Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 4 maja 2025 17:15
  • Data zakończenia: 4 maja 2025 17:43

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. docisnąć je podczas podgrzewania miejsca łączenia.
B. stopić je w miejscu styku z użyciem spoiwa.
C. stopić je w miejscu zetknięcia bez użycia spoiwa.
D. wprowadzić płynne spoiwo pomiędzy te elementy.
Zgrzewanie elementów stalowych bez użycia odpowiedniego podgrzania oraz docisku prowadzi do nieefektywnego połączenia, co może skutkować osłabieniem struktury. Odpowiedzi sugerujące stopienie materiałów w miejscu styku bez dodawania spoiwa lub z dodatkiem spoiwa zakładają, że podstawowe zasady zgrzewania, takie jak generowanie ciepła poprzez opór, są pomijane. Proces ten wymaga precyzyjnego zarządzania temperaturą oraz siłą docisku, co jest kluczowe dla uzyskania wysokiej jakości połączenia. Zastosowanie ciekłego spoiwa w miejscu styku jest typowe dla lutowania, a nie zgrzewania, co jest fundamentalnym błędem w rozumieniu tych procesów. W rzeczywistości, w zgrzewaniu nie jest przewidziane stosowanie spoiw, ponieważ celem jest stopienie materiałów na krawędziach, co prowadzi do ich wzajemnego związania. Liczne standardy, takie jak AWS D1.1, podkreślają znaczenie odpowiednich warunków zgrzewania, które obejmują zarówno temperaturę, jak i nacisk. Ignorowanie tych parametrów może prowadzić do powstania wad strukturalnych, takich jak pęknięcia czy niepełne połączenia, co w konsekwencji zagraża bezpieczeństwu konstrukcji.

Pytanie 2

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAD
B. CAM
C. SCADA
D. CAE
Odpowiedzi CAM (Computer-Aided Manufacturing), CAD (Computer-Aided Design) oraz CAE (Computer-Aided Engineering) odnoszą się do różnych aspektów procesów inżynieryjnych, które nie są przeznaczone do nadzorowania procesów przemysłowych. CAM skupia się na automatyzacji procesów produkcyjnych, umożliwiając konwersję projektów CAD na instrukcje maszynowe, co jest kluczowe w produkcji, ale nie w samym monitorowaniu. CAD zajmuje się projektowaniem, dostarczając narzędzia do tworzenia precyzyjnych rysunków i modeli 3D, co również nie obejmuje funkcji nadzoru. CAE koncentruje się na analizach inżynieryjnych, wspierając procesy projektowania przez symulacje i analizy wydajności, jednak nie ma na celu monitorowania rzeczywistych procesów w czasie rzeczywistym. Wybór tych opcji może wynikać z mylnego przekonania, że wszystkie te technologie obejmują aspekty zarządzania procesami, co jest nieprawidłowe. Kluczowym błędem jest nieodróżnianie funkcji projektowania i produkcji od nadzoru i kontroli. Zrozumienie różnic między tymi systemami jest kluczowe, aby skutecznie je stosować w odpowiednich kontekstach przemysłowych, i pomoże uniknąć nieefektywnego wykorzystania narzędzi inżynieryjnych w procesach, które wymagają monitorowania i kontroli.

Pytanie 3

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HR
B. HL
C. HM
D. HH
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 4

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. kąta obrotu na impulsy elektryczne
B. prędkości obrotowej na napięcie stałe
C. prędkości obrotowej na impulsy elektryczne
D. kąta obrotu na regulowane napięcie stałe
Wybór odpowiedzi dotyczącej konwersji kąta obrotu na impulsy elektryczne jest niepoprawny, ponieważ komutatorowa prądnica tachometryczna nie działa na zasadzie pomiaru kąta obrotu. Kąt obrotu, choć istotny w kontekście niektórych urządzeń pomiarowych, takich jak enkodery, nie jest bezpośrednio związany z funkcjonalnością prądnic tachometrycznych, które koncentrują się na prędkości obrotowej. Kolejna błędna koncepcja dotyczy przekształcania prędkości obrotowej na impulsy elektryczne. Chociaż impulsy elektryczne mogą być generowane przez różne typy czujników, w przypadku prądnic tachometrycznych generowane napięcie stałe jest bardziej stabilnym i dokładnym sposobem przedstawienia prędkości obrotowej, co jest kluczowe w aplikacjach wymagających precyzyjnego pomiaru. Ostatnia nieprawidłowa koncepcja wiąże się z regulowanym napięciem stałym, które nie jest typowe dla działania prądnic tachometrycznych. Te urządzenia dostarczają napięcie stałe, które jest proporcjonalne do prędkości obrotowej, a nie napięcie regulowane. Zrozumienie tych różnic jest kluczowe dla efektywnego wykorzystania technologii w systemach mechatronicznych oraz dla prawidłowej interpretacji i analizy danych pochodzących z różnych czujników i przetworników. Właściwe podejście do wyboru urządzeń pomiarowych może znacząco wpłynąć na wydajność i jakość projektów inżynieryjnych.

Pytanie 5

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Reduktor, filtr powietrza, smarownica
B. Smarownica, filtr powietrza, reduktor
C. Reduktor, smarownica, filtr powietrza
D. Filtr powietrza, reduktor, smarownica
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 6

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. silnika z pompą hydrauliczną
B. grupy siłowników z modułem rozszerzającym
C. programatora ze sterownikiem
D. programatora z siłownikiem
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 7

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RRT - dwie osie obrotowe i jedną oś prostoliniową
B. TTT - trzy osie prostoliniowe
C. RTT - jedną oś obrotową i dwie osie prostoliniowe
D. RRR - trzy osie obrotowe
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.

Pytanie 8

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 0 A
B. 1 A
C. 3 A
D. 2 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 9

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana osłony łożyska
B. wymiana całego łożyska
C. zmniejszenie luzów łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 10

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. z żywicy epoksydowej
B. drewnianej
C. polwinitowej
D. metalowej
Ekranowanie urządzeń mechatronicznych to istotny aspekt zapewnienia ich sprawnego działania w obliczu zagrożeń elektromagnetycznych. Wybór materiału do ekranowania jest kluczowy, ponieważ różne materiały posiadają różne właściwości w zakresie ochrony przed falami elektromagnetycznymi. Obudowy drewniane, choć mogą być estetyczne, nie oferują praktycznie żadnej ochrony przed falami elektromagnetycznymi. Drewno jest materiałem dielektrycznym, co oznacza, że nie ma właściwości odbijających ani pochłaniających fale elektromagnetyczne w sposób efektywny. W przypadku obudowy polwinitowej, choć materiał ten ma pewne właściwości izolacyjne, to jednak nie zapewnia wystarczającego ekranowania. Polwinit, podobnie jak drewno, nie jest w stanie skutecznie eliminować fal elektromagnetycznych. Obudowy z żywicy epoksydowej również mają swoje ograniczenia, ponieważ nie są w stanie odbijać fal elektromagnetycznych, a ich działanie ogranicza się głównie do izolacji. Wybierając materiał do ekranowania, należy kierować się wiedzą na temat właściwości materiałów oraz ich zdolności do redukcji zakłóceń elektromagnetycznych. W praktyce oznacza to, że nieprawidłowy wybór materiału ekranowania, jak drewno czy polwinit, prowadzi do poważnych problemów z funkcjonowaniem urządzeń, co może skutkować ich awarią lub nieprawidłowym działaniem w środowisku o dużych zakłóceniach elektromagnetycznych. Dlatego kluczowe znaczenie ma znajomość standardów branżowych i dobrych praktyk w zakresie wyboru materiałów do ekranowania.

Pytanie 11

Izolacja w kolorze niebieskim jest używana dla kabli

A. sygnałowych
B. fazowych
C. neutralnych
D. ochronnych
Izolacja niebieska w instalacjach elektrycznych jest standardowo stosowana dla przewodów neutralnych. W praktyce oznaczenie kolorystyczne przewodów ma na celu zabezpieczenie przed błędami w podłączeniach i zwiększenie bezpieczeństwa użytkowników. Przewód neutralny, zazwyczaj oznaczony kolorem niebieskim, pełni kluczową rolę w obwodach elektrycznych, umożliwiając powrót prądu do źródła zasilania. Zgodnie z normami międzynarodowymi, takimi jak IEC 60446, stosowanie jednolitych kolorów dla przewodów ma na celu ułatwienie identyfikacji ich funkcji oraz minimalizację ryzyka nieprawidłowego podłączenia. W praktyce, w przypadku domowych instalacji elektrycznych, przewody neutralne są często wykorzystywane w obwodach oświetleniowych i gniazdkowych, co sprawia, że ich prawidłowe oznaczenie jest kluczowe dla bezpieczeństwa oraz zgodności z przepisami budowlanymi. Właściwe stosowanie kolorów w identyfikacji przewodów jest istotnym elementem w pracy elektryków i instalatorów, co podkreśla znaczenie standardów w tej dziedzinie.

Pytanie 12

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. synchroniczne
B. szeregowe
C. bocznikowe
D. obcowzbudne
Silniki obcowzbudne, w których uzwojenie wzbudzenia jest zasilane z osobnego źródła prądowego, nie mają takich samych właściwości rozruchowych jak silniki szeregowe. W silnikach tych, moment rozruchowy zależy od wartości prądu wzbudzenia, które jest ustalone niezależnie od prądu wirnika. To oznacza, że w momencie startu silnika obcowzbudnego moment obrotowy jest mniejszy, a ich główną zaletą jest stabilność prędkości przy różnych obciążeniach, co czyni je bardziej odpowiednimi do aplikacji wymagających stałej prędkości, takich jak wentylatory czy pompy. Silniki synchroniczne są z kolei stosowane w zastosowaniach, gdzie wymagane są precyzyjne obroty i synchronizacja z siecią elektryczną. Ich konstrukcja i sposób działania sprawiają, że nie są one w stanie wygenerować dużego momentu rozruchowego, co czyni je mniej praktycznymi dla aplikacji, w których istotne jest szybkie uruchomienie. Silniki bocznikowe, z drugiej strony, mają połączenie równoległe uzwojenia wzbudzenia z wirnikiem, co również wpływa na niższy moment rozruchowy w porównaniu do silników szeregowych. W praktyce, wybór odpowiedniego silnika powinien być podyktowany specyfiką aplikacji oraz wymaganiami dotyczącymi momentu obrotowego i dynamiki rozruchu, aby uniknąć typowych błędów w doborze silnika do konkretnego zadania.

Pytanie 13

Czujnik, który działa na zasadzie generowania różnicy potencjałów w kontakcie z przewodnikami wykonanymi z różnych metali, to

A. pirometr
B. element termoelektryczny
C. element bimetaliczny
D. termistor
Wybierając termistor, można wprowadzić się w błąd przez mylną interpretację działania tego elementu. Termistor działa na zasadzie zmiany oporu elektrycznego w zależności od temperatury, jednak nie generuje napięcia na podstawie różnicy potencjałów dwóch różnych metali. Jego zastosowanie obejmuje głównie czujniki temperatury w układach elektronicznych, ale nie ma związku z efektem Seebecka. Z kolei pirometr, który również może być mylnie wskazany jako odpowiedź, jest narzędziem wykorzystywanym do bezdotykowego pomiaru temperatury, lecz opiera się na pomiarze promieniowania cieplnego, a nie na różnicy potencjałów między metalami. Element bimetaliczny, pomimo że wykorzystywany do pomiaru temperatury, działa na zasadzie różnicy rozszerzalności cieplnej dwóch metali, co prowadzi do zginania się elementu, ale także nie wykorzystuje efektu Seebecka. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego doboru czujników w aplikacjach przemysłowych, gdzie precyzja i specyfika pomiarów mają kluczowe znaczenie dla efektywności procesów produkcyjnych.

Pytanie 14

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w odzież ochronną
B. w rękawice antywibracyjne
C. w hełm ochronny
D. w gogle ochronne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 15

Co należy zrobić w przypadku urazu kolana u pracownika po upadku z wysokości?

A. umieścić poszkodowanego w ustalonej pozycji bocznej.
B. unieruchomić staw kolanowy na jakimkolwiek podparciu, nie zmieniając jego pozycji.
C. wyregulować nogę, lekko ciągnąc ją w dół.
D. nałożyć bandaż na kolano po delikatnym wyprostowaniu nogi.
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 16

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 14 wejściach i 10 wyjściach
B. S7-200 o 8 wejściach i 6 wyjściach
C. S7-200 o 6 wejściach i 4 wyjściach
D. S7-200 o 24 wejściach i 16 wyjściach
Niepoprawne odpowiedzi, takie jak S7-200 o 8 wejściach i 6 wyjściach, S7-200 o 24 wejściach i 16 wyjściach oraz S7-200 o 6 wejściach i 4 wyjściach, nie spełniają wymagań dla skutecznego sterowania windą w budynku trzykondygnacyjnym. Przede wszystkim, w przypadku 8 wejść i 6 wyjść, liczba wejść jest zdecydowanie zbyt mała, aby obsłużyć wszystkie niezbędne czujniki, takie jak te monitorujące położenie windy, sygnały przycisków oraz inne sensory. Podobnie, 6 wejść i 4 wyjścia również nie są wystarczające, co prowadzi do ryzyka awarii systemu. Z drugiej strony, odpowiedź z 24 wejściami i 16 wyjściami, mimo że teoretycznie przekracza wymagania, w praktyce może prowadzić do zbędnych kosztów oraz złożoności systemu, co jest nieefektywne. W projektowaniu systemów automatyki niezwykle ważne jest, aby dobierać komponenty w sposób przemyślany, co oznacza nie tylko spełnienie minimalnych wymagań, ale także optymalizację kosztów. Niezrozumienie tego aspektu może prowadzić do błędnych założeń i nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz niezawodność działania urządzeń. Warto pamiętać, że właściwy dobór komponentów jest fundamentem każdej dobrze zaprojektowanej instalacji automatyki.

Pytanie 17

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. przymiaru średnicowego
B. mikroskopu technicznego
C. przymiaru kreskowego
D. śruby mikrometrycznej
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 18

Jakie parametry mierzy prądnica tachometryczna?

A. prędkość liniową
B. naprężenia mechaniczne
C. prędkość obrotową
D. napięcie elektryczne
Pomiar naprężeń mechanicznych, napięcia elektrycznego oraz prędkości liniowej nie są właściwymi zastosowaniami dla prądnicy tachometrycznej, co może prowadzić do nieporozumień w zrozumieniu jej funkcji. Naprężenia mechaniczne zwykle mierzy się za pomocą tensometrów, które są zaprojektowane do bezpośredniego pomiaru deformacji ciała stałego pod wpływem sił zewnętrznych. Z kolei napięcie elektryczne można mierzyć za pomocą woltomierzy, które oferują różne metody pomiaru, w tym pomiar kontaktowy oraz bezkontaktowy w zależności od zastosowania. Prędkość liniowa natomiast, odnosząca się do ruchu prostoliniowego, wymaga zastosowania innych typów czujników, takich jak enkodery liniowe czy tachometry liniowe, które są zaprojektowane do pomiaru ruchu w jednym kierunku z zachowaniem precyzji. Typowe błędy w podejściu do zrozumienia działania prądnic tachometrycznych wynikają z mylenia pojęć związanych z różnymi typami pomiarów. Użytkownicy mogą sądzić, że prądnica tachometryczna jest wszechstronnym narzędziem pomiarowym, jednak jej funkcja ogranicza się wyłącznie do pomiaru prędkości obrotowej. Dlatego kluczowe jest zrozumienie specyfiki urządzenia oraz jego rzeczywistych zastosowań w kontekście pomiarów inżynieryjnych.

Pytanie 19

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
B. umieścić poszkodowanego w bezpiecznej pozycji bocznej
C. założyć poszkodowanemu opatrunek uciskowy na ranę
D. założyć poszkodowanemu opatrunek uciskowy poniżej rany
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 20

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
B. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
C. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
D. HT - ester syntetyczny, najlepiej ulegający biodegradacji
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 21

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. przystąpić do pośredniego masażu serca
C. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
D. ustawić go w pozycji bocznej ustalonej
W sytuacji porażenia prądem elektrycznym, odpowiednie działania są kluczowe, aby zminimalizować ryzyko powikłań oraz uratować życie poszkodowanego. Przystąpienie do sztucznego oddychania przez 30 minut jest niewłaściwe, gdyż powinna być to reakcja ograniczona do momentu, gdy osoba nie oddycha. Długotrwałe sztuczne oddychanie bez oceny stanu pacjenta może prowadzić do dalszych uszkodzeń. Ułożenie osoby na plecach z nogami do góry ma na celu zwiększenie dopływu krwi do mózgu, lecz w kontekście porażenia prądem jest to nieodpowiednia praktyka, gdyż może prowadzić do ryzyka aspiracji i zadławienia. Przystąpienie do pośredniego masażu serca jest tylko wskazane w przypadku zatrzymania krążenia, co nie jest opisanym w pytaniu scenariuszem, gdyż osoba odzyskała oddech. Takie działania w przypadku osoby przytomnej mogą być nie tylko niepotrzebne, ale również niebezpieczne. Wszelkie działania powinny być dostosowane do aktualnego stanu poszkodowanego, a kluczowym elementem pierwszej pomocy jest ciągła ocena jego stanu. Niewłaściwe podejście do tych zasad prowadzi do niebezpiecznych sytuacji i może zagrażać życiu poszkodowanego.

Pytanie 22

Jaką odległość określa skok siłownika?

A. odległość między skrajnymi położeniami końca tłoczyska (w stanie wsunięcia i wysunięcia)
B. odległość pomiędzy krućcem zasilającym a końcem tłoczyska, gdy jest w wysuniętej pozycji
C. odległość między obudową siłownika a końcem tłoczyska, gdy jest w pozycji wsuniętej
D. odległość między obudową siłownika a końcem tłoczyska w pozycji wysunięcia
Zrozumienie skoku siłownika jest fundamentalne dla prawidłowego funkcjonowania układów hydraulicznych i pneumatycznych. Odpowiedzi, które sugerują inne definicje skoku, mogą prowadzić do istotnych nieporozumień w projektowaniu i użytkowaniu tych systemów. W szczególności odpowiadając na definicje oparte na odległości między obudową siłownika a końcem tłoczyska, niezależnie od jego stanu, nie uwzględniają one kluczowego aspektu, jakim jest zmiana długości tłoczyska podczas jego pracy. Każdy siłownik ma dwa skrajne położenia, które są istotne dla określenia jego skoku. Definiowanie skoku jako odległości od krućca zasilającego również nie uwzględnia rzeczywistego ruchu tłoczyska, co jest kluczowe w mechanice płynów. Typowym błędem myślowym jest koncentrowanie się na elementach zewnętrznych siłownika, zamiast na jego wewnętrznej mechanice. Niezrozumienie tego, co oznacza pełny ruch tłoczyska w obu skrajnych położeniach, może prowadzić do niewłaściwego doboru komponentów, co z kolei może skutkować awariami w systemach automatyki. Dlatego fundamentalne jest, aby rozumieć, że skok siłownika to nie tylko prosty parametr, lecz kluczowy wymiar w kontekście wydajności i bezpieczeństwa działania układów automatycznych.

Pytanie 23

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Chwytaka
B. Silnika
C. Sondy
D. Regulatora
Sonda, silnik i regulator to elementy, które pełnią różne funkcje w systemach automatyzacji, ale nie są bezpośrednio odpowiedzialne za operacje manipulacyjne. Sonda, na przykład, jest używana do pomiaru i detekcji, co oznacza, że zbiera dane o otoczeniu lub obiektach, ale nie wykonuje operacji manipulacyjnych. W kontekście automatyzacji, sondy mogą być stosowane do lokalizacji obiektów lub monitorowania warunków, ale ich rolą nie jest chwytanie czy przenoszenie. Silnik z kolei napędza ruch manipulatora, ale to chwytak jest tym elementem, który bezpośrednio wchodzi w interakcję z obiektami. Regulator natomiast zarządza pracą silnika, kontrolując jego parametry pracy, co może wpływać na precyzję ruchu, lecz nie jest on odpowiedzialny za manipulację samych obiektów. Typowe błędy myślowe, które prowadzą do mylnej percepcji tych elementów, wynikają z niepełnego zrozumienia ich roli w systemie automatyzacji. Użytkownicy często mylą funkcje kontrolne z operacjami manipulacyjnymi, co prowadzi do nieprawidłowych wniosków podczas oceny działania systemów. Właściwe zrozumienie tych różnic jest kluczowe dla efektywnego projektowania i zastosowania technologii automatyzacji.

Pytanie 24

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
C. ST (Structured Text) - tekst strukturalny
D. FBD (Function Block Diagram) - schemat bloków funkcyjnych
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 25

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. rękawic dielektrycznych
C. ochronników słuchu
D. okularów ochronnych
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 26

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 524 obr/min
B. 2916 obr/min
C. 305 obr/min
D. 5487 obr/min
Jak chcesz obliczyć prędkość obrotową silnika elektrycznego, to możesz skorzystać z takiego wzoru: P = M * ω. Tu P to moc w watach, M to moment obrotowy w niutonometrach, a ω to prędkość kątowa w radianach na sekundę. Jak przekształcisz ten wzór, to dostaniesz ω = P / M. Dla tego silnika mamy: P = 4000 W i M = 13,1 Nm. Jak to obliczysz, to wyjdzie ω = 4000 W / 13,1 Nm, co daje jakieś 305,34 rad/s. Żeby przeliczyć na prędkość obrotową w obr/min, używamy przelicznika: 1 rad/s = 9,5493 obr/min. Więc 305,34 rad/s * 9,5493 to około 2916 obr/min. To pokazuje, że silniki elektryczne, mając daną moc i moment obrotowy, mogą naprawdę kręcić się szybko, co jest super ważne w różnych miejscach, gdzie potrzebna jest precyzyjna kontrola prędkości, jak w maszynach. Zrozumienie tych obliczeń jest istotne, żeby dobrze dobierać silniki do konkretnych zadań i optymalizować procesy mechaniczne w różnych branżach.

Pytanie 27

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Rezystancji
B. Indukcji
C. Indukcyjności
D. Pojemności
Indukcja, pojemność i indukcyjność to wielkości fizyczne, które nie są bezpośrednio związane z działaniem tensometrów foliowych. Indukcja odnosi się do zjawisk elektromagnetycznych, takich jak wytwarzanie siły elektromotorycznej w przewodnikach, co ma zastosowanie w czujnikach indukcyjnych, ale nie w tensometrach. Pojemność opisuje zdolność do przechowywania ładunku elektrycznego w kondensatorach, co nie ma związku z mechanicznymi właściwościami materiałów używanych w tensometrach. Indukcyjność dotyczy zjawisk związanych z przepływem prądu w obwodach, ale również nie ma zastosowania w kontekście pomiaru deformacji. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędów w doborze czujników do konkretnych zastosowań. Wybierając odpowiednie technologie pomiarowe, należy opierać się na zrozumieniu, jak różne właściwości fizyczne materiałów wpływają na ich zastosowanie. Pomocne jest również zapoznanie się z normami branżowymi oraz standardowymi metodami pomiaru, aby zapewnić dokładność i niezawodność wyników, co jest istotne w wielu dziedzinach inżynieryjnych.

Pytanie 28

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. usuwania kurzu
B. sprawdzania dokręcenia śrub zacisków
C. wprowadzania regulacji
D. analizy zużycia styków
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 29

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Klucz płaski
B. Zaciskarkę tulejek
C. Zaciskarkę konektorów
D. Klucz dynamometryczny
Wybór klucza płaskiego lub klucza dynamometrycznego do przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej jest nieodpowiedni, ponieważ narzędzia te nie są przeznaczone do wykonywania połączeń elektrycznych. Klucz płaski jest używany głównie do luzowania lub dokręcania nakrętek i śrub, co nie ma zastosowania w kontekście zaciskania przewodów. Z kolei klucz dynamometryczny, który służy do precyzyjnego dokręcania połączeń z określonym momentem obrotowym, również nie ma zastosowania w procesie przygotowania przewodów do montażu w listwie zaciskowej. W przypadku połączeń elektrycznych kluczowe jest zapewnienie odpowiedniej struktury połączenia, co osiąga się jedynie za pomocą narzędzi dedykowanych do tego celu, a nie standardowych narzędzi mechanicznych. Wybór niewłaściwego narzędzia może prowadzić do słabych połączeń, co skutkuje podwyższoną rezystancją i ryzykiem awarii instalacji. Zaciskarka konektorów, chociaż może wydawać się lepszym wyborem, nie jest odpowiednia w kontekście przewodów LgY, które wymagają specyficznego typu zaciskania. Podsumowując, nieprzemyślane podejście do doboru narzędzi może prowadzić do poważnych błędów, które zagrażają zarówno efektywności instalacji, jak i bezpieczeństwu użytkowników.

Pytanie 30

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
B. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
C. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
D. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
Wszystkie podane odpowiedzi, które nie wskazują na właściwą kolejność elementów, wynikają z nieporozumień dotyczących funkcji poszczególnych składowych oraz ich wpływu na ogólne działanie układu pneumatycznego. W przypadku układu, w którym najpierw znajduje się zawór sterujący, reduktor ciśnienia lub układ smarowania, może to prowadzić do nieodpowiedniego ciśnienia lub zanieczyszczenia powietrza, co z kolei negatywnie wpływa na wydajność i trwałość silnika pneumatycznego. Przykładowo, zainstalowanie reduktora ciśnienia przed filtrem może skutkować zanieczyszczeniem mechanizmu redukcyjnego, co doprowadzi do jego uszkodzenia. Dodatkowo, umiejscowienie układu smarowania na początku, bez uprzedniego oczyszczenia powietrza, prowadzi do wprowadzenia do układu zanieczyszczeń, które mogą zatykać smarownice, a tym samym obniżać efektywność smarowania. Właściwa kolejność montażu nie tylko zwiększa bezpieczeństwo operacyjne, ale również jest zgodna z normami branżowymi, które podkreślają znaczenie odpowiedniego przygotowania mediów roboczych w systemach pneumatycznych. Typowym błędem myślowym jest założenie, że elementy te mogą być montowane w dowolnej kolejności, co jest sprzeczne z zasadami inżynierii pneumatycznej.

Pytanie 31

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Częstościomierz i miernik uniwersalny
B. Generator fali stojącej oraz woltomierz
C. Generator i oscyloskop
D. Amperomierz i oscyloskop
Wybór narzędzi do analizy filtrów pasmowych jest ważny, bo czasem można się pomylić. Amperomierz i oscyloskop przydają się w pomiarze prądu i analizie sygnałów, ale nie wystarczą do określenia parametrów filtrów pasmowych. Amperomierz mierzy tylko prąd, więc nie mówi nic o tym, jak filtr działa w kontekście częstotliwości. Dlatego ważne jest, żeby znać relacje między napięciem a częstotliwością. Z drugiej strony, generator fali stojącej i woltomierz też nie będą dobrym wyborem, bo ten pierwszy nie obsługuje sygnałów o zmiennych częstotliwościach, a to jest kluczowe w analizie filtrów. Miernik uniwersalny, choć może być użyteczny w wielu sytuacjach, nie daje wystarczających informacji o charakterystyce częstotliwościowej. Przez wybór złych narzędzi można przeoczyć ważne aspekty analizy, na przykład pasmo przenoszenia i tłumienie, co może prowadzić do błędnych wniosków o działaniu filtrów. Wiedza o odpowiednich narzędziach jest kluczowa, jeśli chodzi o projektowanie i testowanie układów elektronicznych. Użycie generatora i oscyloskopu w tym kontekście to dobra praktyka.

Pytanie 32

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zmniejszenia lepkości oleju
B. zwiększenia lepkości oleju
C. zwiększenia efektywności układu
D. zmniejszenia objętości oleju
Mówiąc krótko, jak ktoś myśli, że wzrost lepkości oleju jest w porządku, to się myli. W rzeczywistości, jak temperatura oleju rośnie, lepkość powinna maleć, a to jest coś, co niektórzy mogą mylić. Właśnie, oleje mineralne i syntetyczne działają na zasadzie, że ich lepkość jest odwrotnie proporcjonalna do temperatury. Jakby lepkość wzrosła, to opory wewnętrzne też by się zwiększyły, a to na pewno nie będzie dobrze działać na układ hydrauliczny. Co do objętości oleju, to jej zmiany niekoniecznie są związane z temperaturą. Właściwie mogą się dziać z innych powodów, jak na przykład nieszczelności. Współczesne układy hydrauliczne potrzebują odpowiednich parametrów pracy, bo inaczej mogą się zepsuć. Rozumienie fizyki płynów jest kluczowe, żeby układy hydrauliczne działały, więc warto znać zasady i właściwości olejów w tych systemach.

Pytanie 33

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. pomiarów
C. obróbki
D. montażu
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 34

Jakie jest zastosowanie transoptora?

A. galwanicznej izolacji obwodów
B. zamiany impulsów elektrycznych na promieniowanie świetlne
C. sygnalizacji transmisji
D. galwanicznego połączenia obwodów
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów. Jego podstawową funkcją jest zapewnienie separacji elektrycznej pomiędzy dwoma obwodami, co eliminuje ryzyko przeniesienia zakłóceń, przepięć oraz różnic potencjałów między nimi. Przykładem zastosowania transoptora jest w układach sterowania, gdzie sygnał z jednostki sterującej (np. mikroprocesora) jest izolowany od obwodu mocy, co jest kluczowe dla zabezpieczenia delikatnych komponentów. Transoptory znajdują szerokie zastosowanie w systemach automatyki przemysłowej, gdzie są używane do interfejsowania czujników z systemami sterującymi, a także w telekomunikacji, gdzie pozwalają na przesyłanie sygnałów bezpośrednio między różnymi poziomami potencjału. Stosowanie transoptorów jest zgodne z najlepszymi praktykami w inżynierii elektronicznej, które kładą duży nacisk na bezpieczeństwo oraz niezawodność układów elektronicznych, zwłaszcza w środowiskach przemysłowych.

Pytanie 35

Parametr określający zakres roboczy działania siłownika to

A. maksymalne ciśnienie
B. skok siłownika
C. średnica cylindra
D. teoretyczna siła pchająca
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 36

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. przekładnik prądowy
B. przekładnik napięciowy
C. transformator do zmiany liczby faz
D. transformator bezpieczeństwa
Zarówno transformator bezpieczeństwa, jak i przekładnik napięciowy, posiadają swoje unikalne zastosowania, ale nie pełnią funkcji zbliżonej do przekładnika prądowego. Transformator bezpieczeństwa jest zaprojektowany w celu ograniczenia napięcia i ochrony systemów pomiarowych przed wysokimi wartościami napięcia, co sprawia, że nie może pracować w pełni obciążonym stanie zwarcia, jak to ma miejsce w przypadku przekładników prądowych. Jego zastosowanie głównie koncentruje się na zapewnieniu bezpieczeństwa ludzi oraz urządzeń w obwodach elektrycznych. Z kolei przekładnik napięciowy działa na zasadzie przekształcania wysokiego napięcia na niskie w celu pomiaru napięcia w obwodach. Oba te urządzenia są używane w systemach pomiarowych, ale ich struktura i funkcjonalność są inne. Zastosowanie transformatorów do zmiany liczby faz dotyczy innego aspektu konwersji energii elektrycznej i nie ma zastosowania w kontekście pomiarów prądowych. Wybór niewłaściwego urządzenia do określonego pomiaru często wynika z braku zrozumienia różnic między tymi urządzeniami, co może prowadzić do poważnych błędów w analizie działania systemu. W praktyce ważne jest, aby dokładnie rozumieć zastosowania różnych typów transformatorów i przekładników, aby odpowiednio je wykorzystać w projektach elektrycznych oraz zapewnić bezpieczeństwo i efektywność operacji.

Pytanie 37

W siłowniku o jednostronnym działaniu, w trakcie realizacji ruchu roboczego tłoka, doszło do nagłego wstrzymania ruchu tłoczyska. Ruch ten odbywał się bez obciążenia i nie zaobserwowano nieszczelności w układzie pneumatycznym. Jakie mogą być przyczyny zatrzymania tłoczyska?

A. niespodziewany spadek ciśnienia roboczego
B. wyboczenie tłoczyska
C. blokada odpowietrzania
D. zakleszczenie tłoka
W analizowanej sytuacji, wyboczenie tłoczyska, nagły spadek ciśnienia roboczego oraz blokada odpowietrzania mogą wydawać się możliwymi przyczynami zatrzymania ruchu tłoczyska, ale ich rzeczywista analiza wskazuje na inne aspekty. Wyboczenie tłoczyska, czyli jego odkształcenie, zazwyczaj prowadzi do nieregularnych ruchów, a nie do nagłego zatrzymania. Tego typu problem najczęściej występuje w wyniku niewłaściwego montażu lub użycia nieodpowiednich komponentów, lecz w opisywanej sytuacji tłok pracował bez obciążenia, co znacząco zmniejsza ryzyko wystąpienia tego zjawiska. Spadek ciśnienia roboczego mógłby być powiązany z nieszczelnościami, jednak, jak zaznaczone w pytaniu, nie zaobserwowano takich usterek. Blokada odpowietrzania również nie jest typową przyczyną nagłego zatrzymania, gdyż raczej skutkowałaby ona powolnym wzrostem ciśnienia, a nie natychmiastowym zatrzymaniem ruchu. Takie myślenie może wynikać z niepełnej analizy pojęć związanych z układami pneumatycznymi, a warto zwrócić uwagę na to, że przyczyną problemu mogą być zewnętrzne czynniki, takie jak zanieczyszczenia lub uszkodzenia mechaniczne, które nie zostały uwzględnione w analizie. Wiedza na temat poprawnej diagnostyki i konserwacji układów pneumatycznych jest kluczowa dla prawidłowego funkcjonowania tego typu systemów.

Pytanie 38

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na odczyt wartości zmierzonych parametrów
B. na wizualizację przebiegu pracy prasy
C. na pomiar parametrów procesowych prasy
D. na załączanie i wyłączanie pracy prasy
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 39

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. cyfrowego
B. binarnego
C. analogowego
D. programowalnego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 40

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. smarownica, filtr powietrza, reduktor
B. filtr powietrza, reduktor, smarownica
C. reduktor, filtr powietrza, smarownica
D. reduktor, smarownica, filtr powietrza
Odpowiedź "filtr powietrza, reduktor, smarownica" jest poprawna, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla efektywności oraz żywotności układu sprężonego powietrza. Filtr powietrza jest pierwszym elementem, który powinien być zainstalowany, ponieważ jego zadaniem jest usunięcie zanieczyszczeń i wilgoci z powietrza atmosferycznego, co zapobiega uszkodzeniom pozostałych komponentów systemu. Następnie montowany jest reduktor ciśnienia, który reguluje ciśnienie powietrza dostarczanego do urządzeń roboczych, zapewniając optymalne warunki pracy. Na końcu montowana jest smarownica, która dostarcza odpowiednią ilość oleju do narzędzi pneumatycznych, co wpływa na ich skuteczność oraz wydajność. Zgodnie z normami branżowymi, takimi jak ISO 8573, zachowanie tej kolejności pozwala na utrzymanie wysokiej jakości powietrza oraz minimalizację kosztów eksploatacji, co jest kluczowe w wielu zastosowaniach przemysłowych.