Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 1 maja 2025 00:21
  • Data zakończenia: 1 maja 2025 00:59

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (254)10
B. (230)10
C. (231)10
D. (255)10
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. wyłącznie tranzystora na wyjściu 4
C. tranzystorów na wyjściach 1 i 3
D. wyłącznie tranzystora na wyjściu 3
Widzisz, tu pojawiają się błędy przy analizie problemu, które mogą prowadzić do mylnych diagnoz dotyczących tranzystorów. Z tych pomiarów wynika, że UBE1 ma tylko 1 V, co oznacza, że tranzystor na wyjściu 1 raczej nie działa prawidłowo, ale to nie znaczy, że jest zepsuty. Zmniejszone napięcie UBE na 1 V raczej sugeruje, że tranzystor nie jest na pełnym włączeniu. A jeśli chodzi o wyjście 3, to 0,7 V to całkiem w porządku wartość i nie możemy mówić o uszkodzeniu. Dodatkowo, wskazywanie na problem z wyjściem 2 przy napięciu 3 V, zapominając o tym, że to może być efekt złego podłączenia lub niepoprawnej konfiguracji obwodu, to też nie jest dobre podejście. W takich sytuacjach lepiej spojrzeć na cały układ, nie tylko na jedno wyjście. Przy diagnozowaniu tranzystorów ważne jest, żeby rozumieć, jak różne napięcia wpływają na ich działanie oraz potrafić dobrze interpretować wyniki pomiarów w kontekście całości systemu. W praktyce warto korzystać z dokumentacji technicznej i standardów, żeby trafnie znaleźć źródło problemu i wiedzieć, jak go naprawić.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 1,2 A
B. 3,6 A
C. 0,6 A
D. 15,0 A
Wybór amperomierza o zakresie 15,0 A, 0,6 A lub 3,6 A nie jest odpowiedni do pomiaru prądu jałowego transformatora. Prąd jałowy wynoszący około 1 A z całą pewnością nie zostanie należycie odzwierciedlony w przypadku użycia amperomierza o zbyt dużym zakresie, jak 15 A. Taki amperomierz może nie mieć wystarczającej precyzji i w niektórych przypadkach może nie być w stanie wykryć tak małych wartości prądu, co prowadzi do błędnych odczytów oraz możliwości nieodpowiedniej analizy stanu technicznego transformatora. Z drugiej strony, wybór amperomierza o zakresie 0,6 A lub 3,6 A również jest nieodpowiedni, ponieważ nie zapewniają one wystarczającego marginesu dla, co może prowadzić do uszkodzenia urządzenia pomiarowego. Często popełnianym błędem jest założenie, że amperomierz z najwyższym zakresem pomiarowym jest najlepszym rozwiązaniem, co jest nieprawdziwe. W praktyce, stosowanie urządzeń pomiarowych z zakresami, które są zbyt oddalone od rzeczywistych wartości prądów może prowadzić do nieefektywnych pomiarów oraz wprowadzać w błąd, co do stanu technicznego systemu. Dlatego tak ważne jest uwzględnienie dokładnych parametrów transformatora i wymagań pomiarowych przy wyborze odpowiedniego sprzętu, co jest zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 11

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
B. Silnika prądu stałego o napięciu 400 V
C. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
D. Silnika jednofazowego o napięciu 230 V
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. T
C. I
D. Q
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. tworzącym emulsję z wodą
B. o niższej lepkości
C. o wyższej gęstości
D. odpornym na proces starzenia
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 18

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. wibracji
C. hałasów
D. ciepłoty
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Osoba pracująca przy monitorze komputerowym ma prawo do

A. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
B. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
C. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
D. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Termiczny
B. Silnikowy
C. Różnicowoprądowy
D. Nadprądowy
Wyłącznik różnicowoprądowy (RCD) jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. W momencie, gdy dochodzi do upływu prądu, na przykład w wyniku uszkodzenia izolacji lub dotknięcia obudowy przez osobę, RCD natychmiast odłącza zasilanie. Tego typu wyłączniki są standardem w instalacjach elektrycznych w miejscach, gdzie może wystąpić zagrożenie porażeniem, takich jak łazienki, kuchnie oraz miejsca pracy. Przykład zastosowania to montaż RCD w obwodach zasilających gniazda elektryczne w domach, które chronią użytkowników przed niebezpiecznym napięciem dotykowym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane tam, gdzie istnieje ryzyko kontaktu z wodą, aby minimalizować ryzyko wystąpienia poważnych wypadków. Działanie RCD jest szybkie, często w ciągu 25-30 ms, co czyni je niezwykle skutecznym w ochronie przed porażeniem.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. kontroli kierunku obrotu wirnika
C. kontroli temperatury uzwojenia
D. pomiary napięcia zasilającego
Pomiar napięcia zasilania, prędkości wirnika i kontrola temperatury stojana to istotne rzeczy w pracy silników elektrycznych, ale przed ponownym połączeniem silnika z maszyną nie są aż tak kluczowe. Wydaje mi się, że skupienie na napięciu może być trochę mylące, bo choć prawidłowe napięcie jest konieczne do dobrego działania silnika, to wcale nie zapewnia, że wirnik obraca się w dobrą stronę. Czasami napięcie jest w normie, a kierunek obrotów i tak jest zły, co może prowadzić do poważnych szkód. Co do prędkości wirnika, to też jest to ważne, ale bardziej w kontekście wydajności. Nie można jednak polegać tylko na tym, by wiedzieć, czy sprzęt jest gotowy do pracy, bo prędkość nie mówi nam nic o kierunku, w jakim wirnik się obraca. Kontrola temperatury stojana jest bardziej związana z tym, jak pracuje silnik, a nie z jego przygotowaniem do połączenia. Wysoka temperatura może oznaczać problemy, ale nic nie mówi o kierunku obrotów. Dlatego, stawianie na te kwestie przed połączeniem, może prowadzić do błędnych wniosków i ryzyka awarii, co pokazuje, jak ważne jest, żeby najpierw upewnić się, że kierunek obrotów jest prawidłowy.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s

A. impulsowo.
B. z ograniczeniem czasowym.
C. warunkowo.
D. z opóźnieniem czasowym.
Wybór odpowiedzi, która sugeruje inne metody otwarcia zaworu, opiera się na nieprawidłowym zrozumieniu specyfiki działania systemu Grafcet oraz funkcji poszczególnych typów akcji. Zapis "z ograniczeniem czasowym" wskazywałby na sytuację, w której zawór otwierany jest tylko przez określony czas, co może prowadzić do niepożądanych skutków, takich jak niedostateczne dostarczenie medium lub nadmierne ciśnienie. Takie podejście jest nieefektywne w kontekście precyzyjnego sterowania, które wymaga pełnej kontroli nad czasem działania urządzeń. Ponadto, odpowiedź "warunkowo" sugeruje, że otwarcie zaworu zależy od spełnienia określonych warunków, co w tym kontekście nie znajduje zastosowania, ponieważ zapis jednoznacznie definiuje działanie z opóźnieniem. W sytuacjach, gdy działanie powinno być uzależnione od warunków, stosuje się inne symbole w Grafcet, co może prowadzić do błędów w interpretacji schematów. Odpowiedź "impulsowo" zaprzecza idei opóźnienia, ponieważ sugeruje jednokrotne, krótkotrwałe działanie, co jest niezgodne z wymaganiami stabilnego otwierania zaworu. Ostatnia opcja, "z opóźnieniem czasowym", jest jedyną, która prawidłowo oddaje założenia dotyczące sekwencji działania, a pominięcie tej koncepcji może prowadzić do nieefektywnego i niebezpiecznego zarządzania przepływem w systemach automatyki.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 3,001 bar
B. 2,001 bar
C. 4,001 bar
D. 5,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 37

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. amplitudy impulsu
B. zmianę fazy impulsu
C. częstotliwości
D. zmianę szerokości impulsu
Odpowiedzi związane z zmianą fazy impulsu, częstotliwości czy amplitudy impulsu nie pasują do PWM. Zmiana fazy impulsu to bardziej sprawa synchronizacji sygnałów, co znajduje zastosowanie np. w komunikacji, a to nie ma związku z regulowaniem mocy czy średniego prądu w PWM. Częstotliwość w PWM właściwie zostaje taka sama, gdy zaczynasz regulować szerokość impulsu; można nią trochę bawić się, ale to nie jest kluczowa sprawa w tym temacie. Co do amplitudy impulsu, to też nie jest coś, na czym PWM się opiera - tu chodzi głównie o czas, w którym sygnał jest w stanie wysokim w odnoszeniu do całego okresu sygnału. To też błąd, jeśli mylone są różne techniki modulacji z PWM, bo każda ma swoje zasady. Fajnie by było, jakbyś rozróżniał PWM od innych metod, bo jego prawdziwą zaletą jest zarządzanie mocą bez strat, które powstają przy ciągłym włączaniu i wyłączaniu. To bardzo ważne w bardziej zaawansowanych systemach, które muszą być wydajne oraz elastyczne.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termopary K
B. Termistora PTC
C. Termopary J
D. Termistora NTC
Termopary J i K to typy czujników temperatury, które działają na zasadzie efektu Seebecka. Oznacza to, że w wyniku różnicy temperatur pomiędzy dwoma różnymi metalami generowany jest napięcie, które można przekształcić na wartość temperatury. W przypadku tych czujników ich rezystancja nie zmienia się w sposób znaczący w odpowiedzi na zmiany temperatury, co prowadzi do mylnych wniosków dotyczących ich działania. Ponadto termistory PTC (Positive Temperature Coefficient) zachowują się odwrotnie niż termistory NTC – ich rezystancja wzrasta wraz ze wzrostem temperatury. Zrozumienie różnicy między tymi technologiami jest kluczowe, ponieważ może to prowadzić do błędnych wyborów w projektowaniu systemów pomiarowych. Wybór niewłaściwego czujnika do aplikacji może skutkować nieprawidłowymi pomiarami, co z kolei może prowadzić do awarii systemów lub obniżenia ich efektywności. Istotne jest, aby przed podjęciem decyzji o wyborze określonego czujnika, przeanalizować wymagania aplikacji, a także zrozumieć zasady działania stosowanych technologii. Dobrze dobrany czujnik wpływa na jakość i niezawodność systemu, co jest zgodne z najlepszymi praktykami branżowymi w zakresie automatyzacji i monitorowania procesów.