Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 28 kwietnia 2025 13:51
  • Data zakończenia: 28 kwietnia 2025 14:09

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Mostka rezystancyjnego
B. Multimetru
C. Miernika rezystancji izolacji
D. Miernika rezystancji uziemienia
Miernik rezystancji uziemienia to naprawdę przydatne narzędzie, które wykorzystywane jest do pomiaru rezystancji punktu uziemienia. To bardzo ważne w przypadku systemów odgromowych, bo dobra rezystancja to bezpieczeństwo. W odróżnieniu od multimetru, który może robić dużo różnych rzeczy, miernik rezystancji uziemienia jest stworzony specjalnie do tych pomiarów, szczególnie w trudnych warunkach, gdzie różne rzeczy, jak na przykład wilgoć, mogą wpłynąć na wyniki. Przykładowo, używa się go, żeby sprawdzić, czy system odgromowy działa jak należy, zanim zacznie działać albo po jakichś zmianach. Ważne, żeby rezystancja była na poziomie mniejszym niż 10 omów, zgodnie z normami takimi jak PN-EN 62305. To pokazuje, jak istotne są regularne przeglądy, żeby zajechać ryzyko porażenia prądem i lepiej chronić się przed wyładowaniami atmosferycznymi.

Pytanie 2

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±1,5% + 3 cyfry
C. ±1,0% + 4 cyfry
D. ±2,5% + 1 cyfra
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 3

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Halogenowej
B. Sodowej
C. Żarowej
D. Rtęciowej
Wybór żarowej, rtęciowej lub halogenowej lampy oświetleniowej jako zastosowania tyrystorowego układu zapłonowego opiera się na nieporozumieniach dotyczących charakterystyki tych źródeł światła. Lampy żarowe działają na zasadzie bezpośredniego przepływu prądu przez żarnik, co sprawia, że nie wymagają skomplikowanych układów zapłonowych. W przypadku lamp rtęciowych, ich zapłon oparty jest na innych zasadach, w tym na użyciu zapłonników gazowych, które nie są zgodne z zastosowaniem tyrystorów. Te lampy również potrzebują czasami większej mocy podczas zapłonu, co może prowadzić do niewłaściwego działania tyrystorów. Lampy halogenowe z kolei stosują nieco odmienną technologię, wykorzystując cykle odparowania, co również eliminuje potrzebę stosowania układów tyrystorowych. Typowym błędem myślowym w tym kontekście jest zakładanie, że wszystkie lampy wymagają podobnych układów zapłonowych, co prowadzi do mylnych wniosków. Ważne jest zrozumienie, że dobór odpowiednich komponentów do systemów oświetleniowych musi być oparty na ich specyficznych wymaganiach technicznych, co podkreśla konieczność dogłębnej analizy charakterystyk różnych typów lamp oraz ich zastosowań w praktyce.

Pytanie 4

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Dwa klawisze i trzy niezależne zaciski
B. Jeden klawisz i trzy niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Dwa klawisze i cztery niezależne zaciski
Wybierając inne odpowiedzi, można natknąć się na powszechne nieporozumienia dotyczące budowy i funkcji łączników świecznikowych. Na przykład, odpowiedzi sugerujące jeden klawisz i cztery zaciski mogą prowadzić do mylnego przekonania, że łącznik może obsługiwać więcej niż jedno źródło światła w niezależny sposób, co jest technicznie niemożliwe bez dodatkowych komponentów. Takie rozwiązanie nie tylko nie spełnia podstawowych założeń konstrukcyjnych, ale także może generować niebezpieczeństwo związane z przeciążeniem obwodu. Ponadto, odpowiedzi zawierające dwa klawisze i cztery zaciski wydają się logiczne na pierwszy rzut oka, jednak w rzeczywistości, w kontekście klasycznego pojedynczego łącznika, technologia wymaga tylko trzech zacisków dla właściwego podłączenia. W praktyce, mylenie liczby zacisków oraz klawiszy może skutkować błędnym doborem komponentów w instalacji elektrycznej, co może prowadzić do problemów z bezpieczeństwem oraz funkcjonalnością oświetlenia. Wiedza na temat standardowych rozwiązań w instalacjach elektrycznych jest kluczowa, aby uniknąć takich pułapek i zapewnić odpowiednią wydajność oraz bezpieczeństwo w użytkowaniu.

Pytanie 5

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. w lokalach mieszkalnych w miejscach o łatwym dostępie
B. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
C. w lokalach mieszkalnych tylko w zamkniętych szafkach
D. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
Odpowiedź wskazująca, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi, wyłącznie w zamkniętych szafkach, jest prawidłowa z kilku powodów. Przede wszystkim, umiejscowienie liczników w lokalach mieszkalnych może prowadzić do utrudnionego dostępu dla personelu technicznego oraz stwarzać zagrożenie dla bezpieczeństwa mieszkańców. Zgodnie z normami branżowymi, takimi jak PN-EN 62053, liczniki powinny być instalowane w miejscach, które zapewniają ich łatwą eksploatację, ale nie mogą naruszać prywatności użytkowników lokali mieszkalnych. Zastosowanie zamkniętych szafek nie tylko zabezpiecza urządzenia przed zniszczeniem, ale także minimalizuje ryzyko nieautoryzowanego dostępu. Przykładowo, w wielu nowoczesnych budynkach mieszkalnych, liczniki są zlokalizowane w wydzielonych pomieszczeniach technicznych, co pozwala na efektywne zarządzanie energią oraz ułatwia przeprowadzanie niezbędnych pomiarów i konserwacji. Takie podejście jest zgodne z najlepszymi praktykami w zarządzaniu budynkami i zapewnia bezpieczeństwo oraz komfort mieszkańców.

Pytanie 6

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. C16
B. B10
C. C10
D. B16
Wybór wyłączników nadprądowych powinien być oparty na dokładnych obliczeniach prądu roboczego danego obwodu oraz na charakterystyce urządzeń, które są zasilane. Wyłącznik C10, mimo iż ma mniejszy prąd znamionowy niż B16 i C16, nie jest odpowiedni dla obszarów, gdzie występują urządzenia o dużych prądach rozruchowych, jak silniki elektryczne czy grzejniki oporowe, ponieważ może zareagować zbyt szybko na chwilowe skoki prądu. Z kolei wyłącznik B16 jest przeznaczony dla obwodów, które mogą mieć większe obciążenia i prądy do 16 A, co sprowadza się do przekroczenia maksymalnych wartości obciążenia na obwodzie z grzejnikiem 1600 W. Chociaż wyłącznik B16 mógłby teoretycznie zadziałać, w praktyce nie zapewniałby odpowiedniego poziomu zabezpieczenia, co może prowadzić do niebezpiecznych sytuacji. Podobnie, wyłącznik C16 ma zbyt wysoką wartość prądową dla tego konkretnego zastosowania, co czyni go niewłaściwym wyborem, gdyż nie zadziałałby w przypadku przeciążenia, a tym samym nie chroniłby instalacji. Właściwy wybór wyłącznika nadprądowego powinien opierać się na danych technicznych urządzeń oraz na normach bezpieczeństwa, aby zapewnić optymalną ochronę przed skutkami awarii elektrycznych.

Pytanie 7

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Nóż monterski, wiertarka, zestaw kluczy.
B. Wiertarka, wiertło, piła do cięcia, wkrętak.
C. Piła do cięcia, przecinak, młotek.
D. Zestaw kluczy, wkrętarka, wiertło, przecinak.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 8

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Bardzo niskie napięcie ze źródła bezpiecznego
B. Samoczynne wyłączenie zasilania
C. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
D. Dodatkowe miejscowe wyrównawcze połączenia ochronne
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 9

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. gG 16 A
C. aM 20 A
D. aR 16 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 10

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48

A. 6,57 MΩ
B. 8,11 MΩ
C. 6,40 MΩ
D. 8,20 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 11

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 10 mm2
B. 16 mm2
C. 20 mm2
D. 12 mm2
Wybór niewłaściwego przekroju przewodu ochronnego ma istotne konsekwencje dla bezpieczeństwa elektrycznego. Wiele osób może uważać, że mniejszy przekrój, taki jak 10 mm2 czy 12 mm2, jest wystarczający do ochrony przewodów fazowych o większym przekroju. W rzeczywistości, takie podejście ignoruje zasady dotyczące przewodów ochronnych, które muszą być dobierane na podstawie potencjalnych prądów zwarciowych oraz wymagań związanych z czasem wyłączenia w przypadku awarii. Zbyt mały przekrój przewodu ochronnego może prowadzić do jego przegrzania, a w skrajnych przypadkach do uszkodzenia instalacji, a nawet pożaru. Ponadto, przewody ochronne muszą być w stanie przewodzić prądy zwarciowe przez odpowiedni czas, aby skutecznie wyłączyć źródło zasilania i zminimalizować ryzyko porażenia prądem. Obliczenia te są oparte na normach, takich jak PN-IEC 60364, które jasno określają zasady doboru przekrojów. Zrozumienie tych zasad jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Warto również zwrócić uwagę, że wybór zbyt dużego przekroju, np. 20 mm2, również może być nieoptymalny, ponieważ może prowadzić do niepotrzebnych kosztów i zwiększonej sztywności instalacji, co może być problematyczne w kontekście montażu i utrzymania. Dlatego ważne jest, aby stosować się do ustalonych norm i praktyk w branży, aby zapewnić optymalne warunki pracy instalacji elektrycznych.

Pytanie 12

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
C. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 13

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. wymiany gniazd zasilających
C. czyszczenia urządzeń w rozdzielniach
D. montażu nowych punktów świetlnych
Wiesz, konserwacja instalacji elektrycznych to głównie dbanie o to, co już istnieje. Czyszczenie lamp czy tablic rozdzielczych jest mega ważne, bo brud może doprowadzić do różnych problemów, jak przegrzewanie się czy mniejsza efektywność. Wymiana gniazdek też jest istotna, bo często się zużywają i mogą stwarzać niebezpieczeństwo. Zrozumienie różnicy między montażem a konserwacją to kluczowa sprawa. Często zapominamy, że to różne rzeczy, które wymagają różnych umiejętności. Trzymanie się norm, jak PN-IEC 60364, to podstawa, żeby wszystko działało bezpiecznie i sprawnie. Myślę, że ważne, by nie mylić tych dwóch procesów, bo może to prowadzić do kłopotów.

Pytanie 14

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
C. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
D. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 15

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Awaria wyłącznika nadprądowego w rozdzielnicy
B. Zwarcie rezystancyjne do obudowy odbiornika
C. Uszkodzenie lub przepalenie przewodu neutralnego
D. Przeciążenie obwodu
Przeciążenie obwodu, które sugeruje pierwsza odpowiedź, nie jest bezpośrednią przyczyną zadziałania wyłącznika różnicowoprądowego, ponieważ jego działanie opiera się na detekcji różnic prądów, a nie na ich natężeniu. Przeciążenie może skutkować zadziałaniem wyłącznika nadprądowego, który ma na celu ochronę przewodów przed przegrzewaniem, ale nie wpływa na wyłącznik różnicowoprądowy w tym kontekście. Uszkodzenie przewodu neutralnego, wspomniane w drugiej opcji, również nie musi prowadzić do zadziałania wyłącznika różnicowoprądowego, jeśli obwód nadal może funkcjonować z poprawnym przepływem prądu. Uszkodzenie wyłącznika nadprądowego w rozdzielnicy, opisane w trzeciej odpowiedzi, w rzeczywistości nie ma związku z działaniem wyłącznika różnicowoprądowego, który funkcjonuje niezależnie. Na koniec, zwarcie rezystancyjne do obudowy odbiornika, które nie zostało wybrane, stanowi rzeczywistą przyczynę zadziałania, ale wszystkie pozostałe odpowiedzi nie uwzględniają tej kluczowej kwestii. W praktyce, zrozumienie zasad działania wyłączników różnicowoprądowych oraz odpowiednich zabezpieczeń jest kluczowe dla zapewnienia bezpieczeństwa i uniknięcia nieprawidłowych wniosków w diagnostyce usterek w instalacjach elektrycznych.

Pytanie 16

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. II
C. I
D. III
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 17

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 300/500 V
B. 450/750 V
C. 300/300 V
D. 600/1000 V
Wybór napięcia znamionowego izolacji przewodów w instalacjach trójfazowych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemu. Przewody o napięciach 300/500 V oraz 300/300 V są niewystarczające dla instalacji 230/400 V, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia izolacji, zwarcia, a nawet pożary. Napięcie 300/500 V jest stosowane w mniej wymagających instalacjach, gdzie nie występują znaczące różnice potencjałów ani długotrwałe obciążenia, co jest nieadekwatne w kontekście instalacji trójfazowych. Napięcie 300/300 V jest jeszcze bardziej niewłaściwe, ponieważ nie zapewnia wystarczającej ochrony w przypadku awarii, co może skutkować niebezpiecznymi sytuacjami. Przewody o napięciu 450/750 V są projektowane tak, aby wytrzymały znacznie większe obciążenia oraz stresy mechaniczne, co czyni je bardziej odpornymi na uszkodzenia i wydłuża ich żywotność. Wybór niewłaściwej wartości napięcia izolacji często wynika z niepełnego zrozumienia norm oraz wymagań dotyczących bezpieczeństwa w instalacjach elektrycznych. Projektanci i wykonawcy muszą być świadomi, że niedostosowanie przewodów do standardów może prowadzić do tragicznych w skutkach wypadków oraz poważnych strat materialnych.

Pytanie 18

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V AC
B. 200 V AC
C. 500 V DC
D. 200 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 19

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 6,6 Ω
C. 4,0 Ω
D. 3,8 Ω
Wybór innych wartości impedancji pętli zwarcia, takich jak 3,8 Ω, 4,0 Ω czy 6,6 Ω, jest nieodpowiedni w kontekście ochrony przeciwporażeniowej w systemach elektrycznych. Wartości te są wyższe niż dopuszczalne limity określone w normach, co może prowadzić do poważnych konsekwencji dla bezpieczeństwa. W przypadku impedancji powyżej 2,3 Ω, czas reakcji wyłącznika nadprądowego może być wydłużony. Na przykład, wyłączniki o wyższych wartościach impedancji pętli zwarcia mogą zadziałać z opóźnieniem, co w sytuacji kontaktu z uszkodzoną instalacją stwarza ryzyko porażenia prądem. Powszechnym błędem myślowym jest założenie, że im wyższa impedancja, tym lepsza ochrona. W rzeczywistości, skuteczność ochrony przed porażeniem prądem elektrycznym jest ściśle związana z szybkością reakcji systemów zabezpieczających. W obwodach o napięciu 230/400 V zastosowanie wyłączników B20 bez odpowiedniego nadzoru nad wartością impedancji pętli zwarcia może prowadzić do sytuacji, w której użytkownik doświadczy porażenia prądem, zanim zasilanie zostanie odcięte. Dlatego ważne jest, aby regularnie przeprowadzać pomiary i poddawać instalacje elektryczne ocenie, co zgodne jest z wymaganiami normatywnymi, takimi jak PN-EN 61140, które jasno określają maksymalne wartości impedancji dla skutecznej ochrony przeciwporażeniowej.

Pytanie 20

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. silników przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed przeciążeniami
C. przewodów przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed zwarciami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 21

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz

A. 4,5 µF i połączyć szeregowo.
B. 18 µF i połączyć szeregowo.
C. 4,5 µF i połączyć równolegle.
D. 18 µF i połączyć równolegle.
Wybór kondensatora o pojemności 4,5 µF i połączenie go szeregowo jest koncepcją, która nie spełnia wymogów wymiany uszkodzonego kondensatora. Połączenie szeregowe powoduje, że łączna pojemność kondensatorów jest mniejsza niż pojedynczej kondensatora; w przypadku dwóch kondensatorów o pojemności 4,5 µF, łączna pojemność wyniesie 2,25 µF, co jest znacznie poniżej wymaganej wartości 9 µF. Warto pamiętać, że połączenie szeregowe zwiększa napięcie pracy układu, ale nie jest odpowiednie w sytuacji, gdy potrzebujemy określonej pojemności. Inną błędną koncepcją jest dobór kondensatorów o pojemności 18 µF. Połączenie takich kondensatorów w szereg również nie przyczyni się do uzyskania wymaganej wartości pojemności; w tym przypadku łączna pojemność wyniesie 9 µF, ale napięcie robocze znacznie wzrosłoby, co stwarza ryzyko uszkodzenia wrażliwych komponentów w obwodzie. W każdej sytuacji, kluczowe jest zapewnienie odpowiedniego dopasowania zarówno pojemności, jak i napięcia pracy, aby uniknąć potencjalnych uszkodzeń urządzenia. Dlatego ważne jest, aby przy wymianie kondensatorów kierować się zarówno teorią, jak i praktycznymi aspektami ich działania w układzie elektrycznym.

Pytanie 22

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. nastaw urządzeń zabezpieczających w instalacji
B. poprawności działania wyłącznika różnicowoprądowego
C. wartości rezystancji izolacji przewodów
D. stanu obudów wszystkich elementów instalacji
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 23

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 24

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. niebieski
C. czerwony
D. szary
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 25

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 4,6 Ω
B. 0,4 Ω
C. 7,7 Ω
D. 2,3 Ω
Jeśli chodzi o odpowiedzi, które mówią, że maksymalna wartość impedancji pętli zwarcia to 0,4 Ω, 7,7 Ω czy 4,6 Ω, to niestety, to nie jest dobre podejście. Ta pierwsza wartość, 0,4 Ω, jest zdecydowanie za mała. W praktyce, tak niski poziom nie jest potrzebny dla systemów z wyłącznikami nadprądowymi. Taki wynik by znaczył, że nawet niewielkie napięcie mogłoby wyzwolić zabezpieczenia, a to nie jest ani realne, ani praktyczne. Potem mamy 7,7 Ω i 4,6 Ω, które są już poza dopuszczalnym poziomem. To przekłada się na to, że wyłącznik będzie działał za wolno, a przy poważnych zwarciach może być naprawdę niebezpiecznie. Ważne jest, żeby zrozumieć, że wyłączniki nadprądowe trzeba zaprojektować tak, by reagowały w określonym czasie, a to jest ściśle związane z impedancją pętli zwarcia. Jak ta wartość jest za wysoka, to ochrona przed porażeniem elektrycznym jest słaba, a to niezgodne z zasadami bezpieczeństwa. Taka sytuacja może sprawić, że system nie zadziała jak trzeba w razie zagrożenia elektrycznego, a to zdecydowanie nie jest dobra praktyka.

Pytanie 26

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Phillips.
B. Wkrętakiem z nacięciem Torx.
C. Kluczem nasadowym.
D. Kluczem imbusowym.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 27

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie znamionowe i prąd znamionowy.
B. Napięcie znamionowe i prąd zadziałania.
C. Napięcie probiercze i prąd zadziałania.
D. Napięcie probiercze i prąd znamionowy.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 28

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 2 lata
B. rok
C. kwartał
D. 4 lata
Wybór nieodpowiedniego okresu pomiędzy kontrolami instalacji elektrycznych może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa użytkowników, jak i dla stanu technicznego budynku. Decydując się na kontrolę co kwartał, można błędnie zakładać, że tak częste inspekcje są niezbędne dla zapewnienia bezpieczeństwa. Takie podejście może prowadzić do niepotrzebnych kosztów i obciążenia dla właścicieli budynków, które mogą być nadmierne w porównaniu do rzeczywistych potrzeb. Z drugiej strony, wybierając okres dwóch lub czterech lat, użytkownicy mogą nie dostrzegać, że instalacje elektryczne, szczególnie te narażone na działanie czynników atmosferycznych, mogą ulegać szybkiemu zużyciu. Statystyki pokazują, że awarie elektryczne często występują w wyniku zaniedbania regularnych kontroli, co może skutkować nie tylko stratami materialnymi, ale i zagrożeniem dla życia ludzi. Dlatego istotne jest, aby nie opierać się na subiektywnych odczuciach co do stanu technicznego instalacji, lecz kierować się zaleceniami norm branżowych, które wskazują na konieczność przeprowadzania kontroli co roku. Umożliwia to nie tylko zachowanie bezpieczeństwa, ale również utrzymanie instalacji w odpowiednim stanie technicznym przez długi czas.

Pytanie 29

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód fazowy z neutralnym
B. Odłączony przewód ochronny
C. Uszkodzona izolacja przewodu fazowego
D. Zamieniony przewód ochronny z neutralnym
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 30

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 16 A, 20 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 31

Co oznacza symbol literowy YKY?

A. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
B. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
C. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
D. kabel z żyłami miedzianymi w izolacji z PVC
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 32

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Poluzowany przewód neutralny w głównym złączu budynku
B. Zamiana przewodu neutralnego z fazowym
C. Zamiana przewodu neutralnego z ochronnym
D. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
Jak wiadomo, poluzowany przewód neutralny w rozdzielnicy może namieszać w całej instalacji elektrycznej. Gdy przewód neutralny jest uszkodzony albo poluzowany, to prąd, który powinien wracać do zasilania, może nie mieć odpowiedniej drogi. To może sprawić, że napięcie na innych przewodach fazowych wzrośnie. Zdarza się wtedy, że żarówki się przepalają, bo napięcie przekracza to, co powinny wytrzymać. Dobrze jest od czasu do czasu sprawdzić stan połączeń elektrycznych, szczególnie w rozdzielnicach, żeby uniknąć takich kłopotów. Ważne jest też, aby dbać o odpowiednie napięcie i zabezpieczenia w instalacji, na przykład stosując różne urządzenia ochronne, jak wyłączniki nadprądowe czy różnicowoprądowe, które są zgodne z normami. Moim zdaniem, warto też wybierać żarówki, które są bardziej odporne na zmiany napięcia, to może wydłużyć ich żywotność w niepewnych warunkach zasilania.

Pytanie 33

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Stycznik
B. Odłącznik
C. Rozłącznik
D. Wyłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 34

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. LY
B. YDY
C. YAKY
D. OMY
Oznaczenie OMY dotyczy przewodów przeznaczonych do zasilania odbiorników przenośnych, takich jak urządzenia elektryczne wykorzystywane w budownictwie, na eventach czy w przemyśle. Przewody te charakteryzują się elastycznością, co umożliwia ich łatwe dopasowanie do różnych warunków pracy. Zazwyczaj są wykonane z miękkiego PVC, co sprawia, że są odporne na uszkodzenia mechaniczne oraz wpływ warunków atmosferycznych. OMY posiadają także odpowiednie zabezpieczenia przed przeciążeniem oraz zwarciem, co jest kluczowe w kontekście użytkowania mobilnego. W praktyce przewody te są wykorzystywane w takich aplikacjach jak zasilanie narzędzi elektrycznych, oświetlenia scenicznego czy innych urządzeń wymagających mobilności. Dobrą praktyką jest przestrzeganie norm IEC 60227 oraz PN-HD 60364, które regulują kwestie bezpieczeństwa i wydajności przewodów elektrycznych w kontekście ich zastosowań przenośnych.

Pytanie 35

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Komutacyjnego
B. Twornika
C. Kompensacyjnego
D. Wzbudzenia
W silnikach prądu stałego, niektóre uzwojenia pełnią różne funkcje, a ich zrozumienie jest kluczowe dla właściwego działania urządzenia. Uzwojenie wzbudzenia jest odpowiedzialne za generowanie pola magnetycznego, które jest niezbędne do działania silnika. Przez to uzwojenie przepływa prąd, ale nie bezpośrednio przez szczotki, co może wprowadzać w błąd. Uzwojenie kompensacyjne ma na celu zredukowanie wpływu zmienności obciążenia na silnik, co jest istotne w kontekście stabilizacji pracy, ale również nie jest związane z dostarczaniem prądu przez szczotki. Uzwojenie komutacyjne, z kolei, jest odpowiedzialne za komutację prądu w tworniku, co oznacza, że zmienia kierunek przepływu prądu w odpowiednich momentach, ale nie jest to miejsce, w którym prąd jest dostarczany przez szczotki. Typowym błędem myślowym jest mylenie funkcji poszczególnych uzwojeń oraz nierozumienie ich wzajemnych interakcji. Wiedza ta jest kluczowa dla inżynierów zajmujących się projektowaniem oraz konserwacją silników elektrycznych, dlatego warto zgłębiać temat, by unikać nieporozumień i błędów w praktyce inżynieryjnej. Użycie terminologii technicznej oraz znajomość zasad działania poszczególnych elementów silnika prądu stałego są niezbędne w rozwiązywaniu problemów oraz optymalizacji ich pracy.

Pytanie 36

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H03VH-H
B. H05V-U
C. H03W-F
D. H05V-K
Analizując inne oznaczenia przewodów, warto zauważyć, że H03VH-H jest przeznaczone do pracy w warunkach, gdzie przewody są narażone na działanie wysokich temperatur i chemikaliów, jednak ich napięcie robocze wynosi jedynie 300/500 V, co powoduje, że nie spełniają one wymagań dla aplikacji, które wymagają większej odporności na obciążenia elektryczne. Oznaczenie H05V-K, z kolei, odnosi się do przewodów o mniejszej elastyczności, a ich konstrukcja nie jest przystosowana do zastosowań w trudnych warunkach, co ogranicza ich zastosowanie w porównaniu do H05V-U. Ostatnia z rozważanych opcji, H03W-F, również nie jest odpowiednia, ponieważ jest to typ przewodu wykorzystywanego głównie w instalacjach, gdzie odporność na działanie wilgoci lub substancji chemicznych jest priorytetowa. Wybór niewłaściwego oznaczenia często wynika z niepełnej wiedzy na temat specyfikacji technicznych lub mylenia cech przewodów z ich przeznaczeniem. Ważne jest, aby przy doborze przewodów kierować się nie tylko ich oznaczeniem, ale także specyfiką zastosowania, co pozwoli na długoterminową i bezpieczną eksploatację instalacji elektrycznych. Zrozumienie różnic pomiędzy poszczególnymi oznaczeniami jest kluczowe dla osób zajmujących się projektowaniem i wykonawstwem instalacji elektrycznych.

Pytanie 37

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Dwa klawisze i cztery zaciski
B. Jeden klawisz i trzy zaciski
C. Jeden klawisz i cztery zaciski
D. Dwa klawisze i trzy zaciski
Klasyczny pojedynczy łącznik schodowy to urządzenie elektryczne, które służy do włączania i wyłączania oświetlenia w pomieszczeniach. Posiada jeden klawisz, który umożliwia obsługę światła oraz trzy zaciski. Zaciski te są niezbędne do prawidłowego podłączenia łącznika w obwodzie elektrycznym. W typowej konfiguracji, jeden z zacisków jest podłączony do źródła zasilania, a dwa pozostałe do obwodów oświetleniowych, co umożliwia kontrolę oświetlenia z jednego miejsca. Przykładowe zastosowanie to montaż łącznika w korytarzu, gdzie można włączać i wyłączać światło centralne. Zgodnie z normą PN-IEC 60669, stosowanie łączników schodowych powinno zapewniać bezpieczeństwo oraz wygodę użytkowania. Właściwe zrozumienie budowy łącznika pozwala na jego efektywne wykorzystanie w instalacjach elektrycznych, co jest kluczowe dla zapewnienia prawidłowego działania systemów oświetleniowych.

Pytanie 38

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,75
B. 0,71
C. 0,95
D. 0,79
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 39

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. watomierza oraz woltomierza
B. omomierza oraz woltomierza
C. woltomierza i amperomierza
D. omomierza i amperomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 40

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 720 obr./min
B. 1 450 obr./min
C. 750 obr./min
D. 1 500 obr./min
W analizie błędnych odpowiedzi, kluczowym zagadnieniem jest zrozumienie, jak prawidłowo obliczyć prędkość obrotową pola magnetycznego stojana silnika indukcyjnego. Wśród propozycji odpowiedzi pojawiają się prędkości, które są mylące dla osób nieznających podstaw teorii obwodów elektrycznych. Na przykład, odpowiedź 720 obr./min może wydawać się atrakcyjna, ale wynika z niepoprawnego zastosowania wzorów lub nieprawidłowego zrozumienia poślizgu silnika. W rzeczywistości, prędkość obrotowa pola magnetycznego jest ściśle związana z częstotliwością zasilania i liczbą par biegunów. W przypadku silników indukcyjnych pracujących na częstotliwości 50 Hz z 4 parami biegunów, prędkość teoretyczna wynosi 1500 obr./min. Zboczenie od tej wartości bez uwzględnienia poślizgu jest najczęstszym błędem. Odpowiedzi 1450 obr./min oraz 1500 obr./min również nie są właściwe, ponieważ nie uwzględniają realiów pracy silników, gdzie poślizg powoduje, że rzeczywista prędkość obrotowa w warunkach roboczych jest niższa. Kluczowym błędem jest niewłaściwe zrozumienie mechanizmu działania silnika indukcyjnego oraz roli, jaką odgrywa poślizg w jego pracy. Warto zatem zwrócić uwagę na standardy, które ukierunkowują projektowanie i eksploatację silników, takie jak IEC 60034-1, które jasno definiują właściwości i parametry dotyczące wydajności tych urządzeń.