Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 22 maja 2025 21:09
  • Data zakończenia: 22 maja 2025 21:37

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Południkiem osiowym w odwzorowaniu Gaussa-Krügera dla układu współrzędnych PL-2000 jest południk

A. 19°
B. 20°
C. 21°
D. 22°
Wybór jakiegokolwiek innego południka, takiego jak 22°, 20° czy 19°, nie jest zgodny z definicją osiowego południka w układzie PL-2000. Południki te mogą być mylone z innymi południkami, które nie są właściwymi osiowymi w kontekście określonego odwzorowania. Południk 22° z pewnością znajduje się na zachód od południka 21°, co prowadzi do zwiększenia zniekształceń w obszarze, który jest odwzorowywany. Z kolei południk 20° leży na wschód od 21°, co również nie jest odpowiednie w kontekście geodezyjnym. Wybór południka 19° jest jeszcze bardziej odległy od optymalnego, co w praktyce prowadzi do poważnych błędów w pomiarach i analizach przestrzennych. Typowym błędem myślowym jest założenie, że każdy południk w danej strefie będzie odpowiedni do użycia jako osiowy. W rzeczywistości, tylko konkretne południki są zaprojektowane do minimalizowania zniekształceń na danym obszarze. Dla geodetów, architektów i specjalistów zajmujących się planowaniem przestrzennym niezwykle istotne jest zrozumienie, jak odwzorowanie wpływa na dokładność danych geograficznych, a wybór niewłaściwego południka może prowadzić do błędnych decyzji projektowych i nieefektywnej pracy.

Pytanie 2

Cechą charakterystyczną wskazującą na lokalizację przebiegu instalacji wodociągowej, której położenie jest zdefiniowane w państwowym systemie odniesień przestrzennych przy użyciu współrzędnych prostokątnych płaskich oraz wysokości, jest

A. pikieta
B. reper
C. bagnet
D. poligon
Pikieta to naprawdę ważny element, kiedy mówimy o terenie w geodezji oraz inżynierii lądowej. Używa się jej, żeby określić, gdzie znajdują się różne części infrastruktury, np. przewody wodociągowe. Generalnie pikieta opiera się na konkretnych współrzędnych i wysokości, więc jest kluczowym składnikiem systemów odniesienia przestrzennego. W czasie prac pomiarowych pikiety pomagają w zachowaniu precyzji i dokładności. Dzięki ich umiejscowieniu można lepiej kontrolować postępy w budowie i upewnić się, że wszystko idzie zgodnie z planem. Osobiście myślę, że fajnie, że pikiety dają też możliwość monitorowania stanu technicznego przewodów wodociągowych. Ważne jest, żeby regularnie sprawdzać, czy pikiety zgadzają się z aktualnymi planami i mapami, bo to jest zgodne z geodezyjnymi normami.

Pytanie 3

Jaki dokument geodezyjny jest kluczowy do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Dziennik pomiaru kątów osnowy
B. Dziennik pomiaru boków osnowy
C. Szkic przeglądowy
D. Opis topograficzny punktu
Wybór odpowiedzi, które nie są związane z opisem topograficznym punktu, prowadzi do błędnych wniosków na temat geodezyjnego procesu lokalizacji punktów osnowy. Szkic przeglądowy, choć przydatny w kontekście przedstawiania ogólnej orientacji punktów w obszarze, nie dostarcza wystarczających szczegółów, aby precyzyjnie zlokalizować dany punkt w terenie. Jest to narzędzie wizualne, które może ułatwić zrozumienie układu punktów, ale nie zawiera szczegółowych informacji o otoczeniu konkretnego punktu. Dzienniki pomiaru boków oraz kątów osnowy są dokumentami skupionymi na wynikach pomiarów, a nie na lokalizacji punktów. Oferują one informacje o długościach bądź kątowych relacjach między punktami, co jest istotne na etapie obliczeń i analizy, ale nie odnoszą się do praktycznych aspektów odnajdywania punktów w terenie. Typowym błędem myślowym jest mylenie różnych typów dokumentacji geodezyjnej oraz ich zastosowań. Kluczowe jest zrozumienie, że w procesie geodezyjnym każdy dokument pełni specyficzną rolę i niezbędne jest wykorzystanie właściwych narzędzi i informacji w odpowiednich kontekstach. Aby skutecznie prowadzić prace geodezyjne, niezbędne jest korzystanie z precyzyjnych i szczegółowych opisów topograficznych, co zapewnia zgodność z najlepszymi praktykami w branży.

Pytanie 4

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. ewidencji gruntów i budynków
B. obiektów topograficznych
C. szczegółowych osnów geodezyjnych
D. geodezyjnej ewidencji sieci uzbrojenia terenu
Niepoprawne odpowiedzi dotyczą różnych zbiorów danych, które mają inne cele i zastosowania w obszarze geodezji i kartografii. Ewidencja gruntów i budynków, na przykład, koncentruje się na rejestracji praw własności do nieruchomości oraz ich użytkowaniu, co nie jest bezpośrednio związane z obiektami topograficznymi. Z kolei szczegółowe osnowy geodezyjne zorientowane są na precyzyjne ustalanie położenia punktów w przestrzeni, co jest kluczowe dla prac inżynieryjnych, ale nie obejmuje zbioru danych dotyczących obiektów topograficznych. Geodezyjna ewidencja sieci uzbrojenia terenu skupia się na infrastrukturze technicznej, takiej jak wodociągi, kanalizacja czy energetyka, co również jest odrębne od BDOT500. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi mogą wynikać z mylenia różnych systemów ewidencyjnych lub zbiorów danych geograficznych, co podkreśla konieczność znajomości struktury i celu zbiorów danych, a także ich zastosowań w praktyce. Zrozumienie właściwego kontekstu zbiorów danych jest kluczowe dla efektywnego ich wykorzystania w projektach związanych z gospodarką przestrzenną.

Pytanie 5

Podczas określania miejsca punktów szczegółowej osnowy poziomej przy użyciu metody poligonizacji, długości boków w ciągach poligonowych powinny wynosić od 150 do maksymalnie

A. 500 m
B. 600 m
C. 300 m
D. 400 m
Długość 500 m to świetny wybór. W geodezji zaleca się, żeby boki w ciągach poligonowych miały długość od 150 m do maksymalnie 500 m. Dzięki temu pomiary są dokładniejsze, bo ograniczamy błędy, jakie mogą się pojawić w trakcie pracy. Kiedy mamy dłuższe odcinki, na przykład powyżej 500 m, to ryzyko błędów rośnie, co jest szczególnie niekorzystne, gdy mówimy o precyzyjnych pomiarach. Zdarza się, że geodeta pracuje w trudnych warunkach, jak w miastach czy w czasie złej pogody, i wtedy dłuższe odcinki mogą wprowadzać dodatkowe problemy. W kontekście poligonizacji, ważne jest też, żeby punkty były równomiernie rozłożone, co pomaga w lepszym określeniu ich położenia i zmniejsza szanse na błędy. Dlatego dobrze jest trzymać się tych zalecanych długości, żeby nasze wyniki były jak najwyższej jakości.

Pytanie 6

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:500
B. 1:1000
C. 1:2000
D. 1:250
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to DAB = 33,00 m (rzeczywista długość) oraz dAB = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako DAB / dAB, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 7

Metodę niwelacji, która polega na ustalaniu różnic wysokości pomiędzy punktami w terenie na podstawie zmierzonych kątów pionowych oraz poziomych odległości między tymi punktami, określamy jako metodę niwelacji

A. punktów rozproszonych
B. trygonometrycznej
C. siatki kwadratów
D. geometrycznej
Wybranie opcji związanej z siatką kwadratów czy geometrycznymi punktami nie ma sensu w kontekście tego pytania o niwelację. Siatka kwadratów odnosi się bardziej do ogólnych technik pomiarowych z równomiernymi punktami, co nie zawsze obejmuje pomiar kątów pionowych. A termin geometryczna, chociaż brzmi sensownie, bardziej dotyczy ogólnych podejść do pomiaru niż konkretnej techniki niwelacji. Punkty rozproszone zazwyczaj są kojarzone z GPS-em i nie mają nic wspólnego z kątami pionowymi, które są kluczowe w niwelacji trygonometrycznej. Odpowiedzi, które pominęły te rzeczy, pokazują, że praktyczne podejście do pomiarów w trudnych warunkach jest ważne, bo to właśnie metoda trygonometryczna pozwala na dokładne określenie wysokości w złożonym terenie. Największym błędem, jaki można popełnić, to mylenie ogólnych metod pomiarowych z tymi bardziej szczegółowymi, które wymagają precyzyjnych pomiarów i korzystania z trygonometrii.

Pytanie 8

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. sprawozdań technicznych
B. szkiców polowych
C. obliczeń
D. wywiadów terenowych
Obliczenia, szkice polowe i sprawozdania techniczne są integralnymi elementami procesu przetwarzania wyników pomiarów i każda z tych czynności ma swoje specyficzne zastosowanie w kontekście analizy danych. Obliczenia są kluczowe, ponieważ pozwalają na przetworzenie surowych danych w użyteczne informacje, które mogą być interpretowane w kontekście badanego zjawiska. Na przykład, w badaniach hydrologicznych obliczenia mogą obejmować analizy przepływu wód gruntowych, co jest niezbędne do oceny dostępności wody i zarządzania zasobami wodnymi. Szkice polowe służą zaś do wizualizacji terenu oraz lokalizacji punktów pomiarowych, co jest istotne w kontekście dokładności i powtarzalności wyników. Sprawozdania techniczne natomiast stanowią formalne podsumowanie prac badawczych, prezentując wyniki oraz wnioski w sposób zrozumiały dla szerszego grona odbiorców. Często zapomina się, że te elementy są ze sobą ściśle powiązane, a ich prawidłowe wykonanie jest kluczowe dla uzyskania i interpretacji rzetelnych wyników. Właściwe zrozumienie różnicy między zbieraniem danych a ich przetwarzaniem jest istotne, aby uniknąć pomyłek w metodologii badań, co może prowadzić do błędnych wniosków i nieprawidłowego zarządzania danymi.

Pytanie 9

Jakie jest przybliżone znaczenie błędu względnego dla odcinka o długości 500,00 m, który został zmierzony z błędem średnim ±10 cm?

A. 1/500
B. 1/2000
C. 1/5000
D. 1/1000
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia definicji błędu względnego oraz sposobu jego obliczania. Przykładem są ułamki 1/1000 i 1/2000, które mogą wydawać się uzasadnione, jednak nie uwzględniają rzeczywistego stosunku błędu do wartości pomiaru. W przypadku błędu bezwzględnego 10 cm w odniesieniu do długości 500 m, błędy te sugerują, że niektórzy mogą mylić jednostki miary lub nieprawidłowo interpretować pojęcie błędu względnego jako małego udziału w dłuższym odcinku. Pamiętaj, że błąd względny informuje nas o tym, jak znaczący jest błąd pomiarowy w stosunku do całkowitych wymiarów obiektu. Kolejną typową pomyłką jest mylenie błędu względnego z wartością bezwzględną; błąd bezwzględny to po prostu wartość błędu, natomiast błąd względny to jego stosunek do całkowitych wymiarów. Odpowiedzi takie jak 1/500 mogą się wydawać realne, jednak nie uwzględniają rzeczywistego wpływu błędu na całkowitą długość. Przy analizowaniu wyników pomiarów warto stosować standardy metrologiczne, które pomogą w wyciąganiu poprawnych wniosków oraz w ocenie dokładności i precyzji narzędzi pomiarowych.

Pytanie 10

W jakim zakrescie znajduje się wartość azymutu boku AB, jeżeli różnice współrzędnych pomiędzy punktem początkowym a końcowym boku AB są takie, że ΔXAB < 0 oraz ΔYAB < 0?

A. 300400g
B. 0100g
C. 100200g
D. 200300g
Azymut boku AB, w którym różnice współrzędnych ΔXAB i ΔYAB są ujemne, wskazuje na kierunek południowo-zachodni. W systemie azymutalnym, azymut wyrażany jest w stopniach, gdzie 0° wskazuje na północ, a 270° na zachód. Ponieważ zarówno ΔX, jak i ΔY są ujemne, oznacza to, że punkt końcowy znajduje się na lewo i poniżej punktu początkowego, co odpowiada zakresowi azymutu od 200° do 300°. Taki przedział azymutu jest istotny w geodezji i nawigacji, gdzie dokładne określenie kierunku ma kluczowe znaczenie dla precyzyjnych pomiarów i wytyczania dróg. Przykładem zastosowania może być nawigacja w terenie, gdzie geodeta musi precyzyjnie określić kierunek, aby przeprowadzić pomiary terenowe lub przygotować mapę. Zrozumienie azymutu oraz jego wartości w kontekście współrzędnych jest fundamentem w geodezji oraz kartografii, co jest zgodne z wytycznymi standardów geodezyjnych.

Pytanie 11

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. inklinacji
B. centrowania
C. indeksu
D. kolimacji
Odpowiedź 'centrowania' jest prawidłowa, ponieważ pomiar kątów tachimetrem elektronicznym w dwóch położeniach lunety nie eliminuje błędu centrowania. Błąd centrowania odnosi się do nieprecyzyjnego umiejscowienia instrumentu geodezyjnego nad punktem pomiarowym. Nawet przy dokładnym ustawieniu lunety na dwóch różnych pozycjach, jeśli instrument nie jest idealnie wyśrodkowany, może wystąpić błąd w pomiarze kątów. W praktyce geodezyjnej, aby zminimalizować ten błąd, zaleca się stosowanie statywów o wysokiej stabilności oraz precyzyjnych zamocowań, które umożliwiają dokładne centrowanie instrumentu. Standardy geodezyjne, takie jak normy ISO i zalecenia organizacji geodezyjnych, podkreślają znaczenie precyzyjnego centrowania jako kluczowego elementu uzyskiwania wiarygodnych pomiarów. Dobrą praktyką jest również stosowanie instrumentów wyposażonych w funkcje automatycznego centrowania, co znacznie zwiększa dokładność pomiarów.

Pytanie 12

W niwelacji powierzchniowej przy użyciu punktów rozproszonych dystans mierzonych pikiet względem stanowiska pomiarowego oblicza się według wzoru: D = kl + c. Mając odczyty z łaty niwelacyjnej, wykonane kreską górną oraz dolną siatki dalmierczej instrumentu, wartość l należy obliczyć wg wzoru:

A. l = g · d
B. l = g + d
C. l = g/d
D. l = g - d
Zarówno l = g + d, jak i inne propozycje sugerują błędne operacje matematyczne przy założeniu, że odległość mierzonych pikiet od stanowiska pomiarowego powinna być obliczana na podstawie różnych kombinacji odczytów z łaty i różnicy wysokości. Koncepcja dodawania wartości g i d jest nieprawidłowa, ponieważ nie uwzględnia faktu, że różnica wysokości (d) powinna być odjęta od wartości g, aby uzyskać rzeczywistą odległość l. Innymi słowy, łączenie tych wartości przez dodawanie wprowadza poważne błędy w procesie niwelacji, co może prowadzić do niepoprawnych wyników pomiarowych. Dodatkowo, w przypadku l = g · d czy l = g/d, zastosowane operacje mnożenia i dzielenia nie mają sensu w kontekście mierzenia odległości, ponieważ nie odpowiadają one rzeczywistym relacjom pomiędzy odczytami. Te błędne podejścia są efektem typowych nieporozumień dotyczących relacji między zmiennymi w pomiarach geodezyjnych. Dlatego ważne jest przyjęcie poprawnych wzorów i metod opartych na solidnych podstawach teoretycznych, które są uznawane w profesjonalnych standardach geodezyjnych. Dbałość o detale oraz zrozumienie matematycznych aspektów pomiarów są kluczowe dla osiągnięcia dokładnych i wiarygodnych wyników.

Pytanie 13

Jakim południkiem osiowym posługuje się odwzorowanie Gaussa-Krügera w systemie współrzędnych PL-2000?

A. 22º
B. 20º
C. 19º
D. 21º
Wybór innych południków, takich jak 20º, 19º czy 22º, jest nieprawidłowy, ponieważ każdy z tych południków przypisany jest do innej strefy odwzorowania Gaussa-Krügera w układzie PL-2000. Południki te są zbyt oddalone od centralnego południka strefy 3, co sprawia, że położone na nich obszary nie są odpowiednio odwzorowane. Na przykład, południk 20º przypisany jest do strefy 2, co może prowadzić do znacznych błędów w analizie geodezyjnej i kartograficznej, gdyż dane geograficzne przetwarzane w niewłaściwej strefie mogą wprowadzać zniekształcenia. Typowe błędy myślowe związane z tymi odpowiedziami często wynikają z mylnego przeświadczenia, że wszystkie południki są w równym stopniu użyteczne dla danego obszaru. W rzeczywistości, Precyzyjne zrozumienie systemu strefowego odwzorowania jest kluczowe, gdyż każde odwzorowanie ma swoje charakterystyki i zastosowania, co jest szczególnie ważne w kontekście prac geodezyjnych, gdzie precyzja jest nieodzownym wymogiem. Nieprawidłowe przypisanie południka do strefy prowadzi do błędnych wyników pomiarów, co może mieć niekorzystne konsekwencje przy podejmowaniu decyzji opartych na danych geograficznych.

Pytanie 14

Jakiej z wymienionych zasad nie wolno zastosować podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
B. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
C. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
D. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
Podanie domiarów biegunowych (α, d) zdejmowanych punktów nie jest zasadą stosowaną w metodzie ortogonalnej, ponieważ ta metoda opiera się na pomiarze prostopadłym do linii podstawowej oraz na określeniu odległości w kierunkach prostopadłych do tej linii. Przy pomiarach ortogonalnych kluczowe jest zachowanie prostokątności, co umożliwia precyzyjne wyznaczenie położenia punktów w przestrzeni. W praktyce, jeśli chcemy zmierzyć odległości i kąty, stosuje się metody, które umożliwiają dokładne określenie pozycji w oparciu o rzędne i odległości w kierunkach prostokątnych. Znajomość zasad stosowanych w różnych metodach pomiarowych jest istotna dla uzyskania dokładnych i wiarygodnych wyników, co jest kluczowe w geodezji i kartografii. Na przykład, w terenie, gdzie niemożliwe jest stosowanie domiarów biegunowych, możemy skupić się na pomiarach ortogonalnych przy pomocy teodolitu lub tachimetru, co zapewnia wysoką precyzję.

Pytanie 15

W jakim dokumencie, będącym częścią każdego operatu geodezyjnego, określone są: cel i zakres rzeczowy oraz terytorialny przeprowadzonych prac, czas realizacji prac geodezyjnych oraz identyfikator zgłoszenia dotyczącego pracy geodezyjnej?

A. Na szkicu polowym
B. W dzienniku pomiarów
C. W sprawozdaniu technicznym
D. W wykazie robót geodezyjnych
Wybór dziennika pomiarowego jako odpowiedzi na to pytanie wprowadza w błąd, ponieważ ten dokument ma zupełnie inne cele i zawartość. Dziennik pomiarowy służy do bieżącej rejestracji wykonanych pomiarów i obserwacji, a więc zawiera dane techniczne dotyczące konkretnego etapu pracy, ale nie uwzględnia ogólnych informacji o celu czy zakresie wykonanych prac. Oparcie się na dzienniku w kontekście identyfikacji prac geodezyjnych prowadzi do niepełnego obrazu realizacji projektu. Szkic polowy również nie jest właściwą odpowiedzią, ponieważ jego głównym celem jest graficzne przedstawienie wykonanych pomiarów w terenie, a nie dokumentowanie celów i zakresu prac. Z kolei wykaz robót geodezyjnych to narzędzie do organizacji i planowania zadań, które również nie zawiera szczegółowych informacji wymaganych w pytaniu, takich jak okres prac czy cel ich realizacji. Typowym błędem myślowym jest mylenie natury dokumentów oraz ich przeznaczenia w procesie geodezyjnym. Dobrze jest pamiętać, że każdy dokument w operacie geodezyjnym ma przypisane specyficzne funkcje i zadania, a ich właściwe rozróżnienie jest kluczowe dla efektywnego zarządzania projektami geodezyjnymi.

Pytanie 16

Działanie, mające na celu zwiększenie dokładności kartometrycznej mapy poprzez eliminację deformacji z analogowego podkładu oraz błędów podczas skanowania, określamy jako

A. wektoryzacją
B. transformacją
C. digitalizacją
D. kalibracją
Kalibracja to proces, który ma kluczowe znaczenie w kontekście poprawy kartometryczności map, zwłaszcza tych, które zostały utworzone na podstawie podkładów analogowych lub skanowanych obrazów. Celem kalibracji jest eliminacja deformacji, które mogą pojawić się w wyniku błędów skanowania oraz różnic w skalach i perspektywie. Dzięki kalibracji można uzyskać precyzyjne odwzorowanie rzeczywistych współrzędnych geograficznych, co jest niezbędne w aplikacjach takich jak GIS (Geographic Information System) czy w kartografii. Przykładem zastosowania kalibracji jest proces georeferencji, w którym odnosi się punkty na mapie do znanych współrzędnych geograficznych. W praktyce kalibracja może obejmować użycie znanych punktów kontrolnych, które są wprowadzane do oprogramowania GIS, aby dostosować i poprawić błędy mapy. Standardy takie jak ISO 19130 definiują metody pomiaru i oceny dokładności danych przestrzennych, co jest istotne przy przeprowadzaniu kalibracji.

Pytanie 17

Wizury pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej powinny być przeprowadzone w trakcie

A. niwelacji punktów osnowy
B. pomiarów rzeźby terenu
C. wywiadu terenowego
D. sporządzania opisu topograficznego
Wybór niwelacji punktów osnowy jako odpowiedzi jest błędny, ponieważ niwelacja koncentruje się na pomiarach różnic wysokości, a nie na wizurach poziomych. W praktyce geodezyjnej niwelacja służy do ustalenia różnic wysokości pomiędzy punktami, co jest kluczowe w kontekście budownictwa czy inżynierii lądowej, ale nie ma bezpośredniego związku ze sprawdzaniem wizur. Ponadto, pomiary rzeźby terenu, choć ważne w kontekście analizy topograficznej, nie mają na celu weryfikacji widoczności pomiędzy punktami geodezyjnymi. Pomiary te koncentrują się na zbieraniu danych o ukształtowaniu terenu, co jest użyteczne w planowaniu przestrzennym, ale niekoniecznie odnosi się do analizy wizur geodezyjnych. Sporządzanie opisu topograficznego również nie jest związane z bezpośrednim sprawdzaniem wizur – opis ten ma na celu przedstawienie cech obszaru, ale nie jest techniką weryfikacji widoczności. Kluczowym błędem myślowym, który prowadzi do wyboru niepoprawnych odpowiedzi, jest mylenie rodzajów pomiarów i ich celów. Ważne jest zrozumienie, że każdy z wymienionych procesów ma swoje specyficzne zastosowanie i nie można je wymieniać zamiennie, co podkreśla znaczenie znajomości podstawowych pojęć i praktyk w geodezji.

Pytanie 18

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. przeglądowy
B. dokumentacyjny
C. tachimetryczny
D. podstawowy
Odpowiedzi "podstawowy", "dokumentacyjny" i "tachimetryczny" nie są właściwe w kontekście wskazania szkicu, który ma służyć do łatwego odnalezienia pomierzonych szczegółów fragmentu terenu. Szkic podstawowy to dokument, który zazwyczaj zawiera dane referencyjne używane do opracowywania bardziej szczegółowych planów oraz projektów. Jego zakres i dokładność są często niewystarczające do przedstawienia ogólnego układu terenu. Z kolei szkic dokumentacyjny służy do archiwizacji zdarzeń geodezyjnych i jest bardziej szczegółowy, ale jego celem nie jest ułatwienie bieżącej orientacji w terenie, lecz raczej dokumentacja stanu na dany moment. Natomiast szkic tachimetryczny jest narzędziem wykorzystywanym do bardziej precyzyjnych pomiarów, w tym obliczeń kątów i odległości, co jest istotne w geodezji, jednak nie odpowiada on na potrzeby szybkiego odnalezienia danych w terenie. Wybór odpowiedniego rodzaju szkicu jest kluczowy; niewłaściwe podejście do tej kwestii może prowadzić do nieefektywności w procesie zbierania i analizowania danych. Ważne jest zrozumienie, że każdy z tych szkiców ma swoje specyficzne zastosowanie i nie można ich stosować zamiennie bez uwzględnienia kontekstu operacyjnego.

Pytanie 19

Do I grupy charakterystycznych detali terenowych, które można jednoznacznie zidentyfikować w terenie i które przejawiają długotrwałą stabilność, zalicza się między innymi

A. jezioro o naturalnej linii brzegowej
B. budynek szkoły
C. boisko sportowe
D. wał przeciwpowodziowy
Boisko sportowe, jezioro o naturalnej linii brzegowej oraz wał przeciwpowodziowy, mimo że mogą wydawać się stałymi elementami w krajobrazie, nie są idealnymi przykładami obiektów zachowujących długookresową niezmienność i jednoznaczną identyfikowalność. Boiska sportowe mogą być często przekształcane, modernizowane lub w ogóle zlikwidowane, co sprawia, że ich identyfikacja w terenie może być problematyczna. Zmiany te mogą wynikać z różnych czynników, w tym z rewitalizacji przestrzeni publicznych czy zmieniających się potrzeb społeczności. Jeziora, choć naturalne, mogą również ulegać zmianom w wyniku erozji brzegowej, urbanizacji okolicznych terenów oraz zmian klimatycznych, co wpływa na ich linię brzegową i ogólne uwarunkowania. Wały przeciwpowodziowe, pomimo ich konstrukcji, mogą wymagać regularnych prac konserwacyjnych i modernizacji, aby skutecznie spełniać swoje zadanie w obliczu zmieniającego się klimatu. Ponadto, te obiekty mogą być traktowane jako tymczasowe rozwiązania w odpowiedzi na zmieniające się warunki hydrologiczne, co czyni je znacznie mniej trwałymi niż budynki użyteczności publicznej. Prawidłowe podejście do klasyfikacji obiektów w analizie terenu powinno uwzględniać ich wytrzymałość i stabilność w dłuższej perspektywie czasowej, co potwierdza znaczenie budynków publicznych jako elementów infrastruktury.

Pytanie 20

Jaki opis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy
20 cm, zmierzonego na osnowę?

A. ksB20
B. ks200
C. ksP200
D. ks20
Odpowiedzi ksP200, ks20 oraz ksB20 są nieprawidłowe z kilku istotnych powodów. Oznaczenie ksP200 sugeruje, że jest to przewód o średnicy 200 mm, ale dodatek 'P' może wprowadzać w błąd, ponieważ nie jest to standardowe oznaczenie dla przewodów kanalizacyjnych sanitarnych. Przypisanie dodatkowych liter do oznaczenia może wskazywać na inny typ materiału lub zastosowanie, co nie ma odzwierciedlenia w standardowej klasyfikacji przewodów sanitarnych. Odpowiedź ks20 również jest myląca; chociaż wskazuje na średnicę, to jednak brakująca końcówka '0' nie spełnia wymogu podania średnicy w milimetrach. W kontekście standardów branżowych, przyjęte jest, aby średnice były zapisane w pełnej formie, co natychmiastowo wyklucza takie oznaczenia. Ostatnia odpowiedź, ksB20, również zawiera niepoprawny prefiks 'B', co może sugerować, że jest to przewód innego typu. Tego rodzaju oznaczenia mogą prowadzić do dezorientacji w projektowaniu oraz realizacji budów, a także mogą wprowadzać błędy w obliczeniach hydraulicznych. Dlatego ważne jest, aby stosować się do uznanych norm i dobrych praktyk, które zapewniają precyzyjność i jednoznaczność w identyfikacji elementów systemów kanalizacyjnych.

Pytanie 21

Jaki jest błąd wartości wyrównanej, jeśli kąt poziomy został zmierzony 4 razy, a średni błąd pojedynczego pomiaru kąta wynosi ±10cc?

A. M = ±2cc
B. M = ±3cc
C. M = ±4cc
D. M = ±5cc
Odpowiedzi, które proponują inne wartości błędu wartości wyrównanej, nie uwzględniają kluczowego aspektu, jakim jest liczba pomiarów. W przypadku pomiarów kątów, zasada redukcji błędów przy wielokrotnym pomiarze jest właściwie stosowana zgodnie z regułą statystyczną, która mówi, że z każdym dodatkowym pomiarem poprawiamy dokładność wyniku. Kiedy ktoś wybiera błąd równy ±2cc, ±3cc lub ±4cc, błędnie interpretuje wpływ powtórzeń na zmniejszenie niepewności pomiarowej. To prowadzi do niedoszacowania rzeczywistego błędu, co jest typowym błędem zarówno w zrozumieniu parametrów pomiarowych, jak i w ich zastosowaniach praktycznych. Warto zwrócić uwagę, że błąd pomiaru nie jest liniowy, a jego redukcja w przypadku powtórzeń jest opisana twierdzeniem o niepewności pomiarowej. W praktyce, poprawne podejście do obliczania błędów pomiarowych ma ogromne znaczenie podczas analizy danych, szczególnie w kontekście zapewnienia jakości i rzetelności wyników w inżynierii i naukach przyrodniczych. Zastosowanie błędnych wartości błędów może prowadzić do niewłaściwych decyzji projektowych oraz wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 22

Geodezyjnym znakiem, który znajduje się pod ziemią, nie jest

A. rura kanalizacyjna wypełniona betonem
B. cegła odpowiednio wypalona
C. rurka drenażowa
D. słup wykonany z granitu lub betonu
Podczas analizy geodezyjnych znaków podziemnych, ważne jest zrozumienie ich funkcji oraz klasyfikacji. Cegła dobrze wypalona, rura kanalizacyjna wypełniona cementem oraz rurka drenarska mogą być stosowane jako znaki podziemne, ponieważ ich struktura zapewnia odpowiednią trwałość i stabilność. Cegły, ze względu na swoje właściwości fizyczne, mogą być wykorzystywane do oznaczania punktów w różnych projektach budowlanych, gdzie potrzebne są długotrwałe oznaczenia. Rura kanalizacyjna wypełniona cementem również pełni podobną rolę, ponieważ jej integralność zapewnia, że nie ulegnie ona deformacji w trakcie prac ziemnych. Rurki drenarskie są z kolei używane do odprowadzania wody, co czyni je istotnymi w kontekście zarządzania wodami gruntowymi oraz ochrony strukturalnej budowli. Natomiast błędne przekonanie, że słup z granitu lub betonu jest geodezyjnym znakiem podziemnym, opiera się na nieporozumieniu dotyczących jego funkcji. Słupy te są elementami nośnymi w budownictwie, a ich umiejscowienie i zastosowanie ma charakter budowlany, a nie geodezyjny. Dlatego też ich klasyfikowanie jako znaki podziemne jest mylne, co może prowadzić do poważnych błędów w planowaniu przestrzennym i geodezyjnym. W geodezji istotne jest, aby znaki podziemne były zrozumiane i klasyfikowane prawidłowo, aby zapewnić dokładność i spójność w pomiarach.

Pytanie 23

W kluczowej części państwowego zbioru danych geodezyjnych i kartograficznych zgromadzone są bazy danych, które dotyczą

A. geodezyjnej ewidencji infrastruktury terenowej
B. rejestru cen oraz wartości nieruchomości
C. ewidencji gruntów i budynków (katastru nieruchomości)
D. państwowego rejestru podstawowych osnów geodezyjnych, grawimetrycznych i magnetycznych
Niepoprawne odpowiedzi nawiązuą do różnych aspektów zarządzania danymi geodezyjnymi, jednak żadna z nich nie odnosi się bezpośrednio do centralnego zasobu geodezyjnego i kartograficznego w kontekście podstawowych osnów geodezyjnych. Rejestr cen i wartości nieruchomości, choć istotny w obszarze wyceny i obrotu nieruchomościami, nie jest związany bezpośrednio z fundamentami geodezji, a tym samym nie odzwierciedla kluczowych danych potrzebnych do precyzyjnych pomiarów przestrzennych. Ewidencja gruntów i budynków, znana również jako kataster, koncentruje się na dokumentacji własności i użytkowania gruntów, co jest ważne, ale nie obejmuje danych geodezyjnych dotyczących osnów. Geodezyjna ewidencja sieci uzbrojenia terenu natomiast dotyczy infrastruktury podziemnej, takiej jak wodociągi czy sieci elektryczne, a nie zasadniczych punktów odniesienia. Każda z tych pomyłek wynika z błędnego rozumienia roli centralnego zasobu geodezyjnego oraz jego znaczenia w kontekście precyzyjnego pomiaru i lokalizacji obiektów. Aby uniknąć takich nieporozumień, istotne jest zrozumienie, że ustalenie osnów geodezyjnych jest fundamentem dla wszystkich innych danych geodezyjnych i kartograficznych, na których opierają się analizy przestrzenne i planowanie.

Pytanie 24

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/5000
B. 1/4000
C. 1/2000
D. 1/1000
Aby zrozumieć, dlaczego inne odpowiedzi są nieprawidłowe, warto przyjrzeć się, jak oblicza się błąd względny i jakie są typowe błędy w jego interpretacji. Niektórzy mogą mylnie uznawać, że błąd względny można obliczyć w inny sposób, na przykład poprzez dodanie lub pomnożenie błędu do wartości pomiarowej, co prowadzi do błędnych wyników. Inna powszechna mylna koncepcja dotyczy pomijania przeliczeń jednostek. Przykładowo, odpowiedzi, które sugerują błędne wartości, mogą wynikać z nieprawidłowego przeliczenia błędu z centymetrów na metry lub z błędnych założeń dotyczących wartości bazowej. Podczas obliczania błędu względnego kluczowe jest, aby błąd zawsze odnosił się do wartości, która jest analizowana, w tym przypadku 120 m. Każdy błąd w tym podejściu prowadzi do niepoprawnych wyników, co może mieć istotne konsekwencje w praktyce inżynieryjnej, gdzie precyzja jest kluczowa. Przykładowo, w budownictwie lub geodezji, nieprawidłowe obliczenia mogą skutkować błędnymi pomiarami, co z kolei może prowadzić do poważnych problemów w realizacji projektów.

Pytanie 25

W teodolicie oś rotacji instrumentu jest oznaczona

A. hh
B. cc
C. ll
D. vv
Wybór odpowiedzi hh, cc lub ll wskazuje na pewne nieporozumienia dotyczące budowy i funkcji teodolitu. Oś obrotu teodolitu, oznaczona jako 'vv', jest kluczowym elementem, który decyduje o precyzji pomiarów kątowych. Oś ta pozwala na obrót instrumentu, a jakiekolwiek błędne oznaczenia mogą prowadzić do zamieszania i niepoprawnych pomiarów. Oznaczenie 'hh' często mylone jest z osiami mechanicznymi, które nie są bezpośrednio powiązane z funkcjonowaniem teodolitu. Natomiast 'cc' może sugerować inne elementy konstrukcyjne, jak poziomice czy inne mechanizmy, które są mniej istotne w kontekście osi obrotu. Odpowiedź 'll' wskazuje na nieistotne lub błędne aspekty działania teodolitu, co może prowadzić do pomyłek w praktycznych zastosowaniach instrumentu. Zrozumienie, jak prawidłowo identyfikować i oznaczać osie obrotu w teodolicie, jest kluczowe dla zachowania dokładności pomiarów. Niezrozumienie tego aspektu może prowadzić do poważnych błędów podczas wykonywania prac geodezyjnych, w tym błędów w wyznaczaniu granic działek, co ma istotne konsekwencje prawne i finansowe. Dlatego tak ważne jest, aby geodeci i inżynierowie byli dobrze zaznajomieni z podstawowymi oznaczeniami i funkcjami teodolitu.

Pytanie 26

W jakiej skali według układu PL-2000 wykonany jest arkusz mapy zasadniczej z godłem 7.125.30.10.3?

A. 1:500
B. 1:5000
C. 1:1000
D. 1:2000
Odpowiedź 1:1000 jest prawidłowa, ponieważ w układzie PL-2000 arkusz mapy zasadniczej o godle 7.125.30.10.3 jest sporządzony w skali 1:1000. Tego typu skala jest powszechnie stosowana w dokumentacji geodezyjnej, ponieważ pozwala na szczegółowe przedstawienie małych obszarów, takich jak działki budowlane czy obiekty infrastrukturalne. W praktyce, dla geodetów i urbanistów, skala 1:1000 umożliwia precyzyjne planowanie przestrzenne oraz analizę zagospodarowania terenu. Ponadto, zgodnie z obowiązującymi przepisami prawno-geodezyjnymi, mapy w takiej skali muszą spełniać określone standardy jakości, co zapewnia ich użyteczność w procesach decyzyjnych związanych z inwestycjami budowlanymi. Dodatkowo, w kontekście normatywów, skala ta jest uznawana za optymalną dla przedstawienia szczegółowych informacji, takich jak granice działek, ukształtowanie terenu, czy lokalizację istniejącej infrastruktury. W związku z tym, posługiwanie się skalą 1:1000 w arkuszach mapy zasadniczej jest nie tylko zgodne z wymaganiami, ale również efektywne z punktu widzenia praktycznego zastosowania w geodezji i urbanistyce.

Pytanie 27

Jakie informacje można uzyskać z mapy zasadniczej?

A. Informacje o przebiegu infrastruktury technicznej i granicach nieruchomości.
B. Informacje o strefach klimatycznych (takie informacje nie są zawarte na mapach zasadniczych).
C. Informacje o rozmieszczeniu fauny w okolicy (mapy zasadnicze nie obejmują takich danych).
D. Informacje o gatunkach roślin występujących w regionie (to nie jest zakres map zasadniczych).
Mapa zasadnicza to kluczowe narzędzie w geodezji i planowaniu przestrzennym, które dostarcza szczegółowych informacji o terenie. Zawiera dane o granicach działek, lokalizacji budynków, sieci uzbrojenia terenu jak kanalizacja, gazociągi, linie energetyczne oraz inne elementy infrastruktury technicznej. Z mojego doświadczenia, szczególnie w projektowaniu urbanistycznym, mapa zasadnicza jest nieocenionym źródłem informacji. Dzięki niej można dokładnie zidentyfikować ograniczenia terenu, co jest niezbędne przy planowaniu nowych inwestycji. Ponadto, mapa zasadnicza często zawiera informacje o ukształtowaniu terenu, co jest kluczowe przy analizie możliwości zagospodarowania przestrzeni. W praktyce zawodowej niejednokrotnie spotkałem się z przypadkami, gdzie błędna interpretacja danych z mapy zasadniczej prowadziła do problemów prawnych lub technicznych. Dlatego tak ważne jest, by umiejętnie korzystać z tego narzędzia i rozumieć, jakie informacje są na niej zawarte. Współczesne mapy zasadnicze są również zintegrowane z systemami informacji przestrzennej (GIS), co umożliwia ich łatwiejszą aktualizację i analizę danych w kontekście większej skali urbanistycznej.

Pytanie 28

Jakiego z wymienionych przyrządów należy użyć do pomiaru przemieszczeń w kierunku pionowym przęseł mostu?

A. Pionownika
B. Niwelatora
C. Tensometru
D. Inklinometru
Niwelator jest instrumentem pomiarowym, który doskonale nadaje się do pomiaru przemieszczeń pionowych przęseł mostów. Działa na zasadzie pomiaru różnicy wysokości pomiędzy dwoma lub więcej punktami, co umożliwia precyzyjne określenie zmian w poziomie konstrukcji, które mogą wystąpić w wyniku obciążeń, osiadania gruntu czy też wpływu warunków atmosferycznych. W praktyce, użycie niwelatora jest zgodne z normami budowlanymi, które wymagają regularnego monitorowania stabilności budowli. Na przykład, w przypadku mostów, gdzie zmiany w wysokości mogą prowadzić do niebezpiecznych sytuacji, niwelator umożliwia skuteczne wykrywanie oraz analizowanie przemieszczeń. Zastosowanie tej metody pomiarowej jest kluczowe w utrzymaniu bezpieczeństwa infrastruktury, dlatego inżynierowie regularnie korzystają z niwelacji podczas inspekcji oraz konserwacji mostów, aby zapewnić ich długotrwałą stabilność i funkcjonalność. Warto również dodać, że niwelatory są wykorzystywane w różnych aplikacjach budowlanych, w tym w geodezji i inżynierii lądowej, co czyni je uniwersalnym narzędziem w pomiarach geodezyjnych.

Pytanie 29

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 227g12c35cc
B. 127g12c35cc
C. 27g12c35cc
D. 527g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 30

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 145,000 m
B. 1,450 m
C. 14,500 m
D. 0,145 m
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 31

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. szacunkowego
B. katastralnego
C. pomiarowego
D. technicznego
Wybór odpowiedzi związanych z operatami katastralnymi, pomiarowymi czy szacunkowymi jest błędny, ponieważ nie odzwierciedla istoty dokumentacji geodezyjnej przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego. Operat katastralny dotyczy głównie ewidencji gruntów i budynków, a jego zadaniem jest zapewnienie danych o stanie prawnym i własnościowym nieruchomości, co odstaje od kontekstu pomiarów geodezyjnych. Z kolei operat pomiarowy zazwyczaj odnosi się do dokumentacji samych pomiarów, nie zaś do ich kompleksowego opracowania, co jest niezbędne do pełnego zrozumienia i interpretacji danych. Operat szacunkowy, natomiast, dotyczy wyceny nieruchomości i jest stosowany w kontekście oceny wartości majątkowej, co również nie ma bezpośredniego związku z geodezyjnymi pomiarami terenowymi i ich analizą. Typowym błędem myślowym jest mylenie różnych rodzajów dokumentacji geodezyjnej, co może prowadzić do nieporozumień w rozumieniu ich funkcji i zastosowania. Dlatego kluczowe jest zrozumienie, że operat techniczny jest jedynym odpowiednim dokumentem, który w pełni odzwierciedla rezultaty pomiarów oraz ich analizę, stanowiąc tym samym fundament dla dalszych działań w obszarze geodezji.

Pytanie 32

Konstrukcja przestrzennego wcięcia w przód opiera się na połączeniu kątowego wcięcia w przód z techniką

A. biegunową
B. tachimetryczną
C. niwelacji geometrycznej
D. niwelacji trygonometrycznej
Wielu ludzi może mieć problem z różnicowaniem metod niwelacji, co czasami prowadzi do złych wyborów. Metoda biegunowa, która opiera się na pomiarze kątów i odległości z jednego punktu, nie bierze pod uwagę kilku ważnych spraw przy przestrzennym wcięciu w przód. Moim zdaniem, trochę mylące jest też myślenie, że metoda tachimetryczna, mimo swojego zaawansowania, dotyczy tylko pomiaru kątów i odległości, a to jakoś nie wystarcza do dokładnych obliczeń wysokości. A jeśli chodzi o niwelację geometryczną, to chociaż działa w pomiarze różnic wysokości, to nie wykorzystuje kątów w taki sposób, żeby skutecznie zastosować wcięcie w przód. Często też mylą się pojęcia związane z tymi metodami, co prowadzi do pomyłek i źle dobranych technik w pracy geodezyjnej. Ważne jest, żeby zrozumieć, że każda z tych metod ma swoje plusy i minusy, a niwelacja trygonometryczna to tylko jedno z wielu narzędzi, które umożliwiają precyzyjne pomiary w terenie. Dobrze zrozumiane podstawy tych metod i ich odpowiednie zastosowanie są kluczowe dla każdego geodety.

Pytanie 33

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 2578,00 m
B. 1578,00 m
C. 278,00 m
D. 578,00 m
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 34

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 200°
B. 180°
C. 90°
D. 360°
Odpowiedź 90° jest poprawna, ponieważ podczas dokładnego poziomowania teodolitu, alidade musi być obrócona o kąt prosty względem linii ustawczych, aby uzyskać odpowiednią orientację. Obrót o 90° umożliwia precyzyjne sprawdzenie poziomu w kierunku prostopadłym do linii, na której zainstalowano teodolit. W praktyce, obrócenie alidade o ten kąt umożliwia wykonanie pomiarów w dwóch prostopadłych kierunkach, co jest istotne dla uzyskania dokładnych wyników. W standardach branżowych, takich jak normy ISO dotyczące pomiarów geodezyjnych, wskazuje się na znaczenie precyzyjnego poziomowania i wykorzystania alidady do potwierdzenia poprawności ustawienia urządzenia. W przypadku pomiarów budowlanych lub inżynieryjnych, prawidłowe poziomowanie teodolitu jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych poprawek i opóźnień. Dlatego znajomość technik obrotu alidade oraz ich zastosowanie w praktyce jest niezbędna dla każdego geodety.

Pytanie 35

Jakiej wartości pomiaru w przód z łaty niwelacyjnej należy się spodziewać, jeśli poszukiwany punkt znajduje się w odległości 60,00 m od punktu wyjściowego niwelety drogi o nachyleniu i = -3%, a odczyt w tył z łaty ustawionej na początku niwelety wyniósł w = 1500 mm?

A. p = 3000 mm
B. p = 1800 mm
C. p = 3390 mm
D. p = 3300 mm
Wybór innych wartości odczytu w przód z łaty niwelacyjnej wynika z różnych nieporozumień dotyczących sposobu obliczeń związanych z niwelacją. Na przykład, przy odpowiedzi p = 3000 mm, można zauważyć, że ignoruje się wpływ pochylenia na przemieszczenie wysokościowe, co prowadzi do zaniżenia rzeczywistego wyniku. Kolejna nieprawidłowa odpowiedź, p = 3390 mm, również nie uwzględnia poprawnie spadku, co sugeruje, że osoba odpowiadająca mogła dodać spadek zamiast go odjąć od odczytu wstecz. W przypadku p = 1800 mm, wartość ta jest nie tylko zaniżona, ale również nie ma żadnego uzasadnienia w kontekście podanych danych: odczyt nie powinien być mniejszy niż odczyt wstecz, co jest fundamentalną zasadą w pomiarach. Kluczowym błędem myślowym jest zaniedbanie wpływu pochylenia na rzeczywistą wysokość punktu docelowego, co może prowadzić do poważnych błędów w obliczeniach inżynieryjnych. Zrozumienie tego procesu wymaga znajomości podstaw niwelacji oraz umiejętności analizy danych pomiarowych w kontekście zastosowania norm i dobrych praktyk inżynieryjnych.

Pytanie 36

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. sprawozdanie techniczne
B. kopia zawodowych uprawnień geodety
C. faktura za zrealizowane zlecenie
D. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
Sprawozdanie techniczne jest kluczowym elementem dokumentacji przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego po wykonaniu prac geodezyjnych. Dokument ten ma na celu szczegółowe przedstawienie wykonanej pracy, jej metod, zastosowanych narzędzi oraz wyników pomiarów. Sprawozdanie powinno zawierać informacje o lokalizacji terenów, charakterystyce wykonanych pomiarów oraz wszelkich odchyleniach od przyjętych norm i standardów. Przykładem praktycznego zastosowania sprawozdania technicznego jest jego wykorzystanie przy weryfikacji dokładności wykonanych pomiarów przez instytucje kontrolujące, co jest niezbędne w kontekście realizacji projektów budowlanych czy infrastrukturalnych. Dodatkowo, zgodnie z ustawą o geodezji i kartografii, sprawozdanie powinno być sporządzone zgodnie z określonymi wytycznymi, co zapewnia wysoką jakość i zaufanie do danych geodezyjnych. Takie dokumenty stanowią również istotne źródło informacji dla dalszych prac planistycznych oraz rozwoju lokalnych baz danych geodezyjnych.

Pytanie 37

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. eN
B. eA
C. eNA
D. e
Odpowiedzi eA, eN oraz e są nieprawidłowe w kontekście oznaczania przyłącza energetycznego niskiego napięcia do budynku mieszkalnego. Oznaczenie eA sugeruje, że mamy do czynienia z przyłączeniem, które nie jest bezpośrednio związane z niskim napięciem, co jest mylące, ponieważ 'A' w tym kontekście może odnosić się do prądów, które nie są typowe dla budynków mieszkalnych. Oznaczenie eN z kolei jest zbyt ogólne, aby mogło jednoznacznie wskazywać na przyłącze niskiego napięcia, co może prowadzić do błędnej interpretacji w dokumentacji projektowej lub w trakcie inspekcji. Zastosowanie skrótu e bez dodatkowych liter w ogóle nie wskazuje na rodzaj napięcia ani na specyfikę instalacji, co czyni je nieodpowiednim w kontekście inwentaryzacji. Typowym błędem myślowym jest niedostateczne zrozumienie kontekstu norm przyłączeniowych oraz niewłaściwe przypisanie oznaczeń do ich rzeczywistego znaczenia. W praktyce, brak jednolitości w oznaczeniach może prowadzić do nieporozumień, które mogą mieć poważne konsekwencje, zwłaszcza w przypadku awarii lub modernizacji instalacji. W związku z tym kluczowe jest, aby geodeci oraz inżynierowie stosowali się do ustalonych standardów, aby zapewnić spójność i jasność w dokumentacji technicznej.

Pytanie 38

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. szkicu inwentaryzacyjnym
B. mapie zasadniczej
C. mapie ewidencyjnej
D. szkicu dokumentacyjnym
Szkic dokumentacyjny to naprawdę przydatne narzędzie, które pomaga w wizualizacji i zapisywaniu współrzędnych punktów osnowy realizacyjnej. Te współrzędne X i Y są mega ważne, bo pozwalają określić, gdzie dokładnie znajdują się punkty w przestrzeni, co jest super istotne w geodezji i inżynierii. Jak masz taki szkic, to łatwiej analizować i interpretować te wszystkie geodezyjne dane. Przykładowo, przy inwentaryzacji gruntów, precyzyjne odzwierciedlenie punktów osnowy pozwala dokładnie ustalić granice działek. No i co ważne, według standardów geodezyjnych, dokumentacja musi być zrozumiała i przejrzysta, żeby każdy mógł to ogarnąć. Dlatego tak ważne jest, aby współrzędne były poprawnie naniesione na szkic, bo to wpływa na cały proces geodezyjny i zgodność z normami prawnymi i technicznymi.

Pytanie 39

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:10 000
B. 1:5 000
C. 1:500
D. 1:1 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 40

Jakie jest zastosowanie pionownika optycznego w geodezyjnej obsłudze budowlanej?

A. Do przenoszenia poziomu na dno wykopu
B. Do tyczenia wskaźników konstrukcyjnych na wyższych kondygnacjach
C. Do pomiaru boków tyczonego obiektu
D. Do tyczenia punktów głównych projektowanego obiektu
Kiedy mówimy o pionowniku optycznym, to jego podstawowa funkcja to przenoszenie punktów w pionie. Jeśli ktoś mówi, że używa go do przenoszenia wysokości na dno wykopu czy tyczenia punktów głównych obiektu, to trochę nie do końca rozumie jego zwykłe zastosowanie. Wykop to miejsce, gdzie lepiej sprawdzą się inne narzędzia, jak poziomica albo niwelator. Tyczenie punktów głównych wymaga bardziej złożonych pomiarów, a pionownik nie jest do tego stworzony. Przykład użycia pionownika do takich celów pokazuje, że można się pomylić, nie znając dobrze narzędzi geodezyjnych. Ważne jest, żeby wiedzieć, że każde narzędzie ma swoje miejsce i umiejętność ich używania jest kluczowa, bo złe użycie może prowadzić do błędów w pomiarach oraz w całej budowie.