Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 14 maja 2025 12:44
  • Data zakończenia: 14 maja 2025 12:54

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak monitoruje się jakość sygnału telewizyjnego u poszczególnych abonentów telewizji kablowej?

A. współczynnik szumów w sygnale dostarczanym przez stację czołową do abonentów
B. poziom sygnału przesyłanego przez stację czołową do abonentów
C. współczynnik szumów w kanale zwrotnym poszczególnych abonentów
D. poziom sygnału wizyjnego w gniazdach abonenckich różnych użytkowników
Odpowiedź dotycząca monitorowania jakości sygnału telewizyjnego poprzez współczynnik szumów w kanale zwrotnym poszczególnych abonentów jest trafna, ponieważ kanał zwrotny jest kluczowym elementem w systemach telewizji kablowej. Współczynnik szumów pozwala na ocenę stosunku sygnału do szumów, co jest istotne dla zapewnienia wysokiej jakości transmisji. W praktyce, monitorowanie tego parametru umożliwia szybkie wykrywanie usterek oraz identyfikowanie obszarów, gdzie jakość sygnału może być niedostateczna. Stosowanie standardów, takich jak DOCSIS, zapewnia odpowiednie metodyki pomiarowe, co pozwala operatorom na efektywne zarządzanie siecią. Dzięki tym pomiarom, operatorzy mogą podejmować działania korygujące, takie jak regulacja wzmacniaczy lub dostosowanie konfiguracji sieci, co w konsekwencji prowadzi do zadowolenia abonentów i redukcji skarg dotyczących jakości usług.

Pytanie 2

Multiswitch zainstalowany w systemie antenowym, mający 5 wejść, w tym jedno dla telewizji naziemnej, umożliwia odbiór wszystkich kanałów u każdego abonenta?

A. z 4 satelitów
B. z 2 satelitów
C. z 1 satelity
D. z 5 satelitów
Multiswitch to urządzenie stosowane w instalacjach antenowych, które umożliwia rozdzielenie sygnału z jednego źródła na wiele wyjść, co pozwala na jednoczesny odbiór sygnału przez różnych abonentów. W przypadku multiswitcha z pięcioma wejściami, z których jedno jest przeznaczone do telewizji naziemnej, oznacza to, że pozostałe cztery wejścia są przeznaczone do odbioru sygnału satelitarnego. Prawidłowa odpowiedź "z 1 satelity" wskazuje na fakt, że multiswitch może obsługiwać sygnał z jednego źródła satelitarnego, który jest następnie rozdzielany do różnych odbiorników, co jest zgodne z najlepszymi praktykami w projektowaniu systemów antenowych. Przykładowo, instalacja może korzystać z jednego talerza satelitarnego, który odbiera sygnał z konkretnej satelity, a następnie rozdziela go do różnych telewizorów w domu, co jest wydajnym rozwiązaniem, minimalizującym koszty i uproszczającym instalację. Warto zwrócić uwagę, że właściwe dobranie multiswitcha do konkretnego systemu antenowego jest istotnym elementem zapewniającym wysoką jakość odbioru.

Pytanie 3

Jaki jest zakres pomiarowy watomierza, jeśli jego zakres prądowy wynosi 2 A, a zakres napięciowy to 200 V?

A. 400 W
B. 100 W
C. 800 W
D. 200 W
Kiedy patrzymy na błędne odpowiedzi, warto zrozumieć, jak ważne są zasady obliczania mocy elektrycznej. Niektórzy mogą mylić zakresy napięciowe z prądowymi, co prowadzi do błędnych wyników. Na przykład, odpowiedzi 200 W, 800 W i 100 W to nie jest to, co szukamy. 200 W może sugerować, że ktoś zrobił błąd w obliczeniach, bo może użył za niskiego napięcia lub prądu. Natomiast 800 W to już przekracza nasze założenia, bo 2 A * 200 V to 400 W, więc nie powinno być więcej. A 100 W? To też wynik pomyłki, pewnie związany z niewłaściwym połączeniem liczb. Często takie błędy są wynikiem braku zrozumienia podstawowych wzorów związanych z napięciem, prądem i mocą. W pracy inżyniera naprawdę ważne jest, żeby dobrze rozumieć te zasady, bo to pomaga uniknąć problemów i błędów w obliczeniach – ma to kluczowe znaczenie dla bezpieczeństwa i efektywności energetycznej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Tłumienność wynosząca 1 dB/km wskazuje, że na odcinku światłowodu o długości 10 km dochodzi do rozproszenia

A. 80% wartości mocy sygnału przychodzącego
B. 20% wartości mocy sygnału przychodzącego
C. 90% wartości mocy sygnału przychodzącego
D. 10% wartości mocy sygnału przychodzącego
Tłumienność światłowodu wynosząca 1 dB/km oznacza, że na każdy kilometr sygnał traci 1 dB mocy. Czyli jak mamy odcinek 10 km, to całkowite tłumienie wynosi 10 dB. Można to zobaczyć w wzorze: P_out = P_in * 10^(-L/10), gdzie L to tłumienie w dB, a P_in to moc sygnału na początku. Jak L wynosi 10 dB, to P_out wychodzi tak: P_out = P_in * 10^(-10/10) = P_in * 0.1. Ostatecznie oznacza to, że 10% mocy sygnału przechodzi na końcu, co sugeruje, że 90% mocy ucieka. Ta wiedza jest naprawdę przydatna, jak się projektuje systemy komunikacji optycznej, bo musimy ogarniać, jak najmniej stracić na jakości sygnału. Na przykład, w sieciach telekomunikacyjnych inżynierowie muszą planować długości odcinków światłowodów i ich tłumienność, żeby wszystko działało jak najlepiej.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. błędne podłączenie kabla
B. uszkodzenie izolacji
C. zbyt dużą rezystancję pętli
D. przerwanie jednej z żył
Zbyt duża rezystancja pętli nie jest bezpośrednio związana ze wzrostem pojemności skutecznej torów transmisyjnych. Wysoka rezystancja w rzeczywistości może wskazywać na problemy z przewodnictwem, takie jak korozja lub nieodpowiednie połączenia, ale nie prowadzi do zwiększenia pojemności. Przerwanie jednej z żył również nie jest odpowiedzialne za wzrost pojemności, lecz za całkowite zablokowanie sygnału, co uniemożliwia transmisję danych. Izolacja kabla, która uległa uszkodzeniu, może wprowadzać dodatkowe pojemności w obwodzie, a przerwanie żyły skutkuje brakiem transmisji sygnału. Nieprawidłowe podłączenie kabla może prowadzić do problemów z połączeniem, jednak nie należy mylić tego z pojemnością. Każdy z tych problemów może być mylnie interpretowany jako przyczyna wzrostu pojemności, co prowadzi do błędnych wniosków. Zrozumienie różnicy między rezystancją, pojemnością i ich wpływem na transmisję danych jest kluczowe dla diagnostyki sieci. Właściwe podejście do analizy stanu kabelków wymaga uwzględnienia wszystkich aspektów ich budowy oraz środowiska, w którym funkcjonują, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Zanim przystąpimy do konserwacji jednostki centralnej komputera stacjonarnego podłączonego do lokalnej sieci, najpierw powinniśmy

A. otworzyć obudowę jednostki centralnej
B. uziemić metalowe elementy obudowy
C. wyciągnąć przewód sieciowy
D. odłączyć przewód zasilający
Odpowiedź 'odłączyć przewód zasilający' jest kluczowa przed przystąpieniem do konserwacji jednostki centralnej komputera, ponieważ wyłącza zasilanie urządzenia. W przypadku konserwacji, takiej jak czyszczenie komponentów czy wymiana podzespołów, istnieje ryzyko zwarcia, które może prowadzić do uszkodzenia sprzętu lub zagrożenia dla zdrowia użytkownika. Odłączenie przewodu zasilającego jest pierwszym krokiem w procedurze bezpiecznej konserwacji i jest zgodne z najlepszymi praktykami w branży IT. Przykładowo, w standardach OSHA (Occupational Safety and Health Administration) oraz IEC (International Electrotechnical Commission) podkreśla się znaczenie odłączania zasilania przed jakimikolwiek pracami serwisowymi. Warto również pamiętać o używaniu odpowiednich narzędzi, takich jak opaski antyelektrostatyczne, aby zminimalizować ryzyko uszkodzenia komponentów przez ładunki elektrostatyczne. W prawidłowej konserwacji istotne jest, aby zawsze działać zgodnie z zaleceniami producenta sprzętu, co dodatkowo podnosi poziom bezpieczeństwa i efektywności działań serwisowych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe wzrośnie
B. prądowe pozostanie na tym samym poziomie
C. napięciowe zostanie niezmienne
D. napięciowe zmniejszy się
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Kompasu
B. Kątomierza
C. Multimetru
D. Miernika sygnału
Multimetr nie jest przyrządem stosowanym do ustawiania anten satelitarnych, ponieważ jego główne funkcje dotyczą pomiaru napięcia, prądu oraz rezystancji. W kontekście instalacji anten satelitarnych kluczowe jest precyzyjne ustawienie kierunku anteny, aby maksymalizować odbiór sygnału. W tym celu wykorzystuje się inne urządzenia, takie jak mierniki sygnału, które umożliwiają bezpośredni pomiar jakości i siły sygnału satelitarnego. Dodatkowo, kompas może być pomocny przy orientacji anteny względem południa, co jest istotne przy ustawianiu anteny na odpowiednią satelitę. Kątomierz z kolei może służyć do precyzyjnego ustawienia kąta nachylenia anteny. W praktyce instalatorzy anten korzystają z tych narzędzi, aby zapewnić optymalne warunki odbioru, co jest kluczowe dla uzyskania wysokiej jakości sygnału telewizyjnego. Dobrą praktyką jest również stosowanie odpowiednich standardów instalacji, takich jak zalecenia producentów anten, co pozwala na uzyskanie najlepszych rezultatów.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Czerwony.
B. Żółto-zielony.
C. Jasnoniebieski.
D. Czarny.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 22

Przewody zasilające łączące antenę z odbiornikiem określa się mianem

A. dyrektorami
B. fiderami
C. symetryzatorami
D. dipolami
Odpowiedzi takie jak 'direktorami', 'dipolami' i 'symetryzatorami' są niewłaściwe, bo każdy z tych terminów odnosi się do różnych elementów w systemach antenowych i komunikacyjnych. Dierektory to części, które używa się w antenach kierunkowych, jak Yagi, ale nie są one linią zasilającą. Dipole to rodzaj anteny i choć mogą być używane w radiu, to też nie są linią zasilającą. Symetryzatory to urządzenia, które ułatwiają dopasowanie impedancji, ale nie transportują sygnału między anteną a odbiornikiem. Bardzo łatwo pomylić te pojęcia i ich znaczenie, a to prowadzi do nieporozumień w projektowaniu systemów RF. Ważne jest, żeby dobrze rozumieć rolę fiderów, bo to może pomóc uniknąć problemów z jakością sygnału i efektywnością systemu antenowego. Dlatego warto znać różnice między tymi terminami, żeby poprawnie je stosować w praktyce.

Pytanie 23

Pomiar temperatury radiatora służącego do chłodzenia mikroprocesora w urządzeniu elektronicznym można przeprowadzić przy użyciu

A. rotametru
B. tensometru
C. pirometru
D. manometru
Pirometr to narzędzie służące do bezdotykowego pomiaru temperatury powierzchni ciał stałych, cieczy oraz gazów. Jego działanie opiera się na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt. W przypadku radiatora chłodzącego mikroprocesor, pirometr pozwala na szybkie i precyzyjne określenie temperatury, co jest kluczowe dla zapewnienia efektywności chłodzenia oraz zapobiegania przegrzewaniu się procesora. W wielu zastosowaniach przemysłowych oraz w laboratoriach, pirometry są standardowym wyposażeniem, pozwalającym na monitorowanie temperatury w czasie rzeczywistym. Dzięki nim można uniknąć kontaktu z gorącymi elementami, co wpisuje się w zasady bezpieczeństwa pracy. W praktyce, pirometry są wykorzystywane nie tylko w elektronice, ale także w inżynierii materiałowej, medycynie oraz wielu innych dziedzinach, gdzie kontrola temperatury odgrywa kluczową rolę. Ich zastosowanie jest zgodne z normami ISO dotyczącymi pomiarów temperatury, co potwierdza ich wiarygodność oraz dokładność.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Źródło prądowe oparte na tranzystorze bipolarnym
B. Wzmacniacz z tranzystorem bipolarnym w układzie OC
C. Ogranicznik prądowy zrealizowany w technologii bipolarnej
D. Wzmacniacz z tranzystorem bipolarnym w układzie OB
Wtórnik emiterowy, znany również jako wzmacniacz emiterowy, to układ elektroniczny oparty na tranzystorze bipolarnym, który działa w konfiguracji OC (emiter wspólny). Jego główną cechą jest to, że sygnał wyjściowy jest pobierany z emitera tranzystora, co pozwala na uzyskanie wysokiej impedancji wejściowej oraz niskiej impedancji wyjściowej. Dzięki temu, wtórnik emiterowy jest szczególnie efektywny w aplikacjach, gdzie wymagana jest izolacja pomiędzy różnymi stopniami układu. Przykładem zastosowania wtórnika emiterowego może być tor sygnałowy w systemach audio, gdzie zapewnia on stabilne napięcie wyjściowe niezależnie od obciążenia. Zastosowania w branży obejmują również układy zasilające, gdzie wtórnik emiterowy stabilizuje napięcie na poziomie wymaganym przez podłączone urządzenia. Dobre praktyki projektowe sugerują stosowanie wtórników emiterowych w przypadkach, gdy zachowanie integralności sygnału jest kluczowe, a obciążenia są zmienne.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Kontroluje pracę siłownika
B. Rejestruje działanie sieci
C. Przekształca sygnał z czujnika
D. Wizualizuje procesy przemysłowe
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Przedstawione w tabeli parametry techniczne dotyczą

Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
BateriaCR123A3V
Czas pracy na bateriido 3 lat
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Zakres temperatur pracy-10°C ÷ +55°C
Maksymalna wilgotność93±3%
Wymiary obudowy czujki26 x 112 x 29 mm
Wymiary obudowy magnesu do montażu powierzchniowego26 x 13 x 19 mm
Wymiary podkładki pod magnes do montażu powierzchniowego26 x 13 x 3,5 mm
Wymiary obudowy magnesu do montażu wpuszczanego28 x 10 x 10 mm
Masa56 g

A. czujki zalania.
B. czujki kontaktronowej.
C. bariery podczerwieni.
D. czujki dymu.
Poprawna odpowiedź to czujka kontaktronowa, ponieważ parametry techniczne przedstawione w tabeli idealnie odpowiadają charakterystyce tego typu urządzenia. Czujki kontaktronowe składają się z dwóch elementów: obudowy czujki oraz magnesu, co jest kluczowe dla ich działania. Ich głównym zastosowaniem jest monitorowanie otwarcia drzwi lub okien. W momencie, gdy ruchoma część (np. skrzydło drzwiowe) oddala się od części stałej (np. ramy drzwiowej), dochodzi do rozłączenia obwodu, co inicjuje alarm bezpieczeństwa. Przykłady praktycznego zastosowania czujek kontaktronowych to systemy alarmowe w domach i biurach, które zapewniają dodatkowy poziom zabezpieczeń. Warto również zaznaczyć, że czujki te są często stosowane w połączeniu z innymi systemami zabezpieczeń, co może zwiększyć ich efektywność. W branży bezpieczeństwa standardy dotyczące czujek są ściśle regulowane, a ich montaż i użycie powinny odbywać się zgodnie z normami ISO 9001 oraz zaleceniami producentów.

Pytanie 33

Aby umożliwić niezależny odbiór sygnałów satelitarnych przez dwa odbiorniki satelitarne, używa się konwertera

A. Monoblock
B. Quad
C. Twin
D. Unicable
Odpowiedź "Twin" jest jak najbardziej na miejscu! Konwerter typu Twin ma to do siebie, że pozwala na odbieranie sygnałów satelitarnych przez dwa odbiorniki w tym samym czasie. Ma dwa wyjścia, co znaczy, że każdy odbiornik działa niezależnie. To super sprawa w sytuacjach, gdzie potrzebujemy różnych kanałów w różnych pokojach. Dzięki temu jeden może oglądać jeden program, a drugi zupełnie coś innego. To naprawdę wygodne! W domach, gdzie telewizja satelitarna jest popularna, konwerter Twin jest częstym wyborem. Co więcej, nie musimy używać rozdzielaczy, które mogą osłabiać sygnał. Dobrze jest też wybierać konwertery zgodne z normami EN 50494, bo to zapewnia lepszą jakość sygnału i mniejsze zakłócenia. Pamiętajmy, że konwertery Twin są też świetne w systemach, gdzie sygnał jest ograniczony, więc to istotny element nowoczesnych instalacji satelitarnych.

Pytanie 34

Brak koloru żółtego w telewizorze może być spowodowany uszkodzeniami w torze kolorystycznym

A. czerwonego lub zielonego
B. niebieskiego i czerwonego
C. zielonego lub niebieskiego
D. zielonego i niebieskiego
Dobra robota z odpowiedzią! Kolor żółty w systemie RGB uzyskuje się, łącząc mocne światło czerwone i zielone. Jeśli w torze koloru coś szwankuje, na przykład w torze czerwonym albo zielonym, to telewizor będzie miał problem z wyświetleniem żółtego. A z tymi telewizorami LCD i LED to jest tak, że każdy piksel ma subpiksele z tych trzech kolorów - czerwonego, zielonego i niebieskiego, które razem tworzą całą paletę kolorów. Standardy jak sRGB mówią, jak kolory powinny wyglądać, a ich prawidłowe wyświetlenie jest mega istotne dla jakości obrazu. Więc jak nie widzisz koloru żółtego, warto sprawdzić te tory kolorystyczne, żeby znaleźć, co może być uszkodzone. To jest zgodne z najlepszymi praktykami, które stosujemy w serwisie sprzętu wideo.

Pytanie 35

Router to urządzenie wykorzystywane w warstwie

A. sesji
B. aplikacji
C. sieci
D. prezentacji
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 36

Podłączenie telewizyjnej anteny lub odbiornika TV o wejściu symetrycznym przy użyciu przewodu współosiowego wymaga stosowania

A. linii rezonansowych równoległych
B. linii nierezonansowych typu delta
C. falowodów
D. symetryzatorów
Odpowiedź 'symetryzatorów' jest poprawna, ponieważ symetryzator jest urządzeniem stosowanym do przekształcania sygnałów z linii asymetrycznych, takich jak przewody współosiowe, na sygnały symetryczne. W kontekście połączeń antenowych, symetryzatory są kluczowe do efektywnego przesyłania sygnału do odbiornika telewizyjnego, który często ma wejście symetryczne. Użycie symetryzatora pozwala na eliminację problemów związanych z niedopasowaniem impedancji, co może prowadzić do strat sygnału lub odbić. Przykładem zastosowania symetryzatorów są instalacje antenowe, gdzie stosuje się je do podłączenia anteny o wyjściu symetrycznym do odbiornika telewizyjnego. Standardy branżowe, takie jak te dotyczące instalacji antenowych, podkreślają znaczenie stosowania symetryzatorów w celu uzyskania optymalnej jakości odbioru, co jest szczególnie istotne w przypadku sygnałów telewizyjnych wymagających wysokiej integralności i niskiego poziomu zakłóceń. Warto również wspomnieć, że symetryzatory mogą występować w różnych formach, w tym jako transformatorów, i są projektowane tak, aby spełniały konkretne wymagania dotyczące pasma przenoszenia i tłumienia sygnału.

Pytanie 37

Jaki czujnik pozwala na pomiar naprężeń mechanicznych w konstrukcjach?

A. Czujnik pojemnościowy
B. Czujnik hallotronowy
C. Czujnik tensometryczny
D. Czujnik magnetyczny
Czujnik tensometryczny jest specjalistycznym urządzeniem, które umożliwia pomiar naprężeń mechanicznych w elementach konstrukcyjnych poprzez wykorzystanie zasady zmiany oporu elektrycznego pod wpływem odkształceń. Tensometry działają na bazie efektu tensometrycznego, gdzie cienkie przewody lub folia, umieszczone na powierzchni mierzonego elementu, zmieniają swoją rezystancję w zależności od odkształceń mechanicznych. Przykłady zastosowania czujników tensometrycznych obejmują monitorowanie naprężeń w mostach, budynkach oraz innych konstrukcjach inżynierskich, co pozwala na wczesne wykrywanie uszkodzeń i zapewnia bezpieczeństwo użytkowników. Stanowią one integralną część systemów monitorowania strukturalnego, które są zgodne z normami, takimi jak ISO 3340, dotyczące oceny stanu technicznego obiektów. Dzięki ich wysokiej dokładności i niezawodności, czujniki tensometryczne są kluczowym narzędziem w inżynierii, umożliwiającym projektowanie bezpieczniejszych i bardziej efektywnych konstrukcji.

Pytanie 38

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 200 V AC
B. 100 V DC
C. 750 V AC
D. 500 V DC
Odpowiedź 200 V AC jest prawidłowa, ponieważ przy pomiarach napięcia przemiennego, zaleca się wybór zakresu, który jest co najmniej o 20% wyższy od wartości mierzonych. Wartość skuteczna 90 V oznacza, że szczytowe napięcie tego sygnału wynosi około 127 V (obliczone z wzoru Vp = Vrms * √2). Użycie zakresu 200 V AC zapewnia odpowiednią rezerwę, minimalizując ryzyko uszkodzenia woltomierza oraz zapewnia lepszą dokładność pomiaru. Przykładem zastosowania może być monitorowanie systemów zasilania w budynkach, gdzie do pomiaru używane są woltomierze przenośne. W praktyce, standardy takie jak IEC 61010 wymagają odpowiednich zakresów pomiarowych, aby zapobiegać błędom wynikającym z przekroczenia maksymalnych wartości napięcia. Ponadto, stosowanie zakresu AC jest kluczowe, ponieważ napięcie przemienne nie powinno być mierzone na zakresach przeznaczonych dla napięcia stałego, co mogłoby prowadzić do fałszywych odczytów i potencjalnych zagrożeń dla sprzętu.

Pytanie 39

Jaką funkcję pełni PTY w radiu?

A. Odbiór informacji drogowych
B. Automatyczną "regulację głośności"
C. Wybieranie i przeszukiwanie typu programu
D. Odbiór wiadomości tekstowych
Wybór odpowiedzi dotyczącej automatycznej regulacji siły głosu, odbioru komunikatów tekstowych czy komunikatów drogowych wskazuje na pewne nieporozumienia związane z rolą i funkcjonalnością systemu RDS. Automatyczna regulacja siły głosu dotyczy zarządzania poziomem głośności sygnału audio w odbiorniku, ale nie ma związku z PTY, które koncentruje się na klasyfikacji programów. Odbiór komunikatów tekstowych, chociaż jest funkcją RDS, nie jest bezpośrednio związany z PTY. System RDS rzeczywiście umożliwia przesyłanie tekstowych informacji, ale PTY ma zupełnie inny cel - identyfikację rodzaju programów. Podobnie, komunikaty drogowe to osobna funkcjonalność, często związana z inną specyfikacją RDS, taką jak TMC (Traffic Message Channel), a nie z PTY. Typowe błędy myślowe to mylenie różnych funkcji systemu RDS, co może prowadzić do nieporozumień przy wyborze odpowiednich stacji radiowych. Ważne jest zrozumienie, że PTY to narzędzie do klasyfikacji programów, a nie do regulacji dźwięku czy przesyłania tekstów, co jest kluczowe dla prawidłowego odbioru i używania technologii radiowej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.