Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 18:36
  • Data zakończenia: 14 maja 2025 18:47

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

W jakiej maksymalnej odległości od czoła czujnika powinien znajdować się przedmiot, aby został wykryty przez czujnik o parametrach podanych w tabeli?

Napięcie zasilania: 12 ÷ 24V DC
Zasięg: 8 mm
Typ wyjścia: NPN N.O., NPN N.C., PNP N.O., PNP N.C.
Rodzaj czoła: odkryte
Obudowa czujnika: M18
Przyłącze: przewód 2 m
Maksymalny prąd pracy: 100 mA
Czas odpowiedzi układu: max. 2 ms
Materiał korpusu: metal
Stopień ochrony: IP66
Temperatura pracy: -20°C ÷ +60°C

A. 12mm
B. 2mm
C. 8mm
D. 66mm
Poprawna odpowiedź to 8 mm, co zgadza się z parametrami czujnika podanymi w tabeli. Zasięg detekcji czujnika wynosi dokładnie 8 mm, co oznacza, że przedmiot musi znajdować się w tej odległości od czoła czujnika, aby mógł zostać skutecznie wykryty. W praktycznych zastosowaniach, takich jak automatyka przemysłowa, robotyka czy systemy zabezpieczeń, znajomość zasięgu detekcji czujników jest kluczowa. Umożliwia to prawidłowe zaprojektowanie systemów, które polegają na precyzyjnym wykrywaniu obiektów. Na przykład, w aplikacjach z wykorzystaniem czujników zbliżeniowych, jeśli odległość obiektu przekroczy zasięg czujnika, wykrycie nie będzie możliwe, co może prowadzić do błędów w działaniu całego systemu. Dlatego też, przy projektowaniu układów automatyki, ważne jest, aby zawsze uwzględniać parametry techniczne czujników, co zapewnia ich efektywne działanie i zgodność ze standardami branżowymi.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie metody wykorzystuje się do produkcji prętów?

A. tłoczenie
B. wytłaczanie
C. walcowanie
D. odlewanie
Walcowanie jest procesem obróbki plastycznej, który polega na redukcji grubości materiału przez jego przetaczanie pomiędzy dwoma walcami. Technika ta jest szeroko stosowana w produkcji prętów, ponieważ pozwala na uzyskanie odpowiednich właściwości mechanicznych oraz wymiarowych. Walcowanie może być przeprowadzane na gorąco lub na zimno, co wpływa na strukturę mikro oraz mechaniczne właściwości końcowego produktu. Dzięki walcowaniu, pręty charakteryzują się jednorodnością materiałową oraz lepszą jakością powierzchni, co jest niezbędne w wielu zastosowaniach inżynieryjnych, takich jak budownictwo czy przemysł motoryzacyjny. W branży istnieją także normy, takie jak EN 10025, które określają wymagania dotyczące stali walcowanej, co dodatkowo podkreśla znaczenie tej metody w produkcji. Walcowanie jest procesem efektywnym, który przyczynia się do obniżenia kosztów produkcji oraz zwiększenia wydajności, co czyni tę metodę jedną z najpopularniejszych w obróbce metali.

Pytanie 10

Próba włączenia napędu z prawidłowo działającym silnikiem trójfazowym za każdym razem powoduje włączenie wyłącznika instalacyjnego. Jakie działanie może potencjalnie rozwiązać ten problem?

A. Zastosowanie wyłącznika instalacyjnego zwłocznego
B. Odłączenie uziemienia silnika
C. Zmiana kolejności faz
D. Podłączenie kondensatora rozruchowego
Pojęcia związane z odłączeniem uziemienia silnika, podłączeniem kondensatora rozruchowego oraz zmianą kolejności faz nie są skutecznymi rozwiązaniami problemu zadziałania wyłącznika instalacyjnego. Odłączenie uziemienia może prowadzić do niebezpiecznych sytuacji, w których niekontrolowane napięcia mogą pojawić się na obudowie silnika, co stwarza ryzyko porażenia prądem elektrycznym. Uziemienie jest kluczowe dla bezpieczeństwa urządzeń elektrycznych, gdyż chroni zarówno operatorów, jak i urządzenia przed skutkami zwarcia. Z kolei zastosowanie kondensatora rozruchowego jest metodą, która może pomóc jedynie w przypadku silników jednofazowych, a nie trójfazowych. Silniki trójfazowe zazwyczaj nie wymagają kondensatorów rozruchowych, ponieważ ich konstrukcja pozwala na efektywny rozruch bez dodatkowego wsparcia. Zmiana kolejności faz, chociaż może wpłynąć na kierunek obrotów silnika, nie rozwiązuje problemu przeciążenia przy rozruchu. W rzeczywistości, zmiana ta może prowadzić do nieprawidłowej pracy silnika, a nawet jego uszkodzenia. Warto również zauważyć, że silniki trójfazowe posiadają obliczone wartości prądowe i odpowiedni dobór wyłączników instalacyjnych powinien brać pod uwagę te parametry, zamiast stosować metody, które mogą wprowadzić dodatkowe ryzyko i nieprawidłowości w działaniu systemu.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. oddala się od linii punktu rosy
B. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
C. zbliża się do linii punktu rosy
D. nie zmienia się w stosunku do linii punktu rosy
W przypadku wzrostu ciśnienia w zbiorniku sprężarki, odpowiedzi które sugerują, że stan pary wodnej w zgromadzonym powietrzu nie ulega zmianie lub oddala się od linii punktu rosy, opierają się na mylnych założeniach dotyczących zachowania wilgotności i ciśnienia. Po pierwsze, wilgotność względna, będąca stosunkiem aktualnego ciśnienia pary wodnej do ciśnienia pary nasyconej przy danej temperaturze, jest ściśle związana z ciśnieniem. Wzrost ciśnienia przy stałej temperaturze prowadzi do zwiększenia ciśnienia cząstkowego pary wodnej, co w efekcie zmienia dynamiczny balans pomiędzy stanem gazowym a stanem ciekłym w systemie. Odpowiedzi sugerujące, że wilgotność pozostaje bez zmian, ignorują fundamentalne zasady termodynamiki oraz charakterystykę zachowań gazów. Ponadto, odniesienia do „stałej wilgotności absolutnej” są nieprecyzyjne, ponieważ wilgotność absolutna jest miarą ilości pary wodnej w jednostce objętości powietrza, co nie wpływa na zmiany wynikające z wyższego ciśnienia. Typowe błędy w interpretacji tego zjawiska często są wynikiem braku zrozumienia pojęcia punktu rosy oraz wpływu ciśnienia na zachowanie pary wodnej w gazach. W praktyce inżynierskiej, zrozumienie tych zjawisk jest kluczowe, aby unikać problemów związanych z kondensacją, co może prowadzić do poważnych awarii w systemach sprężonego powietrza oraz innych procesów przemysłowych.

Pytanie 13

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 63 mm
B. 50 mm
C. 100 mm
D. 80 mm
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Parametr określający zakres roboczy działania siłownika to

A. skok siłownika
B. średnica cylindra
C. maksymalne ciśnienie
D. teoretyczna siła pchająca
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 16

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 25 V DC
B. 20 V DC
C. 30 V DC
D. 15 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
B. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki
C. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
D. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych nieporozumień. Przyłącze stożkowe, które sugeruje część niepoprawnych odpowiedzi, nie jest typowe dla zaworów pneumatycznych o parametrach podanych w pytaniu. W praktyce, przyłącza walcowe są szeroko stosowane ze względu na ich łatwość montażu oraz kompatybilność z większością systemów. Z kolei pojęcie 'ciśnienia nominalnego powietrza' jest mylące w kontekście podanych parametrów, ponieważ bardziej odpowiednim określeniem w tym przypadku jest 'przepływ nominalny', który bezpośrednio odnosi się do wydajności zaworu. Napięcie 'stałe', zaproponowane w jednej z odpowiedzi, również jest błędne; parametry wskazują, że zawór działa na napięciu zmiennym, co jest istotne w kontekście zastosowań, w których wykorzystuje się zasilanie AC. Dodatkowo, moc pozorna cewki powinna być zrozumiana jako wartość, która wskazuje, ile energii jest potrzebne do pracy zaworu, a nie jako moc czynna, jak sugeruje jedna z odpowiedzi. Te nieporozumienia mogą prowadzić do niewłaściwego doboru komponentów, co z kolei może mieć negatywne konsekwencje dla efektywności i bezpieczeństwa całego systemu pneumatycznego. Właściwe zrozumienie specyfikacji technicznych zaworów i ich parametrów jest kluczowe dla projektowania oraz eksploatacji systemów automatyki przemysłowej.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z aluminium
B. z miedzi
C. ze stali
D. z polipropylenu
Wybierając inne materiały, takie jak miedź, stal czy aluminium, można błędnie założyć, że sensory indukcyjne będą w stanie je wykryć. Miedź, będąca materiałem przewodzącym, podlega wpływowi pola elektromagnetycznego. Sensory indukcyjne są zaprojektowane do detekcji takich materiałów, a ich działanie opiera się na indukcji elektromagnetycznej. Z kolei stal, szczególnie ferromagnetyczna, jest zazwyczaj jednym z najlepszych materiałów do detekcji przez te sensory. Sensory indukcyjne są często stosowane do detekcji obiektów metalowych w różnych procesach przemysłowych, co sprawia, że wybór stali jako materiału wykrywalnego jest uzasadniony. Aluminium również jest materiałem, który można wykrywać, chociaż efektywność detekcji może być nieco niższa niż w przypadku stali. Problem z tymi odpowiedziami polega na mylnym przekonaniu, że każdy materiał metalowy można wykryć bez względu na jego właściwości elektryczne. W rzeczywistości wielkość obiektu, jego kształt oraz materiał, z którego jest wykonany, mają kluczowe znaczenie dla efektywności wykrywania. Użytkownicy powinni zwrócić uwagę na to, że różne typy czujników mają swoje specyficzne zastosowania związane z materiałami, co jest podkreślone w normach branżowych dotyczących automatyzacji i detekcji, takich jak IEC 60947-5-2.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przyspieszenie
B. Ciśnienie
C. Przesunięcie kątowe
D. Moment obrotowy
Enkoder absolutny jednoobrotowy służy do pomiaru przesunięcia kątowego, co oznacza, że pozwala na określenie dokładnej pozycji obiektu w zakresie jednego obrotu. Działa na zasadzie rejestrowania unikalnej wartości kodu dla każdej pozycji kątowej, co sprawia, że jest niezwykle precyzyjny. Zastosowanie tego typu enkodera w aplikacjach takich jak robotyka, automatyka przemysłowa czy mechatronika jest powszechne, gdyż pozwala na dokładne określenie położenia elementów ruchomych. Przykładem zastosowania może być kontrola położenia silnika krokowego, gdzie dokładne informacje o kącie obrotu są kluczowe dla precyzyjnego sterowania ruchem. Enkodery absolutne jednoobrotowe są również zgodne z normami branżowymi, takimi jak IEC 61131, co zapewnia ich wysoką jakość i niezawodność. Dzięki swojej konstrukcji, eliminują problem utraty pozycji po wyłączeniu zasilania, co jest istotne w wielu aplikacjach przemysłowych.

Pytanie 24

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
B. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
C. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
D. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
Zastosowanie opaski powyżej rany lub poniżej rany w kontekście krwotoku zewnętrznego jest nieprawidłowe z kilku powodów. Głównym celem opatrunku w przypadku krwawienia jest bezpośrednie uciskanie rany, co pozwala na fizyczne zatrzymanie krwi. Zakładanie opaski powyżej rany, czyli na zdrową tkankę, może nie tylko nie pomóc w zatrzymaniu krwawienia, ale także spowodować uszkodzenie tkanek w wyniku ucisku. Takie podejście jest zgodne z nieprawidłowymi założeniami, które skupiają się na lokalizacji opaski, zamiast na bezpośrednim działaniu na ranę. Z kolei zastosowanie opaski poniżej rany również nie przynosi pożądanych efektów, ponieważ krew nadal będzie płynąć do rany, co może prowadzić do dalszej utraty krwi. Dodatkowo, zmiana opatrunku w krótkim czasie bez odpowiedniego ucisku na ranie jest błędem, ponieważ może prowadzić do wznowienia krwawienia. W kontekście standardów pierwszej pomocy, niezwykle ważne jest, aby skupić się na ucisku na miejscu krwawienia i zastosowaniu jałowego opatrunku, co stwarza warunki do skutecznej interwencji. Praktyka pokazuje, że odpowiednie działania powinny być oparte na zrozumieniu anatomii i mechanizmów krwawienia, a także na stosowaniu sprawdzonych metod, które zwiększają szanse na zatrzymanie krwawienia i udzielenie skutecznej pomocy przedmedycznej.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. kątomierz
B. poziomnicę
C. czujnik zegarowy
D. przymiar liniowy
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 27

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. odizolowany na dowolną długość
B. zaizolowany na końcach
C. zakończony na końcach tulejkami
D. równo przycięty na końcach
Zakończenie przewodu giętkiego tulejkami to naprawdę ważna sprawa, zwłaszcza z perspektywy bezpieczeństwa i skuteczności połączeń w systemach mechatronicznych. Tulejki, czyli końcówki przewodów, dają mocne i trwałe połączenia, co zmniejsza ryzyko różnych awarii, zarówno mechanicznych, jak i elektrycznych. Jak dobrze wiemy, dzięki tulejkom żyły przewodów są lepiej chronione przed uszkodzeniami mechanicznymi czy korozją, co na pewno wydłuża ich żywotność. Poza tym, użycie tulejek ułatwia podłączanie przewodów do różnych elementów systemu, jak złącza czy komponente elektroniczne. To jest w sumie istotne w układach mechatronicznych, bo często trzeba coś zmieniać. I jeszcze jedno: stosowanie tulejek jest zgodne z branżowymi normami i standardami, a to ma znaczenie nie tylko dla bezpieczeństwa operatorów, lecz także dla niezawodności całego systemu. Dlatego warto korzystać z tulejek w zakończeniach przewodów giętkich, bo to po prostu najlepsza praktyka w tej dziedzinie.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
B. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
C. oblać dłoń wodą utlenioną i nałożyć opatrunek
D. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. pomiarów
B. montażu
C. oględzin
D. obróbki
W ocenie stanu technicznego podzespołów mechanicznych kluczowe jest zrozumienie, że każdy etap procesu diagnostycznego ma swoje miejsce i znaczenie. Rozpoczęcie od obróbki, pomiarów czy montażu jest niepoprawne, ponieważ te działania zakładają wcześniejsze zweryfikowanie ogólnego stanu urządzenia. Obróbka podzespołów, na przykład, odbywa się zazwyczaj po stwierdzeniu, że są one w odpowiednim stanie do dalszych działań. Pomiar, z kolei, bez uprzednich oględzin, może prowadzić do niepoprawnych wniosków, gdyż istotne niedoskonałości mogą zniekształcać wyniki. Montaż zestawów mechanicznych bez wcześniejszej analizy stanu podzespołów może skutkować niewłaściwym działaniem finalnego produktu, co jest niezwykle kosztowne i czasochłonne w naprawie. W praktyce inżynierskiej istotne jest stosowanie metodologii, które zaczynają się od detekcji widocznych problemów, co wpływa na efektywność całego procesu oceny i konserwacji. Prawidłowe podejście do diagnostyki jest kluczowe dla zapewnienia długotrwałej żywotności i niezawodności podzespołów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Brąz
B. Mosiądz
C. Żeliwo szare
D. Stal szybkotnącą
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.