Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 26 maja 2025 16:18
  • Data zakończenia: 26 maja 2025 16:30

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 25,0 kg
B. 37,5 kg
C. 50,0 kg
D. 12,5 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć ilość wapienia potrzebną do uzyskania 7 kg wapna palonego (CaO) przy wydajności reakcji wynoszącej 50%, należy najpierw zrozumieć reakcję chemiczną, która zachodzi. W reakcji CaCO3 → CaO + CO2 mol wapnia (Ca) uzyskujemy z jednego mola węglanu wapnia (CaCO3). Masy molowe są następujące: Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, co daje masę CaCO3 równą 100 g/mol. Z przeprowadzonej reakcji wynika, że 1 mol CaCO3 daje 1 mol CaO, co odpowiada masie 56 g/mol dla CaO. Z punktu widzenia praktycznego, wydajność 50% oznacza, że aby otrzymać 7 kg (7000 g) wapna palonego, potrzebujemy 2 razy więcej węglanu wapnia, czyli 14000 g (14 kg) CaCO3. Jednak ze względu na wydajność, musimy użyć 28 kg CaCO3. Zatem, aby uzyskać 7 kg CaO, przy wydajności 50% potrzebujemy 25 kg CaCO3 na uzyskanie 14 kg CaCO3. W praktyce, te obliczenia są kluczowe w przemyśle chemicznym i materiałowym, gdzie precyzyjne dawkowanie surowców jest istotne dla efektywności produkcji, co jest zgodne z normami jakości w branży.

Pytanie 2

Podczas pipetowania menisk górny określa się dla roztworów

A. (CH3CO) 2Pb i KMnO4
B. I2 i KMnO4
C. I2 i (CH3COO)2Pb
D. K2CrO4 i Pb(NO3)2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas pipetowania menisk górny dla roztworów ustala się w przypadku substancji takich jak I2 i KMnO4, ponieważ obie te substancje są dobrze rozpuszczalne w wodzie i tworzą odpowiednie meniskii, co jest kluczowe dla dokładności pipetowania. Menisk to zakrzywienie powierzchni cieczy, które powstaje w wyniku sił napięcia powierzchniowego oraz adhezji cieczy do ścianek naczynia. W przypadku I2 i KMnO4 menisk górny jest łatwy do odczytania i stabilny, co jest istotne dla precyzyjnych pomiarów objętości. Przykładem zastosowania tej wiedzy może być analizowanie stężenia jodu w roztworze, gdzie dokładne pipetowanie jest niezbędne dla uzyskania wiarygodnych wyników. Praktyki laboratoryjne zalecają także stosowanie pipet o odpowiedniej graduacji oraz technikę odczytu menisku na wysokości oczu, co pozwala na minimalizację błędów systematycznych. Użycie odpowiednich reagentów i technik w laboratoriach chemicznych jest zgodne z normami ISO oraz dobrymi praktykami laboratoryjnymi, co wpływa na rzetelność wyników."

Pytanie 3

Fosfor biały, z uwagi na swoje właściwości, powinien być przechowywany

A. w wodzie
B. w nafcie
C. w benzynie
D. w benzenie
Przechowywanie fosforu białego w nafcie, benzynie lub innym rozpuszczalniku organicznym jest nie tylko nieefektywne, ale także bardzo niebezpieczne. Te substancje charakteryzują się łatwopalnością, co w połączeniu z właściwościami fosforu białego stwarza wysokie ryzyko pożaru. Fosfor biały w kontakcie z naftą może prowadzić do nieprzewidywalnych reakcji chemicznych, w tym zapłonu, co stanowi poważne zagrożenie dla zdrowia i bezpieczeństwa. Często występującym błędem jest mylenie nafty z wodą, co wynika z niewłaściwego zrozumienia właściwości chemicznych tych substancji. Woda jest substancją niepalną, która stabilizuje fosfor biały, podczas gdy nafta jest substancją łatwopalną, która mogłaby spowodować pożar. Podobnie, zarówno benzyna, jak i benzen są substancjami organicznymi, które mogą sprzyjać wybuchom oraz są szkodliwe dla zdrowia. W kontekście najlepszych praktyk, takie podejście do przechowywania fosforu białego jest absolutnie niewłaściwe i sprzeczne z zaleceniami instytucji zajmujących się bezpieczeństwem chemicznym. W przemyśle chemicznym oraz laboratoriach stosowane są ściśle określone procedury, które eliminują możliwość przechowywania substancji niebezpiecznych w niewłaściwy sposób, co dodatkowo podkreśla nieodpowiedzialność takich wyborów.

Pytanie 4

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. chromatografia cieczowa
B. ekstrakcja w systemie ciecz - ciecz
C. adsorpcja
D. destylacja
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 5

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 5
B. 10
C. 50
D. 100

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 6

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
B. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
C. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
D. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
Odpowiedź jest prawidłowa, ponieważ roztwory kwasów i zasad mogą być neutralizowane poprzez ich wzajemne mieszanie, co prowadzi do zmniejszenia ich niebezpiecznych właściwości. W praktyce, mieszając kwas z zasadą, powstaje sól i woda, co jest podstawą reakcji zobojętnienia. Ważne jest jednak, aby proces ten prowadzić ostrożnie, z uwagi na wydzielanie ciepła, które może być niebezpieczne. W przemyśle chemicznym oraz laboratoriach stosuje się standardowe procedury, które określają, jak powinno się postępować z odpadkami chemicznymi, aby zapewnić bezpieczeństwo. Istotne jest, aby nie przechowywać odpadów kwasowych i zasadowych w tym samym pojemniku bez neutralizacji, ponieważ może to prowadzić do nieprzewidywalnych reakcji chemicznych. Przykładowo, w laboratoriach często stosowane są odpowiednie pojemniki na odpady chemiczne, które są oznaczone i przystosowane do gromadzenia konkretnych typów substancji. Stosowanie się do wytycznych z zakresu ochrony środowiska oraz przepisów BHP jest kluczowe w każdym miejscu pracy zajmującym się substancjami chemicznymi.

Pytanie 7

Wskaż prawidłowo dobrany sposób kalibracji i zastosowanie szkła miarowego.

Nazwa naczyniaSposób kalibracjiZastosowanie
A.kolba miarowaExdo sporządzania roztworów mianowanych o określonej objętości
B.cylinder miarowyExdo sporządzania roztworów mianowanych o określonej objętości
C.pipeta MohraExdo odmierzania określonej objętości cieczy
D.biuretaIndo odmierzania określonej objętości cieczy

A. B.
B. A.
C. C.
D. D.
Pipeta Mohra jest narzędziem o wysokiej precyzji, które zostało zaprojektowane do kalibracji metodą Ex, co oznacza, że objętość cieczy odczytywana jest na zewnętrznej krawędzi menisku. To podejście jest kluczowe w laboratoriach chemicznych oraz biologicznych, gdzie precyzyjne pomiary objętości cieczy mają kluczowe znaczenie dla uzyskania wiarygodnych wyników badań. Pipety Mohra są szczególnie przydatne w reakcjach wymagających dokładności, takich jak przygotowywanie roztworów o znanej stężeniu lub w syntezach chemicznych. Standardy branżowe, takie jak ISO 8655, podkreślają znaczenie używania kalibracji zewnętrznej w pomiarach cieczy, aby zapewnić spójność i dokładność danych. Używając pipety Mohra, użytkownik powinien zwrócić uwagę na technikę odczytu, aby uniknąć błędów wynikających z parowania lub menisku, co może prowadzić do nieprecyzyjnych wyników. Dlatego odpowiedź C, wskazująca na prawidłowe zastosowanie pipety Mohra, jest zgodna z najlepszymi praktykami laboratoryjnymi.

Pytanie 8

Które z poniższych równań ilustruje reakcję, w której powstają produkty gazowe?

A. Fe + S —> FeS
B. AgNO3 + KBr —> AgBr↓ + KNO3
C. Fe(CN)2 + 4KCN —> K4[Fe(CN)6]
D. 2HgO —> 2Hg + O2
Reakcja przedstawiona w równaniu 2HgO —> 2Hg + O2 jest klasycznym przykładem reakcji rozkładu, która skutkuje wydzieleniem produktów gazowych. W tym przypadku, pod wpływem ciepła, woda utleniona (HgO) rozkłada się na rtęć metaliczną (Hg) oraz tlen (O2), który jest gazem. Proces ten ilustruje zasady termodynamiki oraz mechanizm reakcji chemicznych. W praktyce rozkład wody utlenionej jest ważny w różnych dziedzinach, w tym w chemii analitycznej, gdzie tlen jest wykorzystywany w reakcjach utleniających. Tego typu reakcje są również istotne w kontekście bezpieczeństwa, gdyż uwolnienie gazów może mieć wpływ na warunki pracy w laboratoriach. Dobrą praktyką w chemii jest stosowanie zasad BHP w obecności gazów, które mogą być wybuchowe lub toksyczne. W związku z tym, zrozumienie reakcji gazowych jest niezbędne do prowadzenia bezpiecznych eksperymentów chemicznych oraz skutecznego zarządzania ryzykiem.

Pytanie 9

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. spirytus salicylowy
B. środki opatrunkowe
C. leki przeciwbólowe
D. leki nasercowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 10

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 181 °C - 185 °C
B. 185 °C - 190 °C
C. 175 °C - 179 °C
D. 178 °C - 182 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 11

Jakie metody można zastosować do rozdzielania i koncentracji składników próbki?

A. spawanie
B. mineralizację suchą
C. rozpuszczanie i rozcieńczanie
D. wymywanie lub wymianę jonową
Wybrane odpowiedzi, takie jak stapianie, rozpuszczanie i rozcieńczanie czy wymywanie lub wymiana jonowa, wskazują na niewłaściwe podejście do procesu analizy próbek. Stapianie to technika, która polega na podgrzewaniu materiałów do ich stanu ciekłego, jednak nie prowadzi do skutecznego rozdzielania składników próbki, a jedynie do ich fizycznej zmiany stanu skupienia, co nie jest odpowiednie w kontekście analizy chemicznej. Rozpuszczanie i rozcieńczanie mogą być użyteczne w niektórych przypadkach, lecz w kontekście rozdzielania składników próbki nie są wystarczające, ponieważ wiele składników może pozostać w zawiesinie lub nie rozpuścić się w danym rozpuszczalniku. Przykładem może być sytuacja, w której próbka zawiera nieorganiczne sole, które są słabo rozpuszczalne, co prowadzi do niepełnego wydobycia informacji. Wymiana jonowa oraz wymywanie to techniki stosowane głównie w kontekście oczyszczania wody lub usuwania zanieczyszczeń, a nie do analizy składników chemicznych próbki. Te metody nie są w stanie dostarczyć pełnego obrazu zawartości chemicznej, co jest kluczowe w badaniach analitycznych. W praktyce, nieprawidłowe zastosowanie tych technik może prowadzić do błędnych interpretacji wyników i złej oceny jakości analizowanej próbki.

Pytanie 12

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. tlenu
B. światła
C. ciepła
D. powietrza
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 13

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. ze szkła sodowego
B. ze szkła borokrzemowego
C. ze szkła krzemowego
D. z polietylenu
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 14

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. zastosować 5% roztwór wodorowęglanu sodu
B. zmyć bieżącą wodą
C. skorzystać z amoniaku
D. polać 3% roztworem wody utlenionej
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 15

W trakcie pobierania próbek wody, które mają być analizowane pod kątem składników podatnych na rozkład fotochemiczny, należy

A. obniżyć temperaturę próbek do 10oC
B. dodać do próbek roztwór H3PO4 w celu zakwaszenia
C. stosować opakowania nieprzezroczyste
D. wykorzystywać pojemniki z jasnego szkła z dokładnie dopasowanym korkiem
Stosowanie opakowań nieprzezroczystych jest kluczowe podczas pobierania próbek wody przeznaczonych do analizy składników podatnych na rozkład fotochemiczny. Promieniowanie UV i widzialne światło mogą powodować niepożądane reakcje chemiczne, które mogą prowadzić do degradacji analizowanych substancji. Dlatego materiały używane do przechowywania próbek powinny skutecznie blokować dostęp światła. Przykłady odpowiednich materiałów to ciemne szkło lub tworzywa sztuczne, które zapewniają ochronę przed światłem. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi oraz standardami, np. ISO 5667, które podkreślają znaczenie odpowiednich technik pobierania i przechowywania próbek dla uzyskania wiarygodnych wyników analitycznych. Zastosowanie nieprzezroczystych opakowań również minimalizuje ryzyko błędów analitycznych wynikających z niekontrolowanej fotolizy substancji w próbce. W kontekście badań środowiskowych, używanie odpowiednich pojemników jest fundamentalne dla zachowania integralności próbki do momentu przeprowadzenia analizy.

Pytanie 16

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 18,02 mol/dm3
B. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
C. 18,02 mol/cm3
D. 0,18 mol/dm3
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach oraz niepoprawnych założeń dotyczących stężenia molowego. Odpowiedzi 0,18 mol/dm3 i 1,80 mol/dm3 mogą sugerować, że obliczenia nie uwzględniają odpowiednio masy molowej kwasu siarkowego lub gęstości roztworu. W przypadku 0,18 mol/dm3 można zauważyć, że odpowiada ona zbyt niskiej wartości, co może sugerować, że założono zbyt małą masę kwasu w roztworze. Z kolei 1,80 mol/dm3 może być wynikiem nieprawidłowych obliczeń, w których pominięto dokładne określenie objętości roztworu. Odpowiedź 18,02 mol/dm3 jest znacznie wyższa, co wskazuje na to, że w obliczeniach użyto właściwych wartości masy molowej i stężenia. Typowym błędem myślowym jest mylenie jednostek objętości i masy oraz pomijanie gęstości roztworu, co prowadzi do niepoprawnych wyników. W kontekście chemii, niezwykle ważne jest zrozumienie, że stężenie molowe to stosunek moli substancji do objętości roztworu, a nie tylko masa kwasu w danym roztworze. Dlatego kluczowe jest stosowanie właściwych jednostek oraz umiejętność ich konwersji, co jest podstawą w obliczeniach chemicznych.

Pytanie 17

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. NaOH
C. Na2B4O7·10H2O
D. Na2C2O4
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 18

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. KNO3
B. Al(NO3)3
C. Cu(NO3)2
D. AgNO3
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 19

Aby przygotować 250 cm3 roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 35,0 g KOH
B. 0,35 g KOH
C. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
D. 3,5 g KOH

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 0,25-molowy roztwór KOH o objętości 250 cm³, trzeba najpierw policzyć, ile tej substancji potrzebujemy. Wodorotlenek potasu ma masę molową 56 g/mol (liczymy K — 39 g/mol, O — 16 g/mol, H — 1 g/mol). Używając równania C = n/V, gdzie C to stężenie molowe, n to liczba moli, a V to objętość w litrach, możemy ustalić, ile moli potrzebujemy: n = C * V = 0,25 mol/dm³ * 0,250 dm³ = 0,0625 mol. Następnie, żeby obliczyć masę KOH, stosujemy wzór: m = n * M, czyli m = 0,0625 mol * 56 g/mol = 3,5 g. Te obliczenia są naprawdę istotne w chemii analitycznej, bo dokładne przygotowanie roztworów jest kluczowe, żeby wyniki były wiarygodne. Z własnego doświadczenia mogę powiedzieć, że umiejętność liczenia molowości i mas molowych jest podstawą w chemicznych reakcjach i analizach, co ma ogromne znaczenie w laboratorium.

Pytanie 20

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. spiralną
B. prostą
C. kulistą
D. palcową
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 21

Jakie roztwory chemiczne powinny być stanowczo pobierane przy włączonym dygestorium?

A. glicerolu o stężeniu 36%
B. etanolu o stężeniu 36%
C. kwasu solnego o stężeniu 36%
D. kwasu cytrynowego o stężeniu 36%
Kwas solny o stężeniu 36% jest substancją silnie żrącą i niebezpieczną dla zdrowia. Jego właściwości chemiczne sprawiają, że w przypadku kontaktu z skórą lub błonami śluzowymi może prowadzić do poważnych oparzeń oraz uszkodzenia tkanek. Dlatego zgodnie z zasadami bezpieczeństwa pracy w laboratoriach chemicznych, wszelkie operacje związane z kwasem solnym powinny być przeprowadzane pod włączonym dygestorium. Dygestorium zapewnia odpowiednią wentylację, eliminując ryzyko wdychania szkodliwych oparów i substancji lotnych, co jest zgodne z normami BHP oraz praktykami stosowanymi w laboratoriach. Przykłady zastosowania kwasu solnego obejmują jego użycie w procesach analitycznych, jak titracje, czy w syntezach chemicznych, co podkreśla jego znaczenie w branży chemicznej. Stosowanie dygestorium nie tylko chroni pracowników, ale także zapobiega zanieczyszczeniu środowiska laboratorium. Współczesne laboratoria stosują te zasady jako standard, zapewniając bezpieczeństwo i zgodność z normami ochrony zdrowia.

Pytanie 22

Kalibracja pH-metru nie jest potrzebna po

A. długotrwałym używaniu tej samej elektrody.
B. każdym pomiarze w danej serii.
C. wymianie elektrody.
D. dłuższej przerwie w pomiarach.
Kalibracja pH-metru po każdym pomiarze w serii nie jest aż taka konieczna, bo te urządzenia są zaprojektowane z myślą o stabilności pomiarów w krótkich odstępach. Jeśli pH-metr był już wcześniej skalibrowany, a warunki się nie zmieniły, to można spokojnie kontynuować pomiary bez nowej kalibracji. Na przykład w laboratoriach, gdzie robi się dużo pomiarów pH tego samego roztworu, często kalibruje się pH-metr przed rozpoczęciem całej serii pomiarów, a potem korzysta z tej samej kalibracji. Tylko pamiętaj, że jeśli robisz dłuższą przerwę w pomiarach lub zmienia się temperatura, to lepiej znów skalibrować, żeby mieć pewność, że wyniki są dokładne. Takie zasady są podkreślane w standardach ISO i ASTM, więc warto je znać, bo nieprzestrzeganie ich może prowadzić do złych wyników i utraty zaufania do analiz.

Pytanie 23

Do narzędzi pomiarowych zalicza się

A. cylinder
B. zlewkę
C. naczynko wagowe
D. kolbę stożkową
Cylinder miarowy to naprawdę fajne narzędzie, które znajdziesz w każdym laboratorium. Używa się go do dokładnego mierzenia objętości cieczy, co jest mega ważne podczas różnych eksperymentów chemicznych czy fizycznych. W przeciwieństwie do zlewki, cylinder ma wyraźne podziałki i prostokątną formę, co naprawdę ułatwia odczytywanie wartości. Dzięki temu błąd pomiarowy jest znacznie mniejszy. Osobiście uważam, że korzystanie z cylindra to podstawa, gdy przychodzi do przygotowywania roztworów, gdzie musisz mieć pewność, że wszystko jest dokładnie odmierzone. Oczywiście, pamiętaj, żeby cylinder był odpowiednio skalibrowany, bo to pozwala na powtarzalność wyników, a to chyba każdy chce mieć w swoich eksperymentach.

Pytanie 24

W procesie oddzielania osadu od roztworu, po przeniesieniu osadu na sączek, najpierw należy go

A. zważyć
B. wysuszyć
C. przemyć
D. wyprażyć
Przemywanie osadu po jego oddzieleniu od roztworu jest kluczowym krokiem w procesie analitycznym, który ma na celu usunięcie zanieczyszczeń i pozostałości reagentów. Przed przystąpieniem do ważenia, wysuszania czy wyprażania, istotne jest, aby osad był wolny od wszelkich substancji, które mogłyby wpłynąć na wyniki analizy. Przemywanie osadu za pomocą odpowiedniego rozpuszczalnika, zazwyczaj wody destylowanej, pozwala na usunięcie niepożądanych jonów lub cząsteczek, które mogłyby zafałszować wyniki późniejszych pomiarów. Na przykład, w przypadku analizy chemicznej, zanieczyszczenia mogą wprowadzać błędy w pomiarach masy, co może skutkować nieprawidłowymi wnioskami. Standardy laboratoryjne, takie jak ISO 17025, zalecają przestrzeganie procedur czyszczenia próbek, aby zapewnić wiarygodność uzyskanych danych. W praktyce laboratoryjnej, prawidłowe przemycie osadu przyczynia się do poprawy dokładności i precyzji wyników analitycznych, co jest kluczowe w badaniach naukowych i przemysłowych.

Pytanie 25

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Rozdzielacz
B. Kolba stożkowa
C. Biureta gazowa
D. Kolba ssawkowa
Biureta gazowa, kolba ssawkowa i kolba stożkowa, to nie są sprzęty, które używa się do ekstrakcji, co może prowadzić do zamieszania w ich funkcji. Biureta gazowa jest głównie do dozowania gazów podczas reakcji chemicznych, a nie do separacji faz. To urządzenie ma zastosowanie w analizach ilościowych, gdzie liczy się precyzja, a to jest coś zupełnie innego niż ekstrakcja. Kolba ssawkowa to narzędzie do filtracji i też się nie nadaje do separacji faz, bo jej konstrukcja nie pozwala na efektywne oddzielanie cieczy. A kolba stożkowa? Ona jest do mieszania, przechowywania i podgrzewania substancji, ale nie do ekstrakcji, co stawia jej zastosowanie w tym kontekście w kiepskim świetle. Często ludzie mylą funkcje tych narzędzi, co prowadzi do złego doboru sprzętu w eksperymentach. Dlatego ważne jest, żeby zrozumieć, do czego każde z tych narzędzi służy, żeby uniknąć błędów w laboratorium. Bycie pewnym, jak działają urządzenia laboratoryjne, jest kluczowe dla bezpiecznej i efektywnej pracy.

Pytanie 26

Próbka wzorcowa to próbka

A. o dokładnie znanym składzie
B. otrzymana w wyniku zmieszania próbek jednostkowych
C. przygotowana z próbki laboratoryjnej przez jej zmniejszenie
D. przeznaczona w całości do jednego oznaczenia
Próbka wzorcowa to próbka o dokładnie znanym składzie, co czyni ją kluczowym elementem w procesach analitycznych. W analizie chemicznej i badaniach laboratoryjnych próbki wzorcowe są niezbędne do kalibracji instrumentów pomiarowych, a także do walidacji metod analitycznych. Przykładem może być stosowanie standardów w technikach spektroskopowych, gdzie próbki wzorcowe pozwalają na uzyskanie precyzyjnych wyników pomiarów. Zgodnie z normami ISO, próbki wzorcowe powinny być przygotowane z najwyższą starannością, aby zminimalizować błędy pomiarowe. W praktyce, ich zastosowanie obejmuje również monitorowanie jakości procesu produkcyjnego, co pozwala na wykrywanie potencjalnych nieprawidłowości. Stosowanie próbki wzorcowej jest również zgodne z dobrymi praktykami laboratoryjnymi (GLP), które podkreślają znaczenie znanego składu prób w zapewnieniu wiarygodności wyników i umożliwieniu ich porównywalności. Dlatego też, rozwiązując problemy analityczne, znajomość i umiejętność wykorzystania próbek wzorcowych jest niezbędna dla każdego specjalisty w dziedzinie analizy chemicznej i biologicznej.

Pytanie 27

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w izolowanych pomieszczeniach magazynów ogólnych
B. na otwartym powietrzu pod dachem
C. w specjalnie wydzielonych piwnicach murowanych
D. w różnych punktach laboratorium
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 28

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
B. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
C. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
D. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby sporządzić 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³, potrzebujemy odpowiednich odczynników i sprzętu. W tym przypadku właściwym wyborem jest kolba miarowa o pojemności 500 cm³ oraz jedna odważka analityczna HCl o stężeniu 0,1 mol/dm³. Przy takich danych, można obliczyć potrzebną ilość HCl. Zastosowanie wzoru: C = n/V, gdzie C to stężenie, n to liczba moli, a V to objętość, pozwala uzyskać n = C*V = 0,2 mol/dm³ * 0,5 dm³ = 0,1 mol. Ponieważ roztwór o stężeniu 0,1 mol/dm³ ma potrzebną objętość 1 dm³, wystarczy nam 0,1 dm³ tego roztworu, co odpowiada 100 cm³. Użycie kolby miarowej o pojemności 500 cm³ zapewnia precyzyjne odmierzanie, co jest niezbędne dla uzyskania wiarygodnych wyników eksperymentalnych. Tego rodzaju procedury są zgodne z normami laboratoryjnymi, które podkreślają znaczenie dokładności w przygotowywaniu roztworów chemicznych.

Pytanie 29

Czego się używa w produkcji z porcelany?

A. naczynia wagowe oraz krystalizatory
B. moździerze i parowniczki
C. szkiełka zegarkowe oraz szalki Petriego
D. zlewki oraz bagietki
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 30

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 0,215 g
B. 2,510 g
C. 0,251 g
D. 0,025 g
Odważka Na2C2O4, którą przygotowałeś, powinna mieć masę około 250 mg, a dokładnie to 0,251 g. Przygotowywanie roztworów o ścisłych stężeniach wymaga naprawdę dokładnej pracy w laboratorium oraz świadomości, jakie mają masy molowe substancji. W tym przypadku Na2C2O4, czyli sól sodowa kwasu szczawiowego, ma masę molową około 90 g/mol. Dlatego 0,251 g to w przybliżeniu 2,79 mmol. Kluczowe jest, żeby podczas miareczkowania, gdzie KMnO4 działa jako czynnik utleniający, mieć taką dokładność. Gdy precyzyjnie odważysz reagenty, zwiększasz pewność i powtarzalność wyników. W laboratoriach chemicznych używa się wag analitycznych, żeby uzyskać wyniki, które odpowiadają rzeczywistości. Dzięki temu można przeprowadzać dalsze analizy chemiczne i poprawnie interpretować wyniki.

Pytanie 31

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. czystość
B. palność
C. reaktywność
D. rozpuszczalność
Temperatura topnienia jest istotnym wskaźnikiem czystości substancji chemicznych, szczególnie związków organicznych. Czystość substancji można ocenić na podstawie jej temperatury topnienia, ponieważ czyste substancje mają ściśle określoną temperaturę topnienia, podczas gdy obecność zanieczyszczeń obniża, a czasem także podwyższa tę temperaturę. Przykładem jest analiza kwasu benzoesowego, który ma temperaturę topnienia wynoszącą 122 °C. Jeśli podczas pomiaru odkryjemy, że temperatura topnienia wynosi 120 °C, może to sugerować obecność zanieczyszczeń. W praktyce, metody takie jak montaż termometru w naczyniu z próbką oraz kontrola tempa podgrzewania są stosowane, aby uzyskać dokładny wynik. W laboratoriach chemicznych stosuje się również standardy takie jak ASTM E2875, które precyzują metody pomiaru temperatury topnienia. Dzięki tym praktykom, możliwe jest nie tylko potwierdzenie czystości próbki, ale również ocena jakości związków organicznych, co jest kluczowe w chemii analitycznej, farmaceutycznej i przemysłowej.

Pytanie 32

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 100 mol/dm3
B. 0,1 mol/dm3
C. 10 mol/dm3
D. 1 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 33

Laboratoryjny aparat szklany, który wykorzystuje kwasy do wytwarzania gazów w reakcji z metalem lub odpowiednią solą, to

A. aparat Kippa
B. aparat Orsata
C. aparat Hofmanna
D. aparat Soxhleta
Aparat Orsata jest używany do destylacji, co oznacza, że jego funkcja różni się od roli aparatu Kippa, który jest przeznaczony do wytwarzania gazów. Aparat Soxhleta jest narzędziem stosowanym w ekstrakcji, często w analizie chemicznej, gdzie celem jest wydobycie substancji rozpuszczalnych z materiałów stałych, co również nie pokrywa się z funkcją aparatu Kippa. Z kolei aparat Hofmanna, wykorzystywany do elektrolizy wody, jest narzędziem do rozdzielania gazów na ich składniki, co również różni się od zadania aparatu Kippa, który nie wymaga stosowania prądu elektrycznego. Często mylone są różne typy aparatów laboratoryjnych ze względu na ich podobieństwa wizualne lub nazwy, co prowadzi do nieporozumień. Kluczowe jest zrozumienie specyficznych zastosowań każdego z tych urządzeń i ich konstrukcyjnych różnic. Dlatego ważne jest, aby przy nauce o aparatach laboratoryjnych nie tylko zapamiętywać ich nazwy, ale także ich funkcje i zastosowania, aby uniknąć błędów w praktyce laboratoryjnej. Niezrozumienie tych różnic może skutkować nieefektywnym wykorzystaniem sprzętu i potencjalnymi zagrożeniami w laboratorium.

Pytanie 34

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. zmierzenie gęstości tego roztworu.
B. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
C. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
D. miareczkowanie innym roztworem, który nie jest mianowany.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 35

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 100 g
B. 200 g
C. 2500 g
D. 1000 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 36

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)

A. 584,1 g
B. 390,5 g
C. 210,0 g
D. 469,3 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 37

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Zaklejenie miejsca plastrem
B. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
C. Pocieranie miejsca kontaktu papierowym ręcznikiem
D. Posypanie miejsca solą kuchenną
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 38

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. cylinder z podziałką
B. kolba stożkowa
C. pipeta Mohra
D. zlewka
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 39

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia masy na szalce zastosowano odważniki: 10 g, 5 g, 500 mg, 200 mg, 200 mg, 50 mg, 20 mg, 10 mg oraz 10 mg. Masa substancji razem z naczynkiem wyniosła

A. 16,94 g
B. 15,94 g
C. 15,99 g
D. 16,04 g
Odpowiedź 15,99 g jest prawidłowa, ponieważ podczas ważenia substancji w naczynku wagowym, sumujemy masy odważników, które zostały użyte do zrównoważenia. W analizowanym przypadku odważniki to: 10 g, 5 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 200 mg (0,2 g), 50 mg (0,05 g), 20 mg (0,02 g), 10 mg (0,01 g) i 10 mg (0,01 g). Gdy dodamy te wartości, otrzymujemy: 10 g + 5 g + 0,5 g + 0,2 g + 0,2 g + 0,05 g + 0,02 g + 0,01 g + 0,01 g = 15,99 g. W praktyce, ważenie substancji należy przeprowadzać na dobrze skalibrowanych wagach technicznych, które powinny być regularnie poddawane kalibracji zgodnie z normami ISO 9001, aby zapewnić dokładność pomiarów. Użycie odważników o precyzyjnych wartościach jest kluczowe dla uzyskania wiarygodnych wyników, co ma ogromne znaczenie w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie niewielkie odchylenia w ważeniu mogą prowadzić do poważnych konsekwencji dla jakości produktów.

Pytanie 40

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. średni
B. częściowy
C. miękki
D. twardy
Wybór złego sączka do filtracji osadu galaretowatego Fe(OH)3 może naprawdę narobić bałaganu. Sączki średnie czy twarde, chociaż mogą działać, to nie są najlepsze w przypadku galaretowatych osadów. Te średnie mają większe pory, więc małe cząsteczki osadu mogą przez nie przechodzić, co mija się z celem oddzielania. A twarde sączki są za sztywne, żeby dobrze zatrzymać delikatny osad, co kończy się utratą prób. Sączki częściowe, które mają łapać tylko niektóre cząsteczki, mogą być nieadekwatne dla skomplikowanych osadów. W praktyce, niewłaściwy sączek nie tylko psuje jakość końcowego produktu, ale i może zafałszować wyniki, co jest niezgodne z dobrymi praktykami w laboratoriach. Dlatego przed wyborem sączka warto dokładnie sprawdzić właściwości osadu i wymogi filtracji.