Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 maja 2025 20:58
  • Data zakończenia: 17 maja 2025 21:10

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Natężenie prądu elektrycznego
B. Gęstość prądu elektrycznego
C. Indukcyjność przewodnika
D. Rezystancja przewodnika
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 2

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. ochrony prądowej systemu
C. przełącznika instalacyjnego systemu
D. wskaźnika działania systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 3

W trakcie montażu systemu elektronicznego chłodzonego radiatorem, należy zapewnić odpowiednią powierzchnię styku pomiędzy układem a radiatorem poprzez

A. pokrycie klejem
B. pokrycie pastą termoprzewodzącą
C. rozdzielenie folią aluminiową
D. rozdzielenie papierem
Pokrycie powierzchni styku układu elektronicznego i radiatora pastą termoprzewodzącą jest kluczowym krokiem w zapewnieniu efektywnego odprowadzania ciepła. Pasta ta, dzięki swojej strukturze, wypełnia mikroskopijne nierówności na powierzchniach stykających się, co zwiększa powierzchnię kontaktu i poprawia przewodnictwo cieplne. W praktyce, stosowanie past termoprzewodzących jest standardem w przemyśle elektronicznym i komputerowym, gdzie minimalizacja temperatury pracy elementów jest kluczowa dla ich wydajności i żywotności. Na przykład, w procesorach komputerowych, zastosowanie pasty termoprzewodzącej pozwala na osiągnięcie niższych temperatur, co przekłada się na stabilność działania i zwiększa wydajność systemu. Ponadto, wybierając odpowiednią pastę, należy zwrócić uwagę na jej przewodnictwo cieplne, co jest zazwyczaj określane w jednostkach W/mK. Użycie pasty zgodnej z normami branżowymi gwarantuje długoterminową niezawodność układów elektronicznych.

Pytanie 4

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Stal szybkotnącą
B. Brąz
C. Mosiądz
D. Żeliwo szare
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 5

Aby z dużą precyzją identyfikować jedynie obiekty metalowe w odległości do 5 mm, należy zastosować czujnik

A. mechaniczny
B. indukcyjny
C. ultradźwiękowy
D. temperatury
Czujniki indukcyjne są idealnym rozwiązaniem do wykrywania obiektów metalowych, zwłaszcza w bardzo małych odległościach, takich jak 5 mm. Działają na zasadzie indukcji elektromagnetycznej, co pozwala im na detekcję zmian w polu elektromagnetycznym wywołanych obecnością metalu. Dzięki swojej wysokiej czułości i precyzji, czujniki te są szeroko stosowane w automatyce przemysłowej, na przykład w aplikacjach związanych z detekcją obecności części metalowych na liniach montażowych, a także w systemach zabezpieczeń. Standardy branżowe zalecają stosowanie czujników indukcyjnych w sytuacjach, gdzie wymagane jest szybkie i niezawodne wykrywanie metalowych obiektów, co jest szczególnie istotne w środowiskach produkcyjnych. Ich odporność na zanieczyszczenia i działanie czynników zewnętrznych czyni je idealnym wyborem w trudnych warunkach przemysłowych. Ponadto, czujniki te charakteryzują się długą żywotnością oraz niskimi kosztami eksploatacyjnymi, co czyni je bardzo efektywnym rozwiązaniem.

Pytanie 6

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 3% roztworu sody oczyszczonej
B. 1% roztworu kwasu octowego
C. 1% roztworu kwasu cytrynowego
D. wody destylowanej
Zastosowanie 1% kwasu cytrynowego lub 1% kwasu octowego w celu złagodzenia skutków oparzenia kwasem siarkowym jest niewłaściwe i może prowadzić do dalszego poważnego uszkodzenia skóry. Zarówno kwas cytrynowy, jak i kwas octowy są substancjami kwasowymi, które mogą w reakcji chemicznej z kwasem siarkowym prowadzić do powstania dodatkowych produktów reakcji, co zintensyfikuje proces oparzenia. Zamiast neutralizacji, ich użycie może spowodować dalsze uszkodzenia tkanek oraz zaostrzenie objawów. W przypadku chemicznych poparzeń, kluczowe jest szybkie usunięcie czynnika drażniącego, co powinno być realizowane przede wszystkim poprzez płukanie wodą. Woda działa jako rozpuszczalnik, a jej obfite użycie może pomóc w usunięciu resztek kwasu z powierzchni skóry. Ponadto, 3% roztwór sody oczyszczonej jest neutralizatorem, który może pomóc w przywróceniu równowagi pH i zminimalizować szkodliwe skutki oparzeń. Zrozumienie tych zasad jest kluczowe dla skutecznego udzielania pierwszej pomocy w przypadku kontaktu ze szkodliwymi substancjami chemicznymi, co podkreśla znaczenie znajomości właściwych protokołów postępowania oraz dobrych praktyk w dziedzinie ochrony zdrowia i bezpieczeństwa.

Pytanie 7

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 4,001 bar
B. 5,001 bar
C. 3,001 bar
D. 2,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 8

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 750 obr/min
B. 75 obr/min
C. 7 obr/min
D. 7500 obr/min
W przypadku błędnych odpowiedzi, można zauważyć, że niektórzy mogą błędnie interpretować zależność między napięciem a prędkością obrotową. Odpowiedzi takie jak 75 obr/min, 7500 obr/min i 7 obr/min wynikają z niepoprawnego rozumienia proporcji. W szczególności, odpowiedź 75 obr/min mogłaby wynikać z pomyłki przy dzieleniu lub niewłaściwego zastosowania jednostek, co prowadzi do zaniżenia wartości prędkości. W przypadku 7500 obr/min, użytkownicy mogą mylnie zakładać, że napięcie 7,5 V jest równoważne w pełni do maksymalnej wartości prędkości obrotowej, co nie jest zgodne z zasadami proporcjonalności. Z kolei odpowiedź 7 obr/min jest całkowicie nieadekwatna, ponieważ nie uwzględnia podstawowych właściwości prądnic tachometrycznych oraz ich charakterystyki działania. Takie błędne wnioski mogą prowadzić do poważnych problemów w praktycznych zastosowaniach, jak na przykład w systemach regulacji prędkości obrotowej. Dlatego kluczowe jest zrozumienie, że każda zmiana napięcia wskazuje na proporcjonalną zmianę prędkości obrotowej, co jest fundamentem dla prawidłowego pomiaru i analizy w różnych dziedzinach inżynierii.

Pytanie 9

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 6 stopni swobody
B. 4 stopnie swobody
C. 5 stopni swobody
D. 3 stopnie swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 10

Jaką rolę odgrywają zawory przelewowe w systemach hydraulicznych?

A. Utrzymują ustalony poziom ciśnienia
B. Zapewniają ustawiony, stały spadek ciśnienia
C. Ograniczają ciśnienie do ustalonego poziomu
D. Redukują nagłe skoki ciśnienia
Zawory przelewowe pełnią kluczową rolę w układach hydraulicznych, a ich główną funkcją jest utrzymywanie określonego poziomu ciśnienia. Działają one na zasadzie otwierania się w momencie, gdy ciśnienie w systemie przekracza zdefiniowaną wartość, co pozwala na odprowadzenie nadmiaru cieczy z systemu. Dzięki temu zapobiegają one uszkodzeniom elementów układu hydraulicznego, takich jak pompy czy silniki hydrauliczne. Przykładem zastosowania zaworów przelewowych może być system hydrauliczny stosowany w maszynach budowlanych, gdzie stabilne ciśnienie jest niezbędne do prawidłowego działania narzędzi roboczych. W branży hydraulicznej powszechnie stosuje się standardy, takie jak ISO 4413, które określają wymagania dotyczące układów hydraulicznych, w tym zastosowania zaworów przelewowych. Utrzymanie stałego ciśnienia nie tylko zwiększa efektywność działania systemu, ale również wpływa na jego bezpieczeństwo oraz trwałość.

Pytanie 11

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. stałym 110 V
B. stałym 24 V
C. trójfazowym 230 V/400 V
D. jednofazowym symetrycznym 2 x 115 V
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 12

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
B. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
C. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 13

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. ochronników słuchu
C. okularów ochronnych
D. rękawic dielektrycznych
Wybór niewłaściwego środka ochrony osobistej może prowadzić do poważnych konsekwencji zdrowotnych. Na przykład stosowanie kasku ochronnego w warunkach nadmiernego hałasu nie przyniesie pożądanych efektów ochronnych dla słuchu, ponieważ kask koncentruje się na ochronie głowy przed uderzeniami, a nie na redukcji hałasu. Okulary ochronne są ważne w kontekście ochrony wzroku przed odpryskami i innymi zagrożeniami optycznymi, jednak nie mają żadnego wpływu na ochronę słuchu w hałaśliwym otoczeniu. Rękawice dielektryczne są przeznaczone do ochrony przed porażeniem elektrycznym i nie są związane z hałasem, co czyni je niewłaściwym wyborem na tym etapie oceny ryzyka. Często popełnianym błędem jest mylenie różnych rodzajów zagrożeń i nieadekwatne dobieranie środków ochrony osobistej do specyficznych warunków pracy. Ważne jest, aby pracownicy byli odpowiednio szkoleni w zakresie zagrożeń związanych z hałasem i umieli dobierać odpowiednie środki ochrony na podstawie przeprowadzonych ocen ryzyka. Niezastosowanie ochronników słuchu w głośnym środowisku może prowadzić do trwałych uszkodzeń słuchu, co jest nieodwracalne i wpływa na jakość życia pracownika, dlatego kluczowe jest zrozumienie, kiedy i jakie środki ochrony są wymagane.

Pytanie 14

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. obróbki
B. pomiarów
C. oględzin
D. montażu
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 15

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Podgrzać koło pasowe oraz wał
B. Obniżyć temperaturę koła pasowego i wału
C. Podgrzać wał i schłodzić koło pasowe
D. Podgrzać koło pasowe i schłodzić wał
Rozgrzanie koła pasowego i schłodzenie wału to technika stosowana w celu uzyskania odpowiedniego pasowania między tymi elementami. Kiedy koło pasowe jest podgrzewane, jego średnica zwiększa się, co pozwala na jego łatwe nałożenie na wał. Z kolei schłodzenie wału powoduje jego kurczenie, co dodatkowo ułatwia proces montażu. Po zakończeniu procesu chłodzenia wał wraca do pierwotnych wymiarów, a koło pasowe, które stygło, kurczy się, mocno przylegając do wału. Tego typu pasowanie nazywa się pasowaniem cieplnym i jest szeroko stosowane w przemyśle, zwłaszcza w przypadku montażu wałów napędowych i innych elementów ruchomych. Przykładem praktycznego zastosowania tej metody jest montaż kół pasowych w silnikach spalinowych, gdzie precyzyjne dopasowanie elementów ma kluczowe znaczenie dla ich wydajności oraz żywotności. Warto także zauważyć, że ta procedura powinna być przeprowadzana zgodnie z zaleceniami producentów, aby zapewnić optymalne efekty oraz uniknąć uszkodzenia elementów.

Pytanie 16

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. zmniejszeniem prędkości obrotowej
B. spadkiem reaktancji uzwojeń
C. zwiększeniem prędkości obrotowej
D. wzrostem reaktancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 17

W celu zamontowania sterownika PLC na szynie DIN, należy użyć

A. zatrzasków
B. śrub
C. nitów
D. łap
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 18

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
B. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
C. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
D. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 19

Silniki, które mają największy moment rozruchowy to

A. asynchroniczne prądu przemiennego
B. bocznikowe prądu stałego
C. synchroniczne prądu przemiennego
D. szeregowe prądu stałego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 20

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, zawór redukcyjny, manometr
B. filtr, zawór redukcyjny, manometr, smarownica
C. filtr, zawór dławiący, manometr, smarownica
D. sprężarka, filtr, manometr, smarownica
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 21

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Cykliczna redundancja
B. Pomiar napięcia sygnału przesyłanego
C. Sprawdzanie parzystości
D. Weryfikacja sumy kontrolnej
Pomiar poziomu napięcia przesyłanego sygnału nie jest metodą wykorzystywaną do detekcji błędów transmisji danych, ponieważ w tym przypadku skupiamy się na analizie parametrów sygnału, a nie na weryfikacji jego poprawności. W kontekście komunikacji sieciowej, detekcja błędów ma na celu identyfikację i korekcję błędów, które mogą wystąpić podczas przesyłania danych. Przykładowe metody detekcji błędów obejmują kontrolę parzystości, która polega na dodaniu bitu parzystości do zbioru danych, aby zapewnić, że liczba bitów o wartości 1 jest parzysta lub nieparzysta. Analiza sumy kontrolnej, która polega na obliczaniu sumy wartości bajtów w ramce danych, również jest powszechnie stosowana. Cykliczna kontrola nadmiarowości (CRC) to bardziej zaawansowana technika, która wykorzystuje wielomiany do detekcji błędów w przesyłanych danych. Każda z tych metod ma swoje zastosowania w różnych protokołach komunikacyjnych, co czyni je istotnymi w zapewnieniu integralności danych. Rozumienie tych metod jest kluczowe dla inżynierów i specjalistów w dziedzinie sieci komputerowych, ponieważ pozwala na projektowanie bardziej niezawodnych systemów przesyłowych.

Pytanie 22

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Ciśnienie
B. Przesunięcie kątowe
C. Moment obrotowy
D. Przyspieszenie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 23

Do czego służy stabilizator napięcia?

A. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
B. do wygładzania napięcia po prostowaniu przez prostownik
C. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
D. do przekształcania napięcia przemiennego w napięcie stałe
Niektóre odpowiedzi mogą wydawać się atrakcyjne na pierwszy rzut oka, jednak nie odpowiadają one funkcji stabilizatora napięcia. Na przykład, wygładzanie napięcia wyprostowanego przez prostownik to proces, który przeprowadza kondensator, który eliminuje tętnienia napięcia po prostowaniu. Stabilizator nie działa w tym kontekście, a jego zadanie nie obejmuje prostowania napięcia, lecz jego stabilizację. Z kolei przetwarzanie napięcia przemiennego na napięcie przemienne o innej częstotliwości i innej wartości skutecznej jest funkcją falowników lub transformatorów, a nie stabilizatorów napięcia, które koncentrują się na utrzymaniu stałego poziomu napięcia. Dodatkowo, przetwarzanie napięcia przemiennego na napięcie stałe jest realizowane przez prostowniki, które również nie są związane z funkcją stabilizacji napięcia. Pomieszanie tych pojęć często wynika z niejasności w zrozumieniu zasad działania różnych elementów elektronicznych. Stabilizatory napięcia pełnią unikalną rolę w układach zasilających, a ich funkcja polega przede wszystkim na eliminacji fluktuacji napięcia, co jest kluczowe dla zapewnienia prawidłowego działania delikatnych urządzeń elektronicznych, które mogą być wrażliwe na zmiany napięcia. Stąd kluczowe jest precyzyjne rozumienie, jakie urządzenia i procesy są odpowiedzialne za różne aspekty zasilania w systemach elektrycznych.

Pytanie 24

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być wciągane do osłon jako ostatnie
B. być wciągane do osłon jako pierwsze
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być układane jak najdalej od przewodów silnoprądowych
Nieodpowiednie podejście do układania przewodów magistrali Profibus w bliskim sąsiedztwie przewodów silnoprądowych może prowadzić do wielu problemów. Przewody silnoprądowe, które są odpowiedzialne za przesyłanie wysokich prądów, generują znaczne pole elektromagnetyczne, które może wprowadzać zakłócenia do sygnałów przesyłanych w magistrali. W konsekwencji, sygnały z czujników i urządzeń pomiarowych mogą być zniekształcone, co wpływa na jakość i dokładność komunikacji w systemie. Zastosowanie nieodpowiednich praktyk, jak układanie przewodów Profibus w pobliżu kabli energetycznych, jest sprzeczne z normami określającymi wymagania dotyczące instalacji elektrycznych, takimi jak IEC 60364, które jednoznacznie zalecają minimalizowanie interakcji pomiędzy różnymi typami przewodów. Ponadto, umieszczanie przewodów magistrali jako ostatnich w osłonach jest niewłaściwe, ponieważ może to prowadzić do sytuacji, w której inne przewody mogą mechanicznie uszkodzić delikatne przewody Profibus. Tego typu błędy w planowaniu instalacji mogą prowadzić do poważnych problemów w późniejszej eksploatacji systemów, w tym częstych awarii, zwiększonych kosztów konserwacji i przestojów produkcyjnych. Dlatego istotne jest, aby stosować się do sprawdzonych praktyk i norm branżowych, aby zapewnić optymalne działanie całego układu. Właściwe układanie przewodów, zwłaszcza w kontekście ich oddalenia od źródeł zakłóceń, jest fundamentem niezawodności systemów automatyki przemysłowej.

Pytanie 25

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. maksymalna napięcia podzielona przez √3
B. średnia napięcia wyznaczona dla okresu
C. maksymalna napięcia podzielona przez √2
D. średnia napięcia wyznaczona dla półokresu
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 26

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. amperomierz
B. omomierz
C. induktor
D. woltomierz
Induktor, amperomierz i woltomierz to urządzenia pomiarowe, które mają inne zastosowania i nie są odpowiednie do sprawdzania ciągłości przewodów elektrycznych. Induktor jest elementem pasywnym stosowanym w obwodach elektrycznych do magazynowania energii w polu magnetycznym, jednak jego rola nie obejmuje pomiaru oporu elektrycznego. Użycie induktora w kontekście diagnozowania przerwy w przewodzie jest niewłaściwe, gdyż nie dostarcza informacji o ciągłości przewodów. Amperomierz, z kolei, służy do pomiaru natężenia prądu w obwodzie. Pomimo że jego działanie może być pomocne w określaniu, czy prąd płynie przez dany obwód, nie dostarcza informacji o oporze i przerwach w przewodach, co czyni go nieodpowiednim narzędziem do tego celu. Woltomierz mierzy napięcie elektryczne, a jego użycie w kontekście sprawdzania przewodów również nie jest właściwe, ponieważ nie wskazuje on na problemy związane z oporem elektrycznym. Osoby, które wybierają te urządzenia do diagnozowania przerw w przewodach, mogą natrafić na pułapki myślowe, takie jak błędne założenia dotyczące ich funkcji i zastosowania, co prowadzi do nieefektywnego rozwiązywania problemów z instalacją elektryczną. Aby skutecznie diagnozować uszkodzenia przewodów, kluczowe jest zrozumienie funkcji każdego z urządzeń pomiarowych oraz ich właściwego zastosowania w praktyce.

Pytanie 27

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Graniczne
B. Nominalne
C. Rzeczywiste
D. Jednostronne
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 28

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 300 lx
B. 100 lx
C. 600 lx
D. 800 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 29

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. pojemności elektrycznej kondensatorów
B. natężenia pola elektrycznego
C. indukcyjności własnej cewki
D. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
Wybór odpowiedzi związanych z pomiarem indukcyjności własnej cewki, pojemności elektrycznej kondensatorów oraz natężenia pola elektrycznego jest błędny, ponieważ oscyloskop nie jest narzędziem przeznaczonym do bezpośrednich pomiarów tych parametrów. Pomiar indukcyjności cewki wymaga zastosowania specjalistycznych urządzeń, takich jak mierniki indukcyjności, które działają na zasadzie analizy obwodów rezonansowych lub wykorzystują metody pomiaru impedancji. Podobnie, pojemność kondensatorów nie jest mierzona oscyloskopem; zamiast tego wykorzystuje się multimetry lub specjalistyczne przyrządy pomiarowe. Natężenie pola elektrycznego również nie jest bezpośrednio mierzone przy użyciu oscyloskopu, ponieważ wymaga to zastosowania detektorów pola elektrycznego. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują mylenie funkcji różnych urządzeń pomiarowych oraz nieznajomość ich specyfikacji i zastosowań. W kontekście technologii elektronicznej, ważne jest, aby zrozumieć, które instrumenty są odpowiednie do określonych pomiarów, aby zapewnić dokładność i niezawodność wyników.

Pytanie 30

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Tryb funkcjonowania CPU
B. Brak baterii podtrzymującej zasilanie
C. Tryb wstrzymania CPU
D. Potrzeba zmian w parametrach programu
Wybierając odpowiedzi dotyczące trybów pracy CPU czy konieczności zmiany parametrów programu, można łatwo dojść do nieporozumień, które mogą wpływać na sposób, w jaki użytkownicy interpretują komunikaty sygnalizacyjne w sterownikach PLC. Tryb pracy CPU odnosi się do stanu, w którym procesor kontroluje różne operacje w systemie, a informacja o trybie zatrzymania CPU dotyczy momentu, gdy urządzenie nie wykonuje żadnych operacji. Obie te odpowiedzi są mylące, gdyż nie odnoszą się do problemu zasilania i nie wskazują na rzeczywistą przyczynę zamknięcia systemu. Stwierdzenie, że zaświecenie diody BATF oznacza konieczność zmiany parametrów programu, także może prowadzić do błędnych działań operacyjnych. Zmiana parametrów wymaga przemyślanej analizy i często nie wiąże się bezpośrednio z problemami zasilania. Użytkownicy mogą mylnie zakładać, że problemy związane z diodą oznaczają konieczność dostosowania ustawień, co w rzeczywistości może prowadzić do dalszych komplikacji w działaniu systemu. Kluczowe jest zrozumienie, że komunikaty diodowe na panelu sygnalizacyjnym są zaprojektowane do bezpośredniego informowania o konkretnych problemach, a ich interpretacja powinna się skupiać na podstawowych funkcjach urządzenia, takich jak podtrzymywanie pamięci przez baterię.

Pytanie 31

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. drgań
B. prędkości
C. temperatury
D. szumów
Pomiar prędkości łożysk tocznych nie jest typową metodą oceny ich stanu, ponieważ w praktyce nie dostarcza jednoznacznych informacji o ich kondycji. Zamiast tego, standardowe metody oceny stanu łożysk obejmują pomiar drgań, szumów oraz temperatury. Pomiar drgań jest szczególnie istotny, ponieważ pozwala na wykrycie nieprawidłowości w pracy łożysk, takich jak uszkodzenia, niewłaściwe dopasowanie czy problemy z lubryfikacją. Metody oceny stanu oparte na pomiarze szumów mogą wskazywać na nieprawidłowości w działaniu lub zużycie łożysk. Z kolei pomiar temperatury łożysk tocznych jest kluczowy w ocenie warunków pracy, ponieważ podwyższona temperatura może być oznaką niewłaściwego smarowania lub nadmiernego obciążenia. W związku z tym, pomiar prędkości nie jest praktykowany jako metoda oceny stanu łożysk tocznych w kontekście monitorowania ich wydajności i trwałości.

Pytanie 32

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. przełącznik obiegu
B. zawór dławiąco zwrotny
C. zawór szybkiego spustu
D. zawór podwójnego sygnału
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 33

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Defekt silnika sprężarki
B. Nieszczelność w przewodach pneumatycznych
C. Brak smarowania powietrza
D. Zabrudzony filtr powietrza
Zanieczyszczony filtr powietrza, uszkodzony silnik sprężarki oraz brak olejenia powietrza to kwestie, które mogą wpływać na wydajność i sprawność sprężarki, ale nie są bezpośrednio przyczyną zbyt częstego załączania się jej silnika. Zanieczyszczony filtr powietrza ogranicza przepływ powietrza do sprężarki, co może prowadzić do spadku efektywności, jednak nie wpływa na częstotliwość załączania się silnika. Wręcz przeciwnie, może to powodować jego dłuższe działanie w jednym cyklu, a nie zwiększać ilość cykli włączania. Uszkodzony silnik sprężarki może powodować wiele problemów, w tym niestabilną pracę, ale najczęściej skutkuje to całkowitym zatrzymaniem urządzenia, a nie częstszymi włączeniami. Z kolei brak olejenia powietrza prowadzi do zwiększonego zużycia i przegrzewania się elementów sprężarki, co może wymagać częstszej interwencji serwisowej, ale nie jest bezpośrednią przyczyną częstego włączania się silnika. W praktyce te nieprawidłowości mogą prowadzić do awarii sprężarki, ale nie generują one sytuacji, w której silnik włącza się nadmiernie. Typowe błędy myślowe dotyczące tych problemów często wynikają z niepełnego zrozumienia działania sprężarki oraz jej komponentów, co podkreśla konieczność solidnej wiedzy na temat systemów pneumatycznych i ich konserwacji.

Pytanie 34

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. pirometrem
B. hallotronem
C. termistorem
D. tensometrem
Tensometr to urządzenie pomiarowe, które wykorzystuje zjawisko zmiany oporu elektrycznego w wyniku odkształcenia materiału. W kontekście siłowników hydraulicznych, tensometry mogą być używane do precyzyjnego pomiaru siły nacisku tłoka, ponieważ siła ta powoduje odkształcenie elementu pomiarowego, co bezpośrednio wpływa na zmianę jego oporu. Dzięki temu, tensometry pozwalają na uzyskanie dokładnych i wiarygodnych wyników pomiarów, które są kluczowe w wielu zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, systemy hydrauliczne oraz testowanie materiałów. Przykładem zastosowania tensometrów w praktyce może być monitorowanie siły nacisku w maszynach do formowania, gdzie precyzyjna kontrola siły jest niezbędna do zapewnienia jakości produkcji. W branży inżynieryjnej stosuje się różne normy, takie jak ISO 376, które dotyczą metod pomiarowych przy użyciu tensometrów, co podkreśla ich znaczenie oraz zastosowanie w profesjonalnych pomiarach.

Pytanie 35

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. częstotliwości
B. zmianę szerokości impulsu
C. zmianę fazy impulsu
D. amplitudy impulsu
Odpowiedzi związane z zmianą fazy impulsu, częstotliwości czy amplitudy impulsu nie pasują do PWM. Zmiana fazy impulsu to bardziej sprawa synchronizacji sygnałów, co znajduje zastosowanie np. w komunikacji, a to nie ma związku z regulowaniem mocy czy średniego prądu w PWM. Częstotliwość w PWM właściwie zostaje taka sama, gdy zaczynasz regulować szerokość impulsu; można nią trochę bawić się, ale to nie jest kluczowa sprawa w tym temacie. Co do amplitudy impulsu, to też nie jest coś, na czym PWM się opiera - tu chodzi głównie o czas, w którym sygnał jest w stanie wysokim w odnoszeniu do całego okresu sygnału. To też błąd, jeśli mylone są różne techniki modulacji z PWM, bo każda ma swoje zasady. Fajnie by było, jakbyś rozróżniał PWM od innych metod, bo jego prawdziwą zaletą jest zarządzanie mocą bez strat, które powstają przy ciągłym włączaniu i wyłączaniu. To bardzo ważne w bardziej zaawansowanych systemach, które muszą być wydajne oraz elastyczne.

Pytanie 36

Aby zweryfikować ciągłość połączeń elektrycznych pomiędzy różnymi elementami systemu, należy skorzystać z

A. amperomierza
B. omomierza
C. woltomierza
D. wskaźnika napięcia
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co czyni go idealnym narzędziem do sprawdzania ciągłości połączeń elektrycznych. W kontekście instalacji elektrycznych, ciągłość połączeń jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności systemu. Użycie omomierza pozwala na szybkie zidentyfikowanie przerw w obwodzie oraz nieprawidłowych połączeń, co może być kluczowe w przypadku awarii. Przykładem praktycznego zastosowania omomierza jest testowanie przewodów przed ich podłączeniem do zasilania - w ten sposób można upewnić się, że nie ma przerw, które mogłyby prowadzić do ryzyka porażenia prądem lub uszkodzenia sprzętu. Dobre praktyki branżowe zalecają regularne sprawdzanie ciągłości połączeń w instalacjach elektrycznych, zwłaszcza w warunkach, gdzie mogą występować zmienne obciążenia lub wysokie napięcia. Ponadto, zgodnie z normami IEC 60364, przeglądy instalacji elektrycznych powinny obejmować pomiar oporu izolacji oraz ciągłości, co podkreśla znaczenie omomierza w codziennej pracy elektryków.

Pytanie 37

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Brązowym
C. Żółtym
D. Czarnym
W przypadku wyboru czarnego, brązowego lub żółtego koloru dla przewodu neutralnego, należy zwrócić uwagę na to, że każdy z tych kolorów jest zarezerwowany dla innych funkcji w instalacji elektrycznej. Kolor czarny jest zazwyczaj stosowany dla przewodów fazowych, a jego użycie w roli przewodu neutralnego mogłoby prowadzić do mylenia z przewodem fazowym, co stanowi poważne zagrożenie bezpieczeństwa. Z kolei brązowy, podobnie jak czarny, również identyfikuje przewody fazowe. Przewód brązowy w połączeniu z czarnym mógłby wprowadzać w błąd podczas wykonywania prac serwisowych, co zwiększa ryzyko błędów i potencjalnych wypadków. Zastosowanie koloru żółtego, który w połączeniu z zielonym jest przeznaczony dla przewodu ochronnego, również jest nieprawidłowe, ponieważ mogłoby prowadzić do niejednoznaczności w identyfikacji ochrony przeciwporażeniowej. Właściwe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z obowiązującymi normami. W związku z tym, nieprzestrzeganie tych zasad prowadzi do niebezpiecznych sytuacji, które mogą skutkować poważnymi konsekwencjami zdrowotnymi oraz materialnymi.

Pytanie 38

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Grafitowy
B. Molibdenowy
C. Silikonowy
D. Litowy
Smar silikonowy jest idealnym wyborem do smarowania gumowych elementów ze względu na swoje właściwości chemiczne i fizyczne. Silikon wykazuje doskonałą adhezję do powierzchni gumowych, co przekłada się na długotrwałą ochronę przed zużyciem. Jest odporny na wysokie temperatury, co czyni go odpowiednim do zastosowań, w których gumowe elementy mogą być narażone na działanie ciepła. Ponadto, smar silikonowy nie powoduje degradacji materiałów elastomerowych, w przeciwieństwie do innych smarów, które mogą prowadzić do pęknięć lub twardnienia gumy. Przykłady zastosowania smaru silikonowego obejmują uszczelki w oknach, elementy zawieszenia w samochodach, a także w urządzeniach gospodarstwa domowego, takich jak pralki czy zmywarki. Stosując smar silikonowy, można znacznie wydłużyć żywotność gumowych części oraz poprawić ich działanie poprzez redukcję tarcia. Zgodnie z dobrymi praktykami branżowymi, smar silikonowy powinien być stosowany w każdej aplikacji wymagającej smarowania elementów gumowych, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 39

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Obcowzbudny
B. Szeregowy
C. Bezszczotkowy
D. Bocznikowy
Silniki obcowzbudne, bocznikowe i bezszczotkowe, choć mają swoje zastosowania, nie nadają się najlepiej do obsługi bardzo ciężkich przepustnic. Silniki obcowzbudne charakteryzują się stałym momentem obrotowym, co sprawia, że przy dużych obciążeniach mogą mieć problemy z dostarczeniem wymaganego momentu w niskich prędkościach. W praktyce oznacza to, że silnik tego typu może nie zapewnić wystarczającej siły do otwarcia ciężkiej przepustnicy, co może prowadzić do niewłaściwego działania systemu. Silniki bocznikowe, choć oferują lepsze właściwości w zakresie regulacji prędkości, również nie generują takiego momentu obrotowego przy rozruchu jak silniki szeregowe, co jest kluczowe w sytuacji, gdy konieczne jest pokonanie dużego oporu przy uruchamianiu. Bezszczotkowe silniki prądu stałego, z kolei, chociaż oferują wiele zalet, takich jak mniejsze zużycie i wyższa efektywność, w kontekście zastosowań wymagających dużych momentów obrotowych przy rozruchu, mogą nie spełniać oczekiwań. Wybór niewłaściwego typu silnika w krytycznych aplikacjach może prowadzić do awarii systemów oraz zwiększonego zużycia energii. Dlatego kluczowe jest zrozumienie specyfiki i wymagań aplikacji, a także właściwego doboru komponentów w oparciu o rzetelną analizę ich charakterystyk. Wydajność, niezawodność i bezpieczeństwo systemu napędowego muszą być zawsze priorytetem.

Pytanie 40

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Buty ochronne
B. Okulary ochronne
C. Odzież ochronna
D. Rękawice ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.