Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 maja 2025 08:20
  • Data zakończenia: 16 maja 2025 08:42

Egzamin zdany!

Wynik: 38/40 punktów (95,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Tłumicę
B. Gaśnicę proszkową
C. Hydronetkę
D. Gaśnicę płynową
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 2

Aby zidentyfikować części silników w wersji przeciwwybuchowej, które mają podwyższoną temperaturę, przeprowadza się pomiary temperatury ich obudowy. W którym miejscu silnika nie powinno się przeprowadzać tych pomiarów?

A. W centralnej części obudowy blisko skrzynki przyłączeniowej
B. Na końcu obudowy w rejonie napędu
C. W sąsiedztwie pokrywy wentylatora
D. Na tarczy łożyskowej, od strony napędowej w pobliżu pokrywy łożyska
Pomiar temperatury silników w wykonaniu przeciwwybuchowym jest kluczowy dla zapewnienia ich bezpieczeństwa i niezawodności. Wybór odpowiedniego miejsca do pomiaru temperatury jest niezwykle istotny, ponieważ nieprawidłowe lokalizacje mogą prowadzić do błędnych odczytów oraz mogą nie uwzględniać rzeczywistych warunków pracy silnika. W przypadku podwyższonej temperatury obudowy silnika, pomiar w pobliżu pokrywy wentylatora jest niewłaściwy, gdyż to miejsce jest często narażone na wpływ zewnętrznych warunków atmosferycznych oraz może być miejscem intensywnego przepływu powietrza, co prowadzi do fałszywych wskazań. Standardy branżowe, takie jak IEC 60079, określają, że należy unikać pomiaru w tych miejscach, aby zapewnić dokładność i wiarygodność danych. Zamiast tego, pomiary powinny być wykonywane w miejscach, gdzie temperatura jest rzeczywiście reprezentatywna dla stanu silnika, na przykład pośrodku obudowy lub na tarczy łożyskowej, co pozwala na lepsze śledzenie potencjalnych problemów z przegrzewaniem.

Pytanie 3

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Częstościomierz
B. Fazomierz
C. Waromierz
D. Watomierz
Wybór pozostałych mierników, takich jak watomierz, częstościomierz i waromierz, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowań w kontekście pomiaru współczynnika mocy. Watomierz, mimo że mierzy zużycie energii, nie dostarcza informacji na temat relacji między mocą czynną a mocą pozorną. Jego pomiar koncentruje się na ilości energii przekazywanej w jednostce czasu, a więc nie bierze pod uwagę charakterystyki obciążenia indukcyjnego, co jest kluczowe przy ocenie współczynnika mocy. Częstościomierz z kolei mierzy częstotliwość sygnałów, co nie ma bezpośredniego związku z mocą, a więc nie może być użyty do analizy efektywności energetycznej silnika. Waromierz, używany do pomiaru wartości energii, również nie jest narzędziem adekwatnym do oceny współczynnika mocy, ponieważ jego zastosowanie ogranicza się głównie do analizy energii w kontekście statycznym, a nie dynamicznym. Typowym błędem myślowym jest założenie, że pomiar mocy elektrycznej i ocena współczynnika mocy są tożsame, co może prowadzić do wybierania niewłaściwych narzędzi pomiarowych i błędnej analizy wyników. Aby efektywnie zarządzać energią w instalacjach przemysłowych, kluczowe jest posługiwanie się odpowiednimi przyrządami, takimi jak fazomierz, które są zgodne z normami branżowymi i najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 4

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Urządzenie spełnia kryteria efektywnego zużycia energii
B. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
C. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
D. Wyniki testów technicznych urządzenia są zadowalające
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 5

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gB
B. aL
C. gR
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 6

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
B. Montowanie w instalacji wyłącznika różnicowoprądowego
C. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
D. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
Zastosowanie przewodów roboczych o odpowiedniej wartości rezystancji izolacji jest kluczowe dla zapewnienia bezpieczeństwa w instalacji elektrycznej. Wysoka rezystancja izolacji minimalizuje ryzyko porażenia prądem elektrycznym, ponieważ ogranicza przepływ prądu w przypadku uszkodzenia izolacji przewodów. Zgodnie z normami, takimi jak PN-IEC 60364, wartość rezystancji izolacji powinna być odpowiednio wysoka, aby zapewnić skuteczną ochronę przed awariami. W praktyce, regularne pomiary rezystancji izolacji powinny być wykonywane przez wykwalifikowanych elektryków, co pozwala na wczesne wykrywanie potencjalnych zagrożeń. Dodatkowo, stosowanie przewodów o dobrej izolacji jest istotne w kontekście długowieczności instalacji – przewody o niskiej rezystancji izolacji mogą prowadzić do ich szybszego zużycia oraz zwiększenia ryzyka awarii. Właściwe dobranie materiałów oraz regularne przeglądy techniczne są fundamentem zapewnienia bezpieczeństwa użytkowania instalacji elektrycznej.

Pytanie 7

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. amperomierz i woltomierz
B. mostek Wheatstone'a
C. omomierz oraz woltomierz
D. mostek Thomsona
Prawidłowa odpowiedź to wykorzystanie amperomierza i woltomierza do pomiaru rezystancji metodą techniczną. Pomiar rezystancji w tym przypadku opiera się na zasadzie Ohma, według której rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I), czyli R = U/I. Amperomierz służy do pomiaru natężenia prądu płynącego przez obwód, natomiast woltomierz mierzy spadek napięcia na rezystorze. Dzięki temu można uzyskać dokładne wartości rezystancji, które są istotne w różnych zastosowaniach, od projektowania obwodów elektronicznych po diagnostykę sprzętu elektrycznego. Zastosowanie tej metody pomiarowej jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ zapewnia dokładność i wiarygodność wyników. Warto również zaznaczyć, że metody techniczne pomiaru rezystancji powinny być stosowane w odpowiednich warunkach, aby uniknąć błędów pomiarowych, takich jak zakłócenia elektromagnetyczne czy niewłaściwe ustawienia urządzeń pomiarowych.

Pytanie 8

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
B. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby
C. Dotyczące zabezpieczania instalacji przed uszkodzeniem
D. Związane z ratowaniem życia i zdrowia ludzi
To, że czynności eksploatacyjne, które mogą grozić zdrowiu i życiu, powinny być robione tylko na pisemne polecenie, to dobra odpowiedź. Właściwie, takie sytuacje mogą się zdarzać, gdy ktoś ma do czynienia z urządzeniami pod napięciem albo w przypadku ryzyka porażenia prądem czy pożaru. Wymóg pisemnego polecenia pomaga upewnić się, że wszystko jest dokładnie opracowane, a ryzyko zminimalizowane zgodnie z normami, jak na przykład PN-IEC 60364. Oprócz tego, te procedury powinny być opisane w instrukcjach stanowiskowych i powinny być realizowane przez ludzi, którzy mają odpowiednie uprawnienia. Wiedza o bezpieczeństwie i procedurach związanych z elektrycznością jest naprawdę ważna dla każdego, kto pracuje w tej dziedzinie.

Pytanie 9

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. B16
B. B10
C. C6
D. C10
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 10

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Wzrośnie o 10%
B. Spadnie o 19%
C. Spadnie o 10%
D. Wzrośnie o 21%
Transformator jednofazowy działa na zasadzie przekładni napięciowej, która jest definiowana jako stosunek liczby zwojów uzwojenia wysokiego napięcia do liczby zwojów uzwojenia niskiego napięcia. W przypadku, gdy nawinięto o 10% więcej zwojów na stronie dolnego napięcia, liczba zwojów w uzwojeniu niskiego napięcia wzrasta, co prowadzi do zmiany przekładni. Jeśli oznaczymy liczbę zwojów uzwojenia niskiego napięcia jako N1, uzwojenia wysokiego napięcia jako N2, to nowa liczba zwojów uzwojenia niskiego napięcia wyniesie 1,1 * N1. Nowa przekładnia napięciowa (U2/U1) oblicza się jako N2/(1,1 * N1), co skutkuje zmniejszeniem przekładni o około 10%. W praktyce, zwiększenie liczby zwojów po stronie dolnego napięcia oznacza, że transformator będzie w stanie obniżyć napięcie w mniejszym stopniu, co ma znaczenie w aplikacjach wymagających stabilizacji napięcia, takich jak zasilanie urządzeń elektronicznych, gdzie precyzyjne napięcie jest kluczowe. W przemyśle energetycznym zrozumienie przekładni napięciowej jest niezbędne do projektowania transformatorów oraz ich optymalizacji. Zmiany w liczbie zwojów mogą być korzystne w niektórych warunkach operacyjnych, co podkreśla znaczenie regularnych przeglądów i modernizacji transformatorów.

Pytanie 11

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. gF 35A
B. gR 20A
C. aM 20A
D. aM 16A
Odpowiedź aM 20A jest poprawna, ponieważ bezpiecznik typu aM charakteryzuje się dużą zdolnością do wytrzymywania krótkotrwałych prądów rozruchowych, co jest istotne w przypadku silnika klatkowego. W obliczeniach ustalamy prąd rozruchowy Ir jako pięciokrotność prądu znamionowego: Ir = 5 × In = 5 × 12 A = 60 A. Przy współczynniku rozruchu α równym 3, maksymalny prąd, który może wystąpić podczas rozruchu wynosi: Imax = Ir × α = 60 A × 3 = 180 A. Zastosowanie bezpiecznika aM 20A zapewnia odpowiednią ochronę, ponieważ jego charakterystyka pozwala na wytrzymanie krótkotrwałych prądów rozruchowych bez przepalania, a jednocześnie skutecznie zabezpiecza przed długotrwałym przeciążeniem. Takie rozwiązanie jest zgodne z normami IEC 60269 oraz NEC, które określają zasady wyboru zabezpieczeń dla silników elektrycznych. W praktyce, stosowanie bezpieczników typu aM jest powszechne w instalacjach przemysłowych, gdzie silniki są narażone na duże prądy rozruchowe.

Pytanie 12

Aby zmierzyć rezystancję izolacji w instalacji elektrycznej, trzeba wyłączyć zasilanie, zablokować włączniki instalacyjne oraz

A. odłączyć odbiorniki
B. podłączyć odbiorniki
C. uziemić instalację
D. odłączyć uziemienie
Odpowiedź "odłączyć odbiorniki" jest prawidłowa, ponieważ podczas pomiaru rezystancji izolacji instalacji elektrycznej kluczowe jest zapewnienie, że nie ma żadnych elementów, które mogłyby wpływać na wyniki pomiaru. Odbiorniki, takie jak urządzenia elektryczne i inne obciążenia, mogą wprowadzać dodatkowe ścieżki przewodzenia prądu, co zafałszowałoby wyniki pomiaru rezystancji izolacji. Odłączenie odbiorników umożliwia dokładne zbadanie stanu izolacji przewodów bez zakłóceń. Przykładem zastosowania tej praktyki może być pomiar izolacji w budynku przed oddaniem go do użytku, gdzie należy upewnić się, że instalacja nie ma zwarć ani innych usterek, co jest zgodne z normami PN-IEC 60364. Przeprowadzanie takich pomiarów zapewnia bezpieczeństwo użytkowników oraz trwałość instalacji. Warto również pamiętać, że pomiar izolacji powinien być wykonywany za pomocą odpowiednich narzędzi, takich jak megger, które są zaprojektowane do tego celu.

Pytanie 13

Trójfazowy silnik indukcyjny, obciążony połową swojej mocy znamionowej, działa z prędkością n = 1450 obr/min. W pewnym momencie doszło do spadku prędkości obrotowej, co spowodowało charakterystyczne "buczenie" silnika. Jakie mogły być przyczyny tego zakłócenia w pracy silnika?

A. Brak napięcia w jednej z faz
B. Podwojony moment obciążenia
C. Kilku procentowy wzrost napięcia zasilania
D. Odłączenie przewodu ochronnego od zacisku PE
Zanik napięcia w jednej z faz silnika indukcyjnego trójfazowego prowadzi do nierównomiernego przepływu prądu w uzwojeniach, co skutkuje spadkiem momentu obrotowego oraz zwiększeniem prędkości ślizgu. Silnik, zamiast stabilnie pracować, zaczyna generować wibracje i dźwięki, co objawia się charakterystycznym "buczeniem". W przypadku pracy z obciążeniem wynoszącym połowę mocy znamionowej, silnik może być w stanie tolerować pewne zakłócenia, ale zanik napięcia w jednej fazie jest krytycznym problemem. Przykładowo, w przemyśle, awarie zasilania w jednej fazie mogą prowadzić do uszkodzeń silników oraz innych komponentów systemu, dlatego ważne jest stosowanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe oraz monitoring jakości zasilania. Aby poprawić niezawodność systemów elektrycznych, stosuje się również układy równoważące obciążenia międzyfazowe. Stosując te zasady, można znacząco zwiększyć bezpieczeństwo i efektywność pracy silników.

Pytanie 14

Jakiego rodzaju wyłączników RCD należy użyć do zabezpieczenia instalacji elektrycznej obwodu gniazd jednofazowych w pracowni komputerowej, gdzie znajdują się 15 zestawów komputerowych?

A. 25/4/030-AC
B. 25/2/030-A
C. 25/4/300-A
D. 25/2/030-AC
Wybranie wyłącznika RCD 25/2/030-A do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej jest właściwym wyborem, biorąc pod uwagę wymagania bezpieczeństwa oraz specyfikę użytkowania. Typ 25/2/030-A oznacza, że jest to wyłącznik różnicowoprądowy o prądzie znamionowym 30 mA, co jest standardem zalecanym do ochrony osób przed porażeniem prądem elektrycznym, szczególnie w miejscach narażonych na kontakt z wodą. W pracowni komputerowej, gdzie znajdują się urządzenia elektroniczne, a także potencjalnie wilgotne warunki, jest to kluczowe. Zastosowanie wyłącznika o prądzie różnicowym 30 mA jest zgodne z normą PN-EN 61008, która zaleca stosowanie tego typu zabezpieczeń w instalacjach z gniazdami użytkowymi. Dodatkowo, 25/2/030-A charakteryzuje się niskim prądem zadziałania, co zapewnia szybką reakcję w przypadku wykrycia upływu prądu, minimalizując ryzyko porażenia. Przykład zastosowania to sytuacja, w której pracownik korzysta z komputera, a w wyniku uszkodzenia przewodu zasilającego występuje przepływ prądu do ziemi – RCD natychmiast zareaguje, odcinając zasilanie.

Pytanie 15

Aby ocenić efektywność ochrony przed porażeniem elektrycznym realizowanej przez automatyczne odłączenie zasilania zabezpieczeniem o określonym prądzie wyłączenia w systemie elektrycznym o danej wartości napięcia znamionowego, potrzebna jest informacja o wartości

A. maksymalnego spadku częstotliwości w sieci zasilającej
B. impedancji pętli zwarcia instalacji
C. mocy zainstalowanych urządzeń elektrycznych w instalacji
D. maksymalnej współczynnika przepięć
Odpowiedź dotycząca impedancji pętli zwarcia instalacji jest poprawna, ponieważ ta wartość jest kluczowa dla oceny skuteczności ochrony przeciwporażeniowej realizowanej przez samoczynne wyłączenie zasilania. Impedancja pętli zwarcia wpływa na prąd zwarciowy, który może przepłynąć przez instalację w przypadku awarii. Zgodnie z normami IEC 60364-4-41 oraz PN-IEC 61008-1, istotne jest, aby prąd wyłączający dla zastosowanego zabezpieczenia (np. wyłącznika nadprądowego lub różnicowoprądowego) był odpowiednio wyższy od wartości prądu zwarciowego, co zapewnia szybkie działanie zabezpieczeń. W praktyce, aby zapewnić skuteczność ochrony, projektanci instalacji elektrycznych muszą przeprowadzić obliczenia impedancji pętli zwarcia, co pozwala na dobór odpowiednich zabezpieczeń. Na przykład, w przypadku instalacji o napięciu znamionowym 230 V i użyciu bezpiecznika o prądzie wyłączającym 30 mA, wartość impedancji pętli zwarcia musi być obliczona tak, aby prąd zwarciowy wynosił co najmniej 150 mA, co zapewnia odpowiednie wyłączenie w wymaganym czasie.

Pytanie 16

Czas pomiędzy kolejnymi kontroli oraz próbami instalacji elektrycznych w budynkach użyteczności zbiorowej nie powinien przekraczać

A. 3 lata
B. 2 lata
C. 1 rok
D. 5 lat
Odpowiedź 5 lat jest poprawna, ponieważ zgodnie z przepisami prawa budowlanego oraz normami dotyczącymi instalacji elektrycznych, szczególnie w kontekście budynków zamieszkania zbiorowego, okres między kolejnymi sprawdzeniami nie powinien przekraczać 5 lat. Regularne kontrole są kluczowe dla zapewnienia bezpieczeństwa mieszkańców oraz prawidłowego funkcjonowania instalacji. Przykładowo, w Polskim prawie budowlanym oraz normach PN-IEC 60364-6, podkreśla się konieczność przeprowadzania okresowych przeglądów przez wykwalifikowanych specjalistów, co pozwala na wczesne wykrywanie ewentualnych usterek czy niezgodności z obowiązującymi standardami. W dłuższej perspektywie zaniedbania w tym zakresie mogą prowadzić do poważnych awarii, a także zagrożeń dla życia i zdrowia ludzi oraz mienia. Dobrym przykładem praktycznych zastosowań jest wprowadzenie systemu zarządzania, który przypomina o nadchodzących kontrolach, co zwiększa efektywność i bezpieczeństwo eksploatacji budynków.

Pytanie 17

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Prądu stałego
B. Dwufazowa z wirnikiem kubkowym
C. Dwufazowa z wirnikiem klatkowym
D. Synchroniczna
Tachoprądnice prądu stałego to takie fajne urządzenia, które nie tylko mierzą, jak szybko kręci się wał, ale też potrafią rozpoznać, w którą stronę ten wał się obraca. Działają na zasadzie indukcji elektromagnetycznej, co oznacza, że jak zmienia się pole magnetyczne, to tworzy się prąd w uzwojeniach. Jeśli wirnik zmienia kierunek, to też zmienia się polaryzacja sygnału, co jest mega ważne, gdy chcemy wiedzieć, w którą stronę coś się kręci. To przydaje się szczególnie w automatyce przemysłowej, gdzie kontrola kierunku obrotów silnika jest kluczowa. W praktyce spotkasz je w systemach regulacji prędkości silników, na przykład w robotach czy pojazdach elektrycznych, gdzie precyzyjne sterowanie ruchem ma ogromne znaczenie. Fajnie też wiedzieć, że branżowe standardy, jak IEC 60034, regulują wymagania dotyczące tych urządzeń, co pokazuje, jak ważne są w przemyśle.

Pytanie 18

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Zabrudzony komutator
B. Wystająca izolacja między działkami komutatora
C. Nieodpowiednio dobrane szczotki
D. Przerwa w obwodzie twornika
Przerwa w obwodzie twornika jest najpoważniejszym problemem, który może prowadzić do braku reakcji silnika na załączenie napięcia zasilania. W silniku szeregowym prądu stałego, twornik jest kluczowym elementem, który przekształca energię elektryczną w energię mechaniczną. Przerwa w obwodzie twornika oznacza, że prąd nie ma możliwości przepływu przez uzwojenie, co skutkuje brakiem momentu obrotowego i zatrzymaniem silnika. Taki stan może być spowodowany różnymi czynnikami, takimi jak uszkodzenie izolacji, korozja styków, czy mechaniczne uszkodzenia przewodów. W praktyce, aby zapobiegać takim problemom, zaleca się regularne przeglądy silników, zwłaszcza w zastosowaniach dorywczych, gdzie silnik może być narażony na dłuższe okresy bezczynności. W przypadku wykrycia przerwy, należy przeprowadzić diagnostykę, aby zidentyfikować miejsce usterki i podjąć odpowiednie kroki naprawcze, zgodne z branżowymi standardami serwisowymi, aby zapewnić długoterminowe i niezawodne działanie urządzenia. Dodatkowo, znajomość zasad działania silników prądu stałego oraz ich budowy, pozwala na szybsze rozwiązywanie problemów i podejmowanie skutecznych działań prewencyjnych.

Pytanie 19

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających wzrośnie.
B. Moc wydobywana w piecu wzrośnie 1,5 raza.
C. Moc wydobywana w piecu zmaleje 1,5 raza.
D. Spadek napięcia na przewodach zasilających zmniejszy się.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 20

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 4,6 Ω
B. 2,3 Ω
C. 7,7 Ω
D. 8,0 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 21

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. zmierzyć rezystancję izolacji kabla zasilającego
B. sprawdzić rezystancję przewodu ochronnego
C. zmierzyć temperaturę uzwojenia stojana
D. ocenić stan szczotek
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 22

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. C16
B. B20
C. B16
D. C10
Wybór innego wyłącznika, takiego jak B20, C10 czy C16, może wynikać z niewłaściwego zrozumienia zasad działania wyłączników automatycznych i ich zastosowania w kontekście ochrony przeciwporażeniowej. Wyłącznik B20, z prądem znamionowym 20 A, ma zbyt wysoką wartość dla zdefiniowanej impedancji pętli zwarcia 2,5 Ω, co może prowadzić do zbyt długiego czasu zadziałania przy wystąpieniu zwarcia. To zwiększa ryzyko porażenia ludzi, co jest niezgodne z zaleceniami normy PN-EN 60947-2, która określa wymagania dotyczące zabezpieczeń w instalacjach elektrycznych. Wybór C10 oraz C16, które są wyłącznikami typu C, również może być mylący, ponieważ są one przeznaczone głównie do obwodów z wysokimi prądami rozruchowymi, takimi jak silniki, a nie do typowych instalacji oświetleniowych czy gniazdowych. W związku z tym, wyłączniki te mogą zadziałać z opóźnieniem, co jest nieakceptowalne w kontekście ochrony przed porażeniem prądem. W praktyce, dobór odpowiednich wyłączników do instalacji elektrycznych powinien być oparty na analizie impedancji pętli zwarcia oraz wymagań dotyczących czasów zadziałania, aby zapewnić właściwe bezpieczeństwo.

Pytanie 23

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
B. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
C. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
D. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
Wybór odpowiedzi dotyczącej zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest uzasadniony. Zgodnie z normami instalacji elektrycznych, takimi jak PN-IEC 60364, zaleca się, aby gniazda wtykowe w pomieszczeniach mieszkalnych były podłączone do odrębnych obwodów. Taki układ zwiększa bezpieczeństwo, ponieważ w przypadku przeciążenia lub zwarcia, wyłączenie jednego obwodu nie wpływa na pozostałe gniazda w innych pomieszczeniach. Przykładem praktycznym jest sytuacja, gdy w jednym pomieszczeniu używamy wielu urządzeń elektrycznych, takich jak komputer, lodówka czy telewizor. Dzieląc zasilanie na poszczególne obwody, minimalizujemy ryzyko spadku napięcia i zapewniamy stabilność zasilania. Dodatkowo, urządzenia wymagające dużej mocy, jak pralki czy kuchenki, powinny być zasilane z osobnych obwodów, co wynika z zasad bezpieczeństwa oraz efektywności energetycznej.

Pytanie 24

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 100 mA
B. 1 000 mA
C. 30 mA
D. 500 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 25

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Transformatorem bezpieczeństwa
B. Autotransformatorem
C. Falownikiem
D. Dzielnikiem napięcia
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 26

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. separację elektryczną
B. jedynie obudowy
C. umiejscowienie poza zasięgiem ręki
D. wyłącznie specjalne ogrodzenia
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 27

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Pęknięcie pierścieni zwierających pręty wirnika
B. Nagle zmniejszone napięcie zasilające
C. Nagle zwiększone napięcie zasilające
D. Poluzowanie tabliczki zaciskowej
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 28

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242

A. 4,0 mm2
B. 1,5 mm2
C. 2,5 mm2
D. 6,0 mm2
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 29

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Silnik synchroniczny
B. Rdzeń magnetyczny
C. Uchwyty do podłączenia przewodów
D. Izolatory ceramiczne
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 30

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω

A. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
B. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 31

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Podwyższenia częstotliwości ponad wartość nominalną.
B. Pojawienia się przepięcia.
C. Nadkompensacji sieci.
D. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
Samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej z generatora synchronicznego zadziała w momencie zwiększenia mocy pobieranej ponad wartość mocy wytwarzanej. W sytuacji, gdy zapotrzebowanie na moc przekracza moc generowaną przez system, dochodzi do spadku częstotliwości w sieci. Generator synchroniczny, aby dostosować się do nowego obciążenia, może zredukować częstotliwość obrotową, co w efekcie może prowadzić do zwiększenia mocy generowanej przez jednostki w systemie. W praktyce, aby przeciwdziałać tym zmianom, stosuje się mechanizmy automatycznego odciążenia, które w odpowiedzi na wzrost poboru mocy, aktywują rezerwy mocy dostępne w sieci. Przykładem zastosowania SCO może być sytuacja w sieci rozdzielczej, gdzie nagły wzrost poboru mocy przez dużego odbiorcę wymaga natychmiastowej reakcji generatorów w celu utrzymania stabilności systemu. Standardy takie jak NERC i IEC podkreślają znaczenie takich mechanizmów w zapewnieniu niezawodności i stabilności systemów elektroenergetycznych.

Pytanie 32

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121

A. 6301
B. 6001
C. 6700
D. 6200
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 33

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Osłabienie wytrzymałości mechanicznej przewodów
B. Zwiększenie rezystancji pętli zwarcia
C. Zwiększenie obciążalności prądowej instalacji
D. Obniżenie napięcia roboczego
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 34

Czas pomiędzy kolejnymi kontrolami oraz próbami instalacji elektrycznych w budynkach mieszkalnych zbiorowego użytku nie powinien przekraczać okresu

A. 5 lat
B. 3 lata
C. 1 rok
D. 2 lata
Odpowiedź '5 lat' jest jak najbardziej zgodna z przepisami prawa i normami bezpieczeństwa, które dotyczą elektryki w budynkach. Ustalono ten okres, żeby zapewnić bezpieczeństwo dla użytkowników i zmniejszyć ryzyko awarii. Regularne przeglądy co pięć lat pomagają dostrzegać ewentualne usterki, zużycie materiałów albo niezgodności ze standardami. W budynkach wielorodzinnych, gdzie mieszka dużo ludzi, ważne jest, żeby instalacje były nie tylko sprawne, ale też bezpieczne. Jakby przeglądy były robione rzadziej, mogłoby to spowodować poważne zagrożenia, jak pożar czy porażenie prądem. W praktyce dobrze jest nie tylko trzymać się tej pięcioletniej zasady, ale i wprowadzać częstsze przeglądy, jeśli widzisz, że instalacja ma jakieś oznaki zużycia albo w przypadku obiektów, które są w większym ryzyku.

Pytanie 35

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 25 kΩ
B. 10 kΩ
C. 75 kΩ
D. 50 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 36

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C20
B. S303 C32
C. S303 C25
D. S303 C40
Odpowiedź S303 C32 jest poprawna, ponieważ przy wyborze wyłącznika nadprądowego dla trójfazowego silnika klatkowego o mocy znamionowej 11 kW, napięciu 400 V oraz współczynniku mocy cos φ = 0,73, istotne jest obliczenie prądu znamionowego silnika. Prąd ten można wyznaczyć z wzoru: I = P / (√3 * U * cos φ). Po podaniu wartości (P = 11 kW, U = 400 V, cos φ = 0,73), uzyskujemy prąd około 18,5 A. Wyłącznik C32 ma prąd znamionowy 32 A, co zapewnia odpowiedni margines ochrony w przypadku przeciążenia oraz pozwala na bezpieczną i niezawodną pracę silnika. Wybór wyłącznika z niższą wartością prądową, jak C25 czy C20, mógłby prowadzić do zbyt częstych wyłączeń w przypadku normalnych warunków pracy silnika. Praktyczne zastosowanie wyłącznika C32 w obwodach zasilających silniki trójfazowe jest zgodne z normami IEC 60947-2, które zalecają odpowiednie marginesy dla wyłączników chroniących silniki. Dodatkowo, zastosowanie tego wyłącznika zmniejsza ryzyko uszkodzenia silnika oraz zapewnia bezpieczeństwo całego systemu zasilania.

Pytanie 37

Gdy chodzi o odbiornik o dużej mocy, taki jak kuchenka elektryczna, jak należy go zasilać?

A. z wydzielonego obwodu z własnym zabezpieczeniem
B. z wydzielonego obwodu bez własnych zabezpieczeń
C. z wspólnego obwodu oświetleniowego
D. z wspólnego obwodu gniazd wtyczkowych
Odpowiedź, że odbiornik dużej mocy, taki jak kuchenka elektryczna, powinien być zasilany z wydzielonego obwodu z własnym zabezpieczeniem, jest poprawna i zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Kuchenki elektryczne są urządzeniami o dużym zużyciu energii, co oznacza, że wymagają dedykowanego obwodu, który jest w stanie wytrzymać ich obciążenie. Wydzielony obwód zapewnia, że inne urządzenia podłączone do obwodu nie będą wpływać na jego działanie, co minimalizuje ryzyko przeciążenia. Dodatkowo, posiadanie własnego zabezpieczenia, jak na przykład wyłącznik nadprądowy, pozwala na szybkie reagowanie w przypadku zwarcia lub przeciążenia. W praktyce oznacza to, że w przypadku awarii kuchenki, zabezpieczenie automatycznie odłączy zasilanie, chroniąc zarówno urządzenie, jak i instalację elektryczną budynku. Przykładem są przepisy zawarte w normie PN-IEC 60364, które zalecają stosowanie oddzielnych obwodów dla urządzeń o dużym poborze mocy, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 38

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Zwarcie międzyzwojowe
B. Przerwa w uzwojeniu
C. Przeciążenie transformatora
D. Uszkodzenie rdzenia
Przeciążenie transformatora często prowadzi do zwiększenia jego temperatury. Gdy transformator jest obciążony powyżej swojej znamionowej mocy, zaczyna generować więcej ciepła niż jest w stanie oddać do otoczenia. Z tego powodu temperatura uzwojeń oraz innych elementów wewnętrznych transformatora wzrasta. Przeciążenia mogą wynikać z niewłaściwego projektowania systemu, nieprawidłowych połączeń, czy też nagłych wzrostów zapotrzebowania na moc. W praktyce, transformator powinien być zawsze eksploatowany w granicach swojej znamionowej mocy, a jego obciążenie monitorowane za pomocą odpowiednich urządzeń pomiarowych. Długotrwałe przeciążenie nie tylko prowadzi do wzrostu temperatury, ale może również skrócić żywotność transformatora, uszkodzić izolację uzwojeń i spowodować awarie całego systemu. Dlatego tak ważne jest stosowanie się do zaleceń producenta oraz regularne przeglądy i konserwacje urządzenia. Dodatkowo, instalacja systemów chłodzenia, takich jak wentylatory lub chłodzenie olejowe, może pomóc w zarządzaniu temperaturą podczas większych obciążeń.

Pytanie 39

Na podstawie wyników pomiarów przedstawionych w tabeli określ, który z obwodów nie spełnia warunków ochrony przeciwporażeniowej.

ObwódNazwa urządzenia elektrycznegoZastosowane zabezpieczeniePrąd wyłączalny z charakterystykiCzas wyłączeniaZmierzona impedancjaPrąd zwarcia obliczeniowy
Ib w AIw w AT≤... w sZz w ΩIzw w A
A.gniazdo jednofazoweB16800,22,30100,00
B.gniazdo jednofazoweB16800,22,5390,09
C.gniazdo jednofazoweB16800,23,3668,45
D.gniazdo jednofazoweB16800,21,32174,24

A. A.
B. D.
C. B.
D. C.
Obwód C został zidentyfikowany jako ten, który nie spełnia warunków ochrony przeciwporażeniowej ze względu na prąd różnicowy równy 68,45A, który jest niższy niż prąd wyzwalający zabezpieczenia wynoszący 80A. Zgodnie z normą IEC 60364-4-41, prąd różnicowy powinien być wystarczająco duży, aby zapewnić skuteczne zadziałanie zabezpieczenia w przypadku awarii. W praktyce oznacza to, że jeśli wystąpiłby prąd upływowy, zabezpieczenie nie zadziałałoby, co stwarzałoby ryzyko porażenia prądem. Przykładem zastosowania tych norm może być instalacja zabezpieczeń różnicowoprądowych w budynkach mieszkalnych. Wysokiej jakości zabezpieczenia są niezbędne, aby zminimalizować ryzyko porażenia i pożaru, co jest kluczowe dla bezpieczeństwa użytkowników. Ponadto, regularne kontrole i testy tych zabezpieczeń są zalecane w celu upewnienia się, że działają one prawidłowo, co jest zgodne z praktykami utrzymania bezpieczeństwa elektrycznego.

Pytanie 40

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 25 mm2
B. 35 mm2
C. 50 mm2
D. 20 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.