Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 22 maja 2025 16:19
  • Data zakończenia: 22 maja 2025 16:33

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. niską wilgotnością
B. wysoką temperaturą
C. porażeniem prądem elektrycznym
D. uszkodzeniami mechanicznymi
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 2

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Czarnego
B. Brązowego
C. Szarego
D. Niebieskiego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 3

Która metoda instalacji podstaw koryt kablowych jest niewłaściwa?

A. Mocowanie przy użyciu kołków rozporowych oraz wkrętów
B. Mocowanie przy pomocy stalowych gwoździ
C. Przyklejanie do podłoża
D. Gipsowanie w bruzdach
Mocowanie podstaw koryt kablowych na klej, kołki rozporowe, wkręty czy gwoździe to coś, co można spotkać w praktyce, ale nie zawsze to działa. Klejenie do podłoża niby szybkie i proste, ale nie zawsze ma wystarczającą moc, zwłaszcza gdy koryta są pod dużym obciążeniem albo drgania się zdarzają. Z czasem może to prowadzić do problemów z utrzymaniem koryta w miejscu, co może skończyć się jego uszkodzeniem. A jak trzeba będzie zdemontować instalację, to klej może sprawić, że ciężko będzie zdjąć koryto, co oznacza dodatkowe koszty i czas. Gdy mówimy o stalowych gwoździach, ryzykujemy, że nie dadzą one odpowiedniego wsparcia, zwłaszcza w twardych materiałach, bo mogą się złamać albo wypaść. Takie mocowania mogą też uszkodzić przewody, jeśli są za blisko punktów mocowania. Kołki rozporowe i wkręty to jedna z lepszych metod, ale musimy dobrze dobrać materiały i technikę, żeby uniknąć przesadnych obciążeń. Warto przy wyborze metody montażu myśleć nie tylko o łatwości, ale przede wszystkim o bezpieczeństwie i trwałości instalacji. To bardzo ważne, by mocowania były zgodne z normami branżowymi, bo to pozwoli nam uniknąć problemów w przyszłości.

Pytanie 4

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. czasów narastania i opadania impulsów
B. bitowej stopy błędów
C. współczynnika zniekształceń nieliniowych
D. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 5

Jakiego środka używa się do oczyszczania płytek drukowanych po zamontowaniu elementów elektronicznych?

A. Wody
B. Benzyny
C. Kwasu
D. Alkoholu
Izopropanol to naprawdę świetny wybór do czyszczenia płytek drukowanych po lutowaniu. Działa jak rozpuszczalnik i szybko odparowuje, co jest mega przydatne, bo dzięki temu zmniejszamy ryzyko uszkodzenia elementów. W branży to już standard – zawsze warto umyć płytki, żeby pozbyć się resztek topnika, olejów i innych brudów, które mogą wpłynąć na to, jak wszystko będzie działać. Jak używasz 99% alkoholu izopropylowego, to skutecznie usuwasz pozostałości po lutowaniu. To z kolei zapobiega takim problemom jak korozja czy zwarcia. No i czyszczenie alkoholem jest zgodne z normami IPC-A-610 i IPC-J-STD-001, więc wiadomo, że to sprawdzone metody. W sumie, to szybkie i efektywne, dlatego wielu w warsztatach wybiera właśnie alkohol do czyszczenia płytek.

Pytanie 6

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Koder
B. Transkoder
C. Enkoder
D. Dekoder
Jeśli w kontekście zamiany kodu BCD na kod dla wyświetlacza siedmiosegmentowego wybrałeś coś innego jak dekoder, koder czy enkoder, to niewątpliwie coś poszło nie tak. Dekoder zamienia sygnały binarne na specjalne sygnały wyjściowe i jest użyteczny, gdy chcemy aktywować jedno z wielu wyjść na podstawie danych wejściowych, ale nie jest stworzony do konwersji z BCD. Koder działa z kolei odwrotnie - przyjmuje sygnały z różnych linii i skraca je do krótszego kodu binarnego, więc też nie pasuje do naszej sytuacji. Co do enkodera, to on zamienia sygnały analogowe na cyfrowe, więc w ogóle nie wchodzi w grę. Generalnie, wybór niewłaściwych układów często bierze się z braku zrozumienia, czym te komponenty się różnią i jakie mają zastosowania. Zamiast tego, do tej konwersji potrzebny jest transkoder, który jest właściwie do tego stworzony i wszystko działa tak, jak trzeba.

Pytanie 7

Jakie urządzenie stosuje się do podziału sygnału z anteny w systemie telewizyjnym?

A. spliter
B. symetryzator
C. switch
D. zwrotnicę
Jak chodzi o rozdzielenie sygnału z anteny, to takie odpowiedzi jak symetryzator, switch czy zwrotnica to nie to samo co spliter. Symetryzator działa głównie w systemach przesyłowych i przekształca sygnał niesymetryczny na symetryczny. Pomaga, ale nie rozdziela sygnału z anteny. Switch z kolei przełącza sygnały między różnymi źródłami, ale nie dzieli ich na kilka odbiorników. W telewizji używamy go, gdy chcemy wybrać konkretne źródło sygnału, ale nie do dzielenia. Zwrotnica to też inna bajka – ona łączy lub dzieli sygnały, ale głównie w systemach kablowych. Wiele osób myli te urządzenia ze splitterem, co prowadzi do błędnych decyzji przy składaniu systemu telewizyjnego. Warto po prostu ogarnąć, jak każde z tych urządzeń działa, żeby dobrze skonfigurować swój telewizyjny setup.

Pytanie 8

Aby zapewnić prawidłowe funkcjonowanie systemu kontroli dostępu, konieczne jest

A. konfiguracja czasu alarmowania
B. dostosowanie zwory elektromagnetycznej
C. wymiana rejestratora cyfrowego
D. naprawa kontrolera ethernet
Ustawienie czasu alarmowania w kontekście konserwacji systemu kontroli dostępu może być mylące. Choć czas alarmowania jest istotnym parametrem w systemach zabezpieczeń, nie jest to kluczowy element konserwacji. Zmiana tego parametru dotyczy głównie reakcji systemu w sytuacji wykrycia naruszenia, a nie fizycznego stanu urządzeń. Regulacja zwory elektromagnetycznej jest bezpośrednio związana z bezpieczeństwem dostępu, podczas gdy czas alarmowania odnosi się do aspektów reakcji systemu. Przypadek wymiany rejestratora cyfrowego również jest mylący, ponieważ wymiana sprzętu następuje zazwyczaj w momencie awarii lub przestarzałości technologii, a nie jako część rutynowej konserwacji. Rejestrator pełni rolę w archiwizacji zdarzeń, a jego wymiana nie wpływa bezpośrednio na operacyjność systemu kontroli dostępu. Naprawa kontrolera ethernet również nie jest bezpośrednio związana z konserwacją systemu. Kontroler ethernet może wymagać serwisowania w przypadku awarii, ale nie jest to rutynowy proces konserwacji, a raczej interwencja doraźna. Te zrozumienia są kluczowe dla odpowiedniego zarządzania i utrzymania systemów zabezpieczeń. Błędem jest skupienie się na aspektach, które nie mają bezpośredniego wpływu na fizyczne działanie zabezpieczeń, co może prowadzić do niedoszacowania roli, jaką odgrywają mechanizmy zamykające w systemach kontroli dostępu.

Pytanie 9

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku współczynnika prostokątności
B. spadku częstotliwości środkowej fo
C. wzrostu współczynnika prostokątności
D. wzrostu częstotliwości środkowej fo
Zwiększenie dobroci Q filtru RLC we wzmacniaczu selektywnym prowadzi do zwiększenia współczynnika prostokątności, co ma kluczowe znaczenie dla charakterystyki częstotliwościowej systemu. Wartość Q określa, jak 'ostro' filtr reaguje na częstotliwości bliskie częstotliwości środkowej f0. Wyższa wartość Q oznacza węższy pasmo przenoszenia, co skutkuje lepszą selektywnością filtru. W praktyce może to być użyteczne w zastosowaniach, gdzie istotne jest precyzyjne wyłapywanie sygnałów o określonych częstotliwościach, na przykład w telekomunikacji czy audiofilskim sprzęcie audio. Wartości Q są często dostosowywane do potrzeb konkretnego zastosowania, aby osiągnąć optymalną jakość sygnału. W branży wykorzystuje się standardy, takie jak IEEE 802.11, które uwzględniają parametry filtrów w kontekście transmisji danych. Zrozumienie tej zasady jest kluczowe w projektowaniu układów elektronicznych, gdzie precyzyjność parametrów filtrów ma fundamentalne znaczenie dla jakości sygnału.

Pytanie 10

Router to urządzenie wykorzystywane w warstwie

A. sesji
B. prezentacji
C. aplikacji
D. sieci
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 11

Jakie urządzenia pomiarowe powinny być użyte do określenia charakterystyki przenoszenia wzmacniacza selektywnego LC zasilanego napięciem ±12 V?

A. Generator funkcyjny oraz cyfrowy multimetr
B. Zasilacz symetryczny oraz cyfrowy multimetr
C. Zasilacz napięcia stałego, generator funkcyjny oraz oscyloskop
D. Zasilacz symetryczny, generator funkcyjny oraz oscyloskop
Wybór przyrządów pomiarowych jest kluczowy dla uzyskania prawidłowych wyników w testach wzmacniaczy. Odpowiedzi, które nie uwzględniają zasilacza symetrycznego, generatora funkcyjnego oraz oscyloskopu, pomijają istotne elementy wymagane do przeprowadzenia analizy charakterystyki przenoszenia. Zasilacz symetryczny jest niezbędny, aby zapewnić wzmacniaczowi stabilne napięcie zasilające, co jest kluczowe w kontekście pomiaru jego wydajności. Generator funkcyjny jest także istotny, ponieważ pozwala na wytwarzanie sygnałów o różnych kształtach i częstotliwościach, co umożliwia ocenę, jak wzmacniacz odpowiada na zmiany parametrów sygnału. Pominięcie oscyloskopu, który jest narzędziem do wizualizacji sygnałów, prowadzi do utraty możliwości obserwacji i analizy dynamiki wzmacniacza. Dodatkowo, wybór multimetru cyfrowego czy zasilacza napięcia stałego nie dostarcza wymaganych możliwości do kompleksowej analizy. Multimetr cyfrowy, choć przydatny w pomiarach napięcia i prądu, nie jest wystarczający do oceny charakterystyki przenoszenia, gdyż nie pozwala na analizę sygnałów w funkcji czasu, co jest istotne w przypadku wzmacniaczy operacyjnych, które reagują na zmiany sygnałów w czasie. Dlatego kluczowe jest zastosowanie pełnego zestawu odpowiednich narzędzi do przeprowadzenia rzetelnych badań.

Pytanie 12

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Tyrystor
B. Tranzystor bipolarny
C. Dioda LED
D. Warikap
Tyrystor to ciekawy element półprzewodnikowy, który ma cztery warstwy, czyli taką strukturę n-p-n-p. Dzięki temu działa tak, jak działa, i dlatego jest używany w różnych sytuacjach, na przykład w prostownikach czy falownikach. Moim zdaniem, jego właściwości są naprawdę fajne, zwłaszcza w tych aplikacjach, gdzie trzeba kontrolować duże prądy. Tyrystory przewodzą prąd w jednym kierunku i po wyłączeniu nie potrzebują, żeby ktoś im dał impuls, by znowu przestały przewodzić. To bardzo przydatne w automatyce i systemach zasilania, bo można je stosować tam, gdzie szybka zmiana stanu jest niezbędna. Warto pamiętać, że w elektronice dobrze jest ich używać w urządzeniach, które muszą radzić sobie z wysokimi napięciami i prądami. W sumie, są naprawdę ważnym elementem nowoczesnych układów elektronicznych.

Pytanie 13

Jakie złącze służy do podłączenia projektora multimedialnego do komputera PC?

A. LPT
B. VGA
C. PS-2
D. SATA
Złącze VGA (Video Graphics Array) jest standardowym interfejsem stosowanym do przesyłania sygnału wideo z komputera do projektora multimedialnego. To złącze, wprowadzone w 1987 roku, stało się powszechnie stosowanym rozwiązaniem w branży komputerowej i audiowizualnej. Jego główną zaletą jest możliwość przesyłania analogowego sygnału wideo w rozdzielczości do 640x480 pikseli, co w praktyce wystarcza do wyświetlania obrazu w wielu zastosowaniach, w tym prezentacjach czy wykładach. VGA korzysta z 15-pinowego złącza D-sub, które umożliwia łatwe podłączenie do różnych urządzeń. Warto również zwrócić uwagę, że wiele nowoczesnych projektorów i monitorów nadal obsługuje standard VGA, co czyni go kompatybilnym rozwiązaniem w wielu środowiskach. Chociaż technologia ta zaczyna ustępować miejsca nowocześniejszym standardom, takim jak HDMI czy DisplayPort, to VGA wciąż odgrywa istotną rolę w wielu sytuacjach, gdzie wymagana jest prostota i łatwość podłączenia.

Pytanie 14

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BT138-500F
B. BT136-500
C. BTA16-800B
D. BT138-800
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 15

Jakie środki dodatkowej ochrony przed porażeniem elektrycznym powinny być stosowane podczas instalacji sieci komputerowej przy użyciu narzędzi działających na prąd?

A. umieszczenie elementów aktywnych poza zasięgiem dłoni
B. zabezpieczenie różnicowoprądowe
C. izolowanie elementów aktywnych
D. używanie obudów lub osłon
Ochrona przed porażeniem to ważna sprawa, a mamy różne metody, jak izolowanie części czynnych czy różnicowoprądowe zabezpieczenia. Izolowanie tych części ma na celu zminimalizowanie kontaktu z elementami pod napięciem, ale pamiętajmy, że jeśli izolacja się uszkodzi, to i tak jest ryzyko. Stosowanie obudów lub osłon też ma sens, ale to nie wystarczy, jeśli nie dodamy do tego jakiegoś systemu zabezpieczeń, jak te różnicowoprądowe. Umieszczanie części czynnych z dala od ludzi może być skuteczne, ale nie zawsze da się to zrobić, zwłaszcza gdy coś musi obsługiwać operator. Dlatego myślenie tylko o fizycznym oddzieleniu elementów elektrycznych od ludzi to trochę mylące podejście. W praktyce, żeby dobrze chronić się przed porażeniem, musimy połączyć różne metody, bo każda ma swoje ograniczenia. I właśnie te różnicowoprądowe zabezpieczenia są kluczowe, bo szybko reagują na niebezpieczne sytuacje i zwiększają bezpieczeństwo. Bez tego można wpaść w niebezpieczne sytuacje, których lepiej unikać.

Pytanie 16

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. udrożnienie dróg oddechowych
B. masaż serca
C. sztuczne oddychanie
D. układanie w pozycji bocznej
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 17

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. kalafonii
B. cyny
C. ołowiu
D. pasty lutowniczej
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 18

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. wydłużeniem czasu regulacji
B. zmniejszeniem stabilności układu
C. brakiem zmian w czasie regulacji
D. wzrostem amplitudy oscylacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 19

Termin "licznik mikrorozkazów" odnosi się do

A. pętli PLL
B. systemu mikroprocesorowego
C. manipulatora
D. oscyloskopu cyfrowego
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 20

Na zdjęciu przedstawiono

Ilustracja do pytania
A. tyrystory
B. diody
C. tensometry
D. termistory
Termistory to elementy elektroniczne, które zmieniają swoją rezystancję w odpowiedzi na zmiany temperatury. Wyróżniamy dwa główne typy termistorów: NTC (Negative Temperature Coefficient) i PTC (Positive Temperature Coefficient). W przypadku NTC, rezystancja maleje wraz ze wzrostem temperatury, co sprawia, że są one często wykorzystywane w aplikacjach pomiarowych, takich jak termometry elektroniczne, gdzie umożliwiają precyzyjne monitorowanie temperatury. Z kolei PTC zwiększa swoją rezystancję przy wzroście temperatury, co czyni je skutecznymi zabezpieczeniami przed przegrzaniem w urządzeniach elektrycznych. Przykłady zastosowań obejmują kontrolę temperatury w urządzeniach HVAC oraz w układach zasilania, gdzie termistory służą do ochrony komponentów przed uszkodzeniem. Zrozumienie działania termistorów i ich właściwości jest kluczowe w projektowaniu systemów elektronicznych, spełniającym wymagania dotyczące dokładności pomiarów temperatury oraz bezpieczeństwa urządzeń.

Pytanie 21

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Zakres zmian temperatury 15°C÷30°C.
B. Odbiornik słuchawek bezprzewodowych 433 MHz.
C. Napięcie zasilania czujnika 2,9 V.
D. Obce źródło fal radiowych 868 MHz.
Czynniki, które mogą wpływać na działanie czujnika temperatury, wymagają zrozumienia zasad jego funkcjonowania oraz kontekstu jego zastosowania. Zakres zmian temperatury 15°C÷30°C to parametry, w których czujnik powinien prawidłowo działać, ponieważ są zgodne z jego specyfikacją. Odpowiedź sugerująca, że problemem może być odbiornik słuchawek bezprzewodowych pracujący na częstotliwości 433 MHz, jest mylna, ponieważ różne urządzenia pracujące na różnych częstotliwościach nie wchodzą w interakcję, co pozwala na ich jednoczesne działanie w tym samym pomieszczeniu. Napięcie zasilania 2,9 V również mieści się w dopuszczalnym zakresie dla tego typu czujnika, co wyklucza je jako źródło problemów. Często nieprawidłowe wnioski oparte są na mylnym założeniu, że wszystkie urządzenia bezprzewodowe mogą zakłócać swoje działanie, niezależnie od częstotliwości. W rzeczywistości, aby zakłócenia miały miejsce, muszą one występować na tej samej częstotliwości operacyjnej. Zrozumienie zasad działania systemów bezprzewodowych oraz znajomość specyfikacji technicznych urządzeń są kluczowe dla ich prawidłowego wykorzystania, co pozwala na uniknięcie błędnych interpretacji dotyczących wpływu różnych czynników na ich funkcjonowanie.

Pytanie 22

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. koncentrator
B. wzmacniak
C. router
D. konwerter
Wzmacniak jest urządzeniem, które służy do zwiększania mocy sygnału, jednak nie jest odpowiedni do konwersji sygnałów między różnymi mediami transmisyjnymi, jak w przypadku światłowodu i skrętki. Użycie wzmacniaka w takim kontekście mogłoby prowadzić do dalszych strat sygnału i zakłóceń, gdyż wzmacniak nie rozwiązuje problemu różnic w technologii przesyłania danych. Router z kolei to urządzenie, które kieruje ruch sieciowy między różnymi sieciami, ale również nie posiada zdolności konwersji między typami kabli. Routery są niezbędne w złożonych sieciach, gdzie konieczne jest zarządzanie ruchem, jednak nie są one przeznaczone do łączenia światłowodu z kablami miedzianymi. Koncentrator to urządzenie, które umożliwia połączenie wielu urządzeń w sieci lokalnej, ale nie jest w stanie przeprowadzać konwersji sygnału. Zastosowanie koncentratora w sytuacji wymagającej połączenia dwóch różnych typów mediów transmisyjnych byłoby niewłaściwe, prowadząc do problemów z komunikacją i transmisją danych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych niewłaściwych urządzeń, obejmują mylenie funkcji wzmacniaka czy routera z funkcjonalnością konwertera, co może wynikać z braku zrozumienia podstawowych różnic w ich działaniu oraz przeznaczeniu.

Pytanie 23

Podczas wymiany (demontażu) złącza kompresyjnego typu F, jak należy postąpić z tym złączem?

A. odlutować
B. odkręcić
C. wyrwać
D. odciąć
Odpowiedź "odciąć" jest poprawna, ponieważ demontaż złącza kompresyjnego typu F wymaga precyzyjnego podejścia, które zapewnia minimalne uszkodzenia pozostałych elementów systemu. Złącza typu F są najczęściej wykorzystywane w instalacjach telewizyjnych i satelitarnych, gdzie zapewniają stabilne połączenie. W sytuacji, gdy złącze ma być wymienione, odcięcie go z użyciem odpowiednich narzędzi, takich jak nożyce do kabli, gwarantuje, że nie dojdzie do uszkodzenia przewodów czy innych komponentów systemu. Praktyczne zastosowanie tej metody może obejmować sytuacje, gdzie złącze uległo uszkodzeniu mechanicznemu lub korozji. Zgodnie z normami branżowymi, takimi jak ISO 9001, warto stosować procedury, które minimalizują ryzyko niepowodzeń w systemach transmisji sygnału. Ważne jest także, aby po odcięciu złącza przeprowadzić dokładną inspekcję przewodu w celu upewnienia się, że nie ma uszkodzeń, które mogłyby wpływać na jakość sygnału.

Pytanie 24

Do podłączenia elementów systemu alarmowego używa się kabla

A. YTKSY
B. UTP
C. OMY
D. YTDY
Przewód YTDY jest odpowiedni do łączenia elementów systemu alarmowego ze względu na swoje właściwości. Posiada on podwójne ekranowanie, co zapewnia wysoką odporność na zakłócenia elektromagnetyczne, co jest kluczowe w systemach zabezpieczeń, gdzie jakość sygnału jest kluczowa dla prawidłowego działania. Dzięki zastosowaniu odpowiedniej izolacji przewodów, YTDY skutecznie minimalizuje ryzyko fałszywych alarmów spowodowanych zakłóceniami z innych urządzeń. W praktyce, zastosowanie tego typu przewodów w instalacjach alarmowych pozwala na długodystansowe połączenia, co jest istotne w większych obiektach. Przewody YTDY są również zgodne z normami branżowymi, co czyni je preferowanym wyborem w projektowaniu i wykonawstwie systemów alarmowych. Dzięki zastosowaniu tego typu przewodów, instalacje stają się bardziej niezawodne i efektywne.

Pytanie 25

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
B. fototranzystor
C. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
D. transoptor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 26

Skrót "FM" odnosi się do modulacji

A. częstotliwości
B. fazy
C. impulsowo-kodowej
D. amplitudy
Modulacja częstotliwości (FM) to technika, w której informacja jest transmitowana poprzez zmianę częstotliwości fali nośnej. W praktyce oznacza to, że amplituda fali pozostaje stała, natomiast jej częstotliwość ulega modyfikacji w odpowiedzi na sygnał wejściowy, co pozwala na zwiększenie odporności na zakłócenia. Modulacja ta jest szeroko wykorzystywana w radiokomunikacji, w tym w stacjach radiowych FM, ponieważ zapewnia lepszą jakość dźwięku i większy zasięg w porównaniu do innych rodzajów modulacji, takich jak AM (modulacja amplitudy). Przykładem zastosowania FM może być transmisja sygnałów dźwiękowych w radiach samochodowych oraz w systemach komunikacji bezprzewodowej, gdzie kluczowe jest uzyskanie czystości sygnału. Dobry projekt systemu FM musi również uwzględniać normy dotyczące pasma częstotliwości, aby unikać interferencji i zapewnić zgodność z regulacjami na poziomie krajowym i międzynarodowym, takimi jak ITU-R.

Pytanie 27

W instrukcji uruchomienia urządzenia znalazło się polecenie: "....dostroić obwód rezonansowy trymerem do częstotliwości....". Jakie jest inne określenie na trymer?

A. kondensatora dostrojczego
B. cewki regulowanej
C. filtru z regulowaną indukcyjnością
D. potencjometru
Cewka regulowana jest urządzeniem, które zmienia swoją indukcyjność, ale nie jest tym samym co trymer. Cewki regulowane wykorzystywane są w obwodach, gdzie zmiana indukcyjności jest kluczowa, jednak nie pełnią one funkcji dostrajania pojemności obwodu, co jest istotne w kontekście dostrajania częstotliwości. Potencjometr to element, który służy do regulacji napięcia, a nie częstotliwości. Jest szeroko stosowany w aplikacjach audio do regulacji głośności, ale nie ma zastosowania w dostrajaniu obwodów rezonansowych. Filtry z regulowaną indukcyjnością również zmieniają charakterystykę obwodu, jednak podobnie jak cewki, nie pełnią funkcji kondensatorów dostrojczych. W praktyce, często myli się te pojęcia przez brak zrozumienia ich funkcji w obwodach elektronicznych. Kluczowym błędem jest nieodróżnianie pojemności od indukcyjności, gdzie kondensator dostrojczy działa na zasadzie zmiany pojemności, a nie indukcyjności. Zrozumienie tych różnic jest niezbędne dla skutecznego projektowania i diagnozowania układów elektronicznych.

Pytanie 28

Jakim przyrządem dokonuje się pomiaru ciągłości połączeń w instalacjach urządzeń elektronicznych?

A. woltomierzem przy aktywnym zasilaniu elektrycznym
B. amperomierzem przy aktywnym zasilaniu elektrycznym
C. omomierzem przy aktywnym zasilaniu elektrycznym
D. omomierzem przy wyłączonym zasilaniu elektrycznym
Pomiar ciągłości połączeń w instalacjach urządzeń elektronicznych powinien być wykonywany omomierzem przy wyłączonym zasilaniu elektrycznym. Omomierz to przyrząd, który mierzy opór elektryczny, a jego stosowanie w tym kontekście pozwala na dokładną ocenę, czy połączenia są prawidłowe i nie mają przerw. Przy wyłączonym zasilaniu można uniknąć potencjalnych uszkodzeń omomierza oraz zagrożeń związanych z porażeniem prądem. Dobre praktyki w branży zalecają przeprowadzanie takich pomiarów przed przystąpieniem do jakichkolwiek prac serwisowych lub diagnostycznych. Na przykład, w instalacjach elektrycznych, które wymagają regularnej konserwacji, pomiar ciągłości połączeń jest kluczowym krokiem w zapewnieniu bezpieczeństwa i sprawności działania urządzeń. Zgodnie z normami takimi jak PN-EN 60204-1, ciągłość przewodów ochronnych i połączeń jest kluczowym aspektem zapewnienia bezpieczeństwa użytkowania maszyn i urządzeń elektrycznych.

Pytanie 29

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. nadanego przez stację czołową
B. w kanale zwrotnym
C. w poszczególnych gniazdach abonenckich
D. na wyjściach poszczególnych węzłów optycznych
Odpowiedź 'w kanale zwrotnym' jest poprawna, ponieważ operatorzy telewizji kablowej monitorują jakość sygnału u abonentów, analizując parametry sygnału, które są przesyłane w kanale zwrotnym. Kanal zwrotny to część infrastruktury, w której sygnał z gniazd abonenckich wraca do stacji czołowej. Operatorzy mogą na przykład mierzyć poziom sygnału, jego jakość oraz wszelkie zakłócenia, które mogą wpływać na odbiór. W praktyce, pomiar tych parametrów pozwala na szybką diagnostykę ewentualnych problemów technicznych, co jest kluczowe dla utrzymania wysokiej jakości usług. W standardach branżowych, takich jak SCTE (Society of Cable Telecommunications Engineers), podkreśla się znaczenie monitorowania kanału zwrotnego jako elementu zapewniającego ciągłość i niezawodność usług telewizyjnych. Dzięki regularnym pomiarom, operatorzy mogą także dostosowywać swoje usługi do potrzeb klientów, co jest istotnym aspektem konkurencyjności na rynku telekomunikacyjnym.

Pytanie 30

Podczas konserwacji systemu telewizyjnego, oceniając jakość sygnału w gniazdku abonenckim, co należy zmierzyć?

A. MER i BER
B. moc
C. prąd
D. napięcie
Odpowiedź MER i BER jest prawidłowa, ponieważ są to kluczowe wskaźniki jakości sygnału w instalacjach telewizyjnych. MER (Modulation Error Ratio) oraz BER (Bit Error Rate) służą do oceny jakości sygnału cyfrowego. MER mierzy stosunek błędów modulacji do sygnału, a jego wysoka wartość wskazuje na dobrą jakość sygnału, co jest kluczowe dla prawidłowego odbioru sygnału telewizyjnego. Z kolei BER informuje nas o liczbie błędnych bitów w transmisji, co pozwala na ocenę stabilności i niezawodności połączenia. W praktyce, podczas konserwacji systemów telewizyjnych, technicy powinni używać dedykowanych mierników, które umożliwiają pomiar tych wartości. Przykładowo, w systemach DVB-T/T2, stosowanie wartości MER powyżej 30 dB jest zalecane dla zapewnienia wysokiej jakości odbioru. Dobre praktyki w tym zakresie obejmują również regularne sprawdzanie parametrów sygnału w różnych porach dnia, aby zidentyfikować potencjalne problemy związane z zakłóceniami w otoczeniu.

Pytanie 31

Które z podanych elementów układów elektrycznych mogą być sprzęgnięte magnetycznie?

A. Cewki
B. Tranzystory
C. Diody
D. Rezystory
Cewki są elementami obwodów elektrycznych, które mogą być sprzężone magnetycznie dzięki zjawisku indukcji elektromagnetycznej. Gdy przez cewkę przepływa prąd, wytwarza ona pole magnetyczne. Jeśli w pobliżu znajduje się druga cewka, to zmiana prądu w pierwszej cewce może indukować prąd w drugiej. To zjawisko jest szeroko wykorzystywane w transformatorach, które są kluczowymi urządzeniami w systemach zasilania. Transformator składa się z dwóch cewek na wspólnym rdzeniu magnetycznym i umożliwia zmianę napięcia prądu przemiennego. Ponadto, sprzężenie magnetyczne jest podstawą działania silników elektrycznych, które przekształcają energię elektryczną w mechaniczną, a także w indukcyjnych elementach elektronicznych wykorzystywanych w różnych aplikacjach, takich jak filtry czy oscylatory. Dobre praktyki w projektowaniu obwodów elektrycznych uwzględniają odpowiednią separację i proporcje cewek, aby zminimalizować straty energii oraz zapewnić optymalne działanie systemu.

Pytanie 32

Skrót ADSL odnosi się do technologii, która pozwala na

A. transmisję informacji cyfrowych za pośrednictwem fal radiowych
B. odbieranie cyfrowej telewizji naziemnej
C. kompresję materiałów audio i wideo
D. szerokopasmowy asymetryczny dostęp do sieci teleinformatycznych
ADSL, czyli Asymmetrical Digital Subscriber Line, to technologia szerokopasmowego dostępu do internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych cyfrowych. Jej główną cechą jest asymetryczność, co oznacza, że prędkość pobierania danych (downstream) jest znacznie wyższa niż prędkość wysyłania danych (upstream). Dzięki temu ADSL jest szczególnie przystosowane do typowego użytkowania, gdzie użytkownicy częściej pobierają dane (np. przeglądanie stron internetowych, oglądanie filmów) niż je wysyłają. Przykładem zastosowania ADSL jest domowe lub biurowe łącze internetowe, które umożliwia korzystanie z szerokopasmowego dostępu bez potrzeby instalacji kosztownych infrastrukturalnych rozwiązań. ADSL jest zgodne z międzynarodowymi standardami ITU-T G.992.1, co zapewnia interoperacyjność między różnymi urządzeniami i dostawcami usług. Ponadto, ADSL jest często wykorzystywane w kontekście usług Triple Play, które integrują dostęp do internetu, telewizji i telefonii w jedną ofertę.

Pytanie 33

Jakie oznaczenie skrótowe stosuje się dla komponentów obwodów elektronicznych, które są przeznaczone do montażu powierzchniowego w drukowanych płytkach?

A. SSD
B. SMD
C. CCD
D. LCD
Skrót SMD oznacza 'Surface Mount Device', czyli elementy elektroniczne przeznaczone do montażu powierzchniowego. Technologia SMD zrewolucjonizowała produkcję elektroniki, umożliwiając miniaturyzację układów i zwiększenie gęstości montażu. Elementy SMD są montowane bezpośrednio na powierzchni płytki drukowanej (PCB), co eliminuje potrzebę wiercenia otworów, jak ma to miejsce w przypadku tradycyjnych komponentów przewlekanych. Dzięki temu, płytki PCB mogą być cieńsze, co jest kluczowe w nowoczesnych urządzeniach, takich jak smartfony, laptopy i urządzenia IoT. W branży elektronicznej standardy IPC (Institute for Printed Circuits) promują zasady projektowania i montażu elementów SMD, co zapewnia wysoką jakość i niezawodność produktów. Dodatkowo, stosowanie SMD przyczynia się do zwiększenia efektywności produkcji, ponieważ automatyzacja montażu pozwala na szybsze i tańsze wytwarzanie. Elementy te są również dostępne w różnych rozmiarach, co daje inżynierom dużo swobody w projektowaniu obwodów.

Pytanie 34

Aby przeprowadzić konserwację systemu alarmowego, należy

A. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
B. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
C. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
D. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
Dokładne sprawdzenie reakcji czujek na ruch, daty wyświetlanej na manipulatorze oraz napięcia akumulatora jest kluczowe w procesie konserwacji systemu alarmowego. Czujki ruchu są podstawowym elementem zabezpieczeń, a ich regularne testowanie pozwala upewnić się, że działają zgodnie z normami i są w pełni funkcjonalne. Przykładowo, w przypadku, gdy czujki nie reagują na ruch, może to prowadzić do fałszywego poczucia bezpieczeństwa oraz zwiększonego ryzyka włamania. Sprawdzanie daty na manipulatorze jest istotne, gdyż wiele systemów alarmowych ma przypisane terminy do aktualizacji oprogramowania czy wymiany baterii, co pomaga w utrzymaniu ich efektywności. Napięcie akumulatora również jest czynnikiem krytycznym, ponieważ niewłaściwy poziom napięcia może skutkować awarią systemu w sytuacji braku zasilania. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie regularnych przeglądów i konserwacji, co jest kluczowe dla zapewnienia bezpieczeństwa obiektów. Wiedza na temat tych procedur pozwala nie tylko na poprawne funkcjonowanie systemu, ale także na zwiększenie jego żywotności oraz niezawodności.

Pytanie 35

W trakcie udzielania pomocy osobie z lekkim poparzeniem, co należy zrobić z obszarem urazu?

A. polewać zimną wodą
B. posmarować tłuszczem
C. przemyć spirytusem
D. zabandażować
Kiedy udzielamy pierwszej pomocy osobie, która ma lekkie poparzenie, najważniejsze jest, żeby polewać to miejsce zimną wodą. To naprawdę pomaga schłodzić skórę i sprawia, że ból jest mniejszy, a ryzyko dalszych uszkodzeń też maleje. Zimna woda działa jak naturalny środek przeciwzapalny, co może zapobiec powstawaniu bolesnych pęcherzy. Jeśli chodzi o czas, dobrze jest polewać przez przynajmniej 10-20 minut. Pamiętajmy, że woda nie powinna być lodowata, bo to może prowadzić do problemów z hipotermią. Gdy nie ma dostępu do wody, można spróbować użyć chłodzących kompresów. Takie podejście jest ważne, bo szybkie działanie w przypadku poparzenia ma duże znaczenie według wytycznych Międzynarodowej Rady Resuscytacji (ILCOR). Po schłodzeniu warto delikatnie osuszyć skórę i przykryć ranę odpowiednim opatrunkiem, żeby nie doszło do zakażenia. To wszystko, co opisałem, naprawdę ułatwia gojenie i zmniejsza ryzyko powikłań.

Pytanie 36

Które z działań nie jest konieczne podczas konserwacji bramy przesuwnej?

A. Smarowanie elementów ruchomych napędu
B. Ponowne programowanie pilotów zdalnego sterowania
C. Sprawdzenie ustawień krańcowych bramy
D. Weryfikacja działania zabezpieczeń mechanicznych
Odpowiedź "Ponowne programowanie pilotów zdalnego sterowania" jest poprawna, ponieważ nie jest to czynność niezbędna do codziennej konserwacji bramy przesuwnej. Regularna konserwacja powinna skupiać się na zapewnieniu prawidłowego działania mechanizmów bramy oraz jej bezpieczeństwa. Sprawdzanie działania zabezpieczeń mechanicznych jest kluczowe, aby uniknąć wypadków i uszkodzeń. Przesmarowanie części ruchomych napędu zapewnia płynność ruchu oraz minimalizuje zużycie elementów, co może wydłużyć ich żywotność. Sprawdzenie położeń krańcowych bramy jest również istotne, ponieważ niewłaściwe ustawienie tych położeń może prowadzić do uszkodzenia bramy oraz systemu napędowego. Warto zaznaczyć, że programowanie pilotów zdalnego sterowania powinno być przeprowadzane tylko w przypadku, gdy zmienia się ich ustawienie lub dodawane są nowe urządzenia. Dlatego nie jest to czynność rutynowa związana z konserwacją bramy.

Pytanie 37

Jakie jest zadanie konwertera satelitarnego?

A. regulacja napięcia w obwodzie antenowym
B. przesyłanie sygnału z odbiornika satelitarnego do satelity
C. dopasowywanie reaktancji anteny satelitarnej
D. przekazywanie sygnału z satelity do odbiornika satelitarnego
Konwerter satelitarny odgrywa kluczową rolę w systemach telekomunikacyjnych, umożliwiając efektywne przesyłanie sygnałów z satelitów do odbiorników satelitarnych. Jego główną funkcją jest odbieranie sygnałów radiowych emitowanych przez satelity geostacjonarne, ich konwersja na niższe częstotliwości i przesyłanie ich do odbiornika. Dzięki temu możliwe jest korzystanie z różnych usług, takich jak telewizja satelitarna, internet satelitarny czy telekomunikacja. Przykładem zastosowania konwertera jest system dostarczania sygnału telewizyjnego do domów, gdzie konwerter umieszczony na antenie zbiera sygnał z satelity, a następnie przetworzony sygnał jest przesyłany do dekodera w telewizorze. Zgodnie z najlepszymi praktykami w branży, konwertery powinny być dostosowane do specyfikacji LNB (Low Noise Block), aby zminimalizować szumy i zapewnić optymalną jakość sygnału. Dodatkowo, konwertery muszą być zgodne z normami ITU i ETSI, co gwarantuje ich interoperacyjność w globalnych systemach satelitarnych.

Pytanie 38

Kiedy w obwodzie prądu stałego rezystancja obciążenia jest taka sama jak rezystancja wewnętrzna źródła, to mówi się

A. o stanie nieustalonym
B. o zwarciu w obwodzie
C. o przerwie w obwodzie
D. o dopasowaniu energetycznym
Odpowiedź "o dopasowaniu energetycznym" jest prawidłowa, ponieważ odnosi się do sytuacji, w której rezystancja obciążenia równa jest rezystancji wewnętrznej źródła prądu. W takim przypadku osiągamy maksymalną transfer energii do obciążenia, co jest zasadą znaną jako twierdzenie o maksymalnym transferze mocy. Z praktycznego punktu widzenia oznacza to, że urządzenie podłączone do źródła będzie działać z największą efektywnością, ponieważ straty energii są minimalne. To zjawisko jest często wykorzystywane w aplikacjach audio, gdzie głośniki muszą być dobrze dopasowane do wzmacniacza, aby uzyskać optymalną jakość dźwięku. W inżynierii elektrycznej i elektronicznej, dopasowanie energetyczne jest kluczowe przy projektowaniu układów, aby zapewnić ich stabilność i wydajność. Na przykład, w sieciach telekomunikacyjnych, dopasowanie impedancji jest ważne dla minimalizacji refleksji sygnału i utraty danych. Zatem, zrozumienie tej zasady pozwala inżynierom na skuteczne projektowanie systemów elektronicznych.

Pytanie 39

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Wzmacniacz mocy
B. Powielacz wysokiego napięcia
C. Zintegrowana głowica w.cz.
D. Układ odchylania w pionie
Głowica zintegrowana w.cz. odpowiada za odbiór sygnału telewizyjnego, a jej uszkodzenie zwykle manifestuje się brakiem sygnału lub trudnościami w jego dekodowaniu, co nie prowadziłoby do iskrzenia ani zapachu ozonu. Układ odchylania pionowego ma na celu pionowe skanowanie obrazu, a uszkodzenie tego układu najczęściej skutkuje zniekształceniem obrazu lub jego całkowitym brakiem, ale nie generuje charakterystycznych symptomów związanych z wysokim napięciem. Wzmacniacz mocy odpowiada za wzmacnianie sygnału audio i wideo, a jego awaria objawia się najczęściej brakiem dźwięku lub obrazu, jednak nie wiąże się z występowaniem iskrzenia czy zapachu ozonu. Typowe błędy myślowe prowadzące do błędnych wniosków często wynikają z braku zrozumienia, jak poszczególne elementy odbiornika telewizyjnego współdziałają ze sobą. Wiedza o tym, jak funkcjonuje powielacz wysokiego napięcia oraz jego rola w systemie, jest kluczowa dla właściwej diagnostyki oraz skutecznych napraw, co podkreśla znaczenie edukacji i ciągłego doskonalenia w tej dziedzinie.

Pytanie 40

Wykonanie polecenia NOP przez mikrokontroler z rodziny '51

A. nie spowoduje żadnych działań, zajmie jedynie 1 cykl maszynowy
B. wywoła skok warunkowy do adresu zarejestrowanego w akumulatorze
C. spowoduje przesunięcie zawartości akumulatora w prawo
D. wykona logiczny iloczyn na odpowiednich bitach argumentów
Wielu programistów błędnie interpretuje instrukcję NOP jako mechanizm do przetwarzania danych, co prowadzi do nieporozumień na temat jej funkcji. Obie odpowiedzi sugerujące przesunięcie zawartości akumulatora w prawo oraz wykonanie logicznego iloczynu na bitach argumentów są całkowicie niezgodne z definicją NOP. Rozkaz NOP nie modyfikuje żadnych rejestrów ani danych w pamięci, co czyni go pasywną instrukcją. Przesunięcie w prawo wymagałoby użycia odpowiedniej instrukcji, takiej jak 'SHR' (Shift Right), która specyficznie przesuwa bity w akumulatorze, a tym samym może wpłynąć na jego zawartość. Podobnie, wykonanie operacji logicznej wymagałoby wskazania konkretnych operandów oraz zastosowania właściwych instrukcji, takich jak 'AND' czy 'OR'. Skok warunkowy, który sugeruje kolejna odpowiedź, również jest niepoprawny, ponieważ wymaga on konkretnego warunku oraz adresu docelowego, co jest sprzeczne z ideą NOP jako instrukcji bezoperacyjnej. Błędy te często wynikają z mylnego zrozumienia podstawowych zasad działania mikrokontrolerów oraz ich architektury, co podkreśla znaczenie solidnych podstaw w programowaniu niskopoziomowym.