg
D. 1,00 g
Wybór innej odpowiedzi niż 10 mg może wynikać z nieporozumienia dotyczącego możliwości pomiarowych wag laboratoryjnych. Odpowiedź 1,00 g jest zbyt dużą wartością, ponieważ wskazuje na możliwość pomiaru masy z dokładnością, która jest znacznie niższa niż ta oferowana przez precyzyjną wagę. W praktyce, wagi o takiej dokładności mogą nie być wystarczające do zastosowań wymagających wysokiej precyzji, co jest istotne w chemii analitycznej, lecz bardziej w codziennym użytkowaniu. Wybór 0,01 mg jest niewłaściwy, ponieważ przekracza możliwości typowych wag laboratoryjnych, które nie osiągają tak wysokiej precyzji w standardowych zastosowaniach, co może prowadzić do niepomiaru lub błędów w analizach. Odpowiedź 10 g również jest nieadekwatna, ponieważ wagi precyzyjne mają na celu dokładne ważenie niewielkich ilości substancji, a nie większych próbek, które mogą być ważone na wagach analitycznych o innej specyfikacji. W związku z tym, każdy z wybranych błędnych odpowiedzi ilustruje typowe błędy myślowe, które mogą wynikać z braku zrozumienia charakterystyki wag laboratoryjnych oraz ich zastosowań w praktyce. Kluczowe jest, aby przy wyborze odpowiedzi na pytania dotyczące pomiarów masy kierować się zrozumieniem dokładności urządzeń oraz ich przeznaczenia w kontekście laboratoryjnym.

Pytanie 36

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. Ex
B. In
C. A
D. B
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 37

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 5,60 g
B. 56,00 g
C. 0,56 g
D. 0,28 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 38

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o największych porach
B. sztywne, o najmniejszych porach
C. elastyczne, o najmniejszych porach
D. elastyczne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 39

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. niebieskim
B. czerwonym
C. zielonym
D. żółtym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 40

Reagenty o najwyższej czystości to reagenty

A. czyste.
B. spektralnie czyste.
C. chemicznie czyste.
D. czyste do badań.
Odpowiedź "spektralnie czyste" jest uznawana za właściwą, ponieważ odnosi się do odczynnika, który został oczyszczony w takim stopniu, że jego czystość jest wystarczająca do zastosowań w spektroskopii oraz innych czułych analizach chemicznych. W praktyce oznacza to, że odczynniki te mają bardzo niskie stężenia zanieczyszczeń, co jest kluczowe dla uzyskania dokładnych i powtarzalnych wyników w badaniach. W laboratoriach analitycznych i badawczych, gdzie precyzja wyników jest niezbędna, stosuje się odczynniki spektralnie czyste, aby uniknąć wpływu niepożądanych substancji na reakcje chemiczne lub pomiary. Przykładem może być analiza chromatograficzna, gdzie obecność zanieczyszczeń może prowadzić do fałszywych wyników. W standardach ISO oraz w pracach dotyczących analizy chemicznej, podkreśla się wagę używania odczynników o specjalistycznej czystości, co stanowi najlepszą praktykę w laboratoriach zajmujących się badaniami jakości oraz badaniami ilościowymi substancji chemicznych.