Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 maja 2025 20:29
  • Data zakończenia: 17 maja 2025 20:47

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. nawilżenie.
B. bicie osiowe.
C. temperaturę.
D. stan napięcia.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16

A. steruje kierunkiem przepływu oleju.
B. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
C. otwiera i zamyka przepływ oleju.
D. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 4

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 529 ?
B. 460 ?
C. 23 k?
D. 2,3 ?
Wynik 2,3 Ω to zdecydowanie za mało dla żarówki przy zadanym napięciu i mocy. To sugeruje, że żarówka by przewodziła ogromne prądy, co byłoby niebezpieczne. A 23 kΩ? No, to już za dużo, bo sugeruje, że żarówka w ogóle nie przewodzi prądu, co mija się z rzeczywistością. 460 Ω mogłoby być efektem złych obliczeń dotyczących mocy lub napięcia, ale to też nie pasuje do praktycznych zastosowań. W obliczeniach rezystancji trzeba brać pod uwagę zarówno napięcie, jak i moc, inaczej możemy dojść do błędnych konkluzji. Najczęstsze pomyłki to na przykład mylenie jednostek czy błędne przekształcanie wzorów. W projektowaniu obwodów niezwykle istotne jest, żeby dobrze rozumieć rezystancję komponentów, bo ma to wpływ na ich dobór, a przez to na wydajność i bezpieczeństwo całego systemu elektrycznego.

Pytanie 5

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozchodzenie się mgły olejowej w instalacji
B. odfiltrowanie cząstek stałych z powietrza
C. spływ kondensatu wodnego do najniższego punktu instalacji
D. rozbijanie kropli oleju strumieniem sprężonego powietrza
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 3 stopnie swobody
B. 4 stopnie swobody
C. 5 stopni swobody
D. 6 stopni swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Zainstalowanie dodatkowych zaworów bezpieczeństwa w systemie zasilającym zbiornik ciśnieniowy?

A. powiększa ryzyko związane z możliwością rozerwania zbiornika
B. ogranicza ryzyko wynikające z możliwości rozerwania zbiornika
C. nie wywiera wpływu na wzrost lub zmniejszenie ryzyka, jakie wynika z możliwości rozerwania zbiornika
D. całkowicie redukuje ryzyko, jakie wiąże się z możliwością rozerwania zbiornika
Montaż dodatkowych zaworów bezpieczeństwa w instalacji zasilającej zbiornik ciśnieniowy to naprawdę ważny krok, jeśli chodzi o bezpieczeństwo. Te zawory pomagają regulować ciśnienie wewnętrzne, co jest kluczowe, żeby nie doszło do rozerwania zbiornika. W praktyce, dobrze jest stosować zawory zgodnie z międzynarodowymi normami, na przykład ASME czy EN. Wyobraź sobie sytuację w zakładzie przemysłowym, gdzie pompy generują duże ciśnienie; wtedy zawory mogą odprowadzić nadmiar medium, co jest mega przydatne. No i oczywiście pamiętaj o regularnej konserwacji tych zaworów – to też wpływa na bezpieczeństwo całej operacji. Odpowiednio dobrane i zainstalowane zawory naprawdę mogą zmniejszyć ryzyko wypadków, co jest korzystne zarówno dla ludzi, jak i dla samej infrastruktury.

Pytanie 13

Jak należy przeprowadzić połączenie wciskowe skurczowe piasty z wałkiem?

A. Zastosować siłę, aby nasunąć jeden element na drugi w temperaturze otoczenia
B. Obniżyć temperaturę wałka, a następnie wyrównać temperaturę obu elementów po połączeniu
C. Obniżyć temperaturę obu elementów i połączyć je, stosując siłę
D. Podnieść temperaturę obu elementów, a następnie połączyć je z użyciem siły
Wykonanie połączenia wciskowego skurczowego polega na manipulacji temperaturą elementów, co jest kluczowe dla uzyskania odpowiednich właściwości mechanicznych. W metodzie obniżania temperatury wałka, jego średnica zmniejsza się, co umożliwia łatwe nasunięcie piasty na wałek. Po połączeniu, oba elementy powinny być podgrzane do temperatury roboczej, co prowadzi do ich rozszerzenia i zapewnia solidne, trwałe połączenie. Tego rodzaju połączenia są często stosowane w przemyśle motoryzacyjnym, maszynowym, a także w aplikacjach, gdzie wymagane są wysokie obciążenia i trwałość. Najlepsze praktyki w tym zakresie podkreślają znaczenie zachowania odpowiednich tolerancji oraz monitorowania procesów termicznych, co zapobiega odkształceniom i uszkodzeniom materiałów. Zastosowanie tej metody gwarantuje nie tylko solidność połączenia, ale również jego wysoką odporność na wibracje i zmiany temperatury, co jest niezbędne w dynamicznych warunkach pracy.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
B. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
C. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
D. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
Wszystkie podane odpowiedzi, które nie wskazują na właściwą kolejność elementów, wynikają z nieporozumień dotyczących funkcji poszczególnych składowych oraz ich wpływu na ogólne działanie układu pneumatycznego. W przypadku układu, w którym najpierw znajduje się zawór sterujący, reduktor ciśnienia lub układ smarowania, może to prowadzić do nieodpowiedniego ciśnienia lub zanieczyszczenia powietrza, co z kolei negatywnie wpływa na wydajność i trwałość silnika pneumatycznego. Przykładowo, zainstalowanie reduktora ciśnienia przed filtrem może skutkować zanieczyszczeniem mechanizmu redukcyjnego, co doprowadzi do jego uszkodzenia. Dodatkowo, umiejscowienie układu smarowania na początku, bez uprzedniego oczyszczenia powietrza, prowadzi do wprowadzenia do układu zanieczyszczeń, które mogą zatykać smarownice, a tym samym obniżać efektywność smarowania. Właściwa kolejność montażu nie tylko zwiększa bezpieczeństwo operacyjne, ale również jest zgodna z normami branżowymi, które podkreślają znaczenie odpowiedniego przygotowania mediów roboczych w systemach pneumatycznych. Typowym błędem myślowym jest założenie, że elementy te mogą być montowane w dowolnej kolejności, co jest sprzeczne z zasadami inżynierii pneumatycznej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. widoczności.
B. pomieszczeniu, gdzie znajduje się stanowisko pracy.
C. zasięgu ręki.
D. zapleczu zakładu pracy.
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 20

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. narzędzi do obróbki skrawaniem
B. resorów, sprężyn i drążków skrętnych
C. łożysk tocznych
D. śrub, nakrętek, podkładek
Wybór łożysk tocznych jako zastosowania stali niskostopowej z dodatkami krzemu, manganu, chromu i wanadu jest błędny, ponieważ łożyska wymagają materiałów o specyficznych właściwościach, takich jak wysoka odporność na ścieranie oraz niska ścieralność, co często osiąga się poprzez zastosowanie stali węglowej lub stali narzędziowej. Ponadto, w przypadku łożysk tocznych, kluczowe jest, aby materiał miał odpowiednią mikrostrukturę, co można osiągnąć poprzez obróbkę cieplną, a nie przez zwykłe dodatki stopowe. Natomiast odpowiedź dotycząca śrub, nakrętek i podkładek, mimo że te elementy również muszą być wytrzymałe, z reguły wykorzystują stal o wyższej zawartości węgla, co zapewnia lepsze właściwości mechaniczne w kontekście złącz. Odpowiedzi sugerujące narzędzia do obróbki skrawaniem są także niepoprawne, ponieważ takie narzędzia wymagają materiałów odpornych na wysokie temperatury i ścieranie, a nie stali niskostopowej, której temperatury pracy są ograniczone. Przykłady tych błędów wskazują na niedostateczne zrozumienie właściwości różnych rodzajów stali oraz ich zastosowań, co prowadzi do niepoprawnych wniosków i wyborów materiałowych w branży inżynieryjnej.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. trójdrogowy trójpołożeniowy (3/3)
D. trójdrogowy dwupołożeniowy (3/2)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Obniżyć temperaturę koła pasowego i wału
B. Podgrzać wał i schłodzić koło pasowe
C. Podgrzać koło pasowe oraz wał
D. Podgrzać koło pasowe i schłodzić wał
Rozgrzanie koła pasowego i schłodzenie wału to technika stosowana w celu uzyskania odpowiedniego pasowania między tymi elementami. Kiedy koło pasowe jest podgrzewane, jego średnica zwiększa się, co pozwala na jego łatwe nałożenie na wał. Z kolei schłodzenie wału powoduje jego kurczenie, co dodatkowo ułatwia proces montażu. Po zakończeniu procesu chłodzenia wał wraca do pierwotnych wymiarów, a koło pasowe, które stygło, kurczy się, mocno przylegając do wału. Tego typu pasowanie nazywa się pasowaniem cieplnym i jest szeroko stosowane w przemyśle, zwłaszcza w przypadku montażu wałów napędowych i innych elementów ruchomych. Przykładem praktycznego zastosowania tej metody jest montaż kół pasowych w silnikach spalinowych, gdzie precyzyjne dopasowanie elementów ma kluczowe znaczenie dla ich wydajności oraz żywotności. Warto także zauważyć, że ta procedura powinna być przeprowadzana zgodnie z zaleceniami producentów, aby zapewnić optymalne efekty oraz uniknąć uszkodzenia elementów.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. synchroniczne
B. bocznikowe
C. obcowzbudne
D. szeregowe
Silniki prądu stałego szeregowe charakteryzują się tym, że uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem wirnika. Taki układ oznacza, że prąd płynący przez wirnik jest również tym samym prądem, który zasila uzwojenie wzbudzenia. W rezultacie, przy rozruchu silnika szeregowego, w momencie zerowej prędkości obrotowej, prąd osiąga wartość maksymalną, co generuje bardzo duży moment obrotowy. Jest to szczególnie istotne w zastosowaniach, gdzie wymagany jest wysoki moment startowy, na przykład w napędzie dźwigów, taśmociągów czy wózków widłowych. W kontekście standardów przemysłowych, silniki te często stosowane są w aplikacjach, gdzie wymagane jest szybkie pokonywanie oporów, co czyni je niezastąpionymi w wielu dziedzinach przemysłu. Dodatkowo, ich prosta konstrukcja oraz stosunkowo niskie koszty produkcji sprawiają, że są popularnym wyborem w wielu zastosowaniach.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który z poniższych czujników mierzących powinien być użyty do określenia wartości ciśnienia w zbiorniku sprężonego powietrza oraz do przesłania danych do sterownika PLC z analogowymi wejściami?

A. Czujnik manometryczny
B. Czujnik termoelektryczny
C. Czujnik piezorezystancyjny
D. Czujnik ultradźwiękowy
Czujnik piezorezystancyjny jest idealnym rozwiązaniem do pomiaru ciśnienia w zbiorniku sprężonego powietrza z kilku powodów. Po pierwsze, jego zasada działania opiera się na zmianie oporu elektrycznego materiału piezorezystancyjnego w odpowiedzi na zmieniające się ciśnienie. Dzięki temu, czujniki te charakteryzują się wysoką dokładnością oraz szybkim czasem reakcji, co jest kluczowe w aplikacjach przemysłowych. Piezorezystancyjne czujniki ciśnienia można zintegrować z systemem PLC za pomocą analogowych sygnałów, co umożliwia ciągły monitoring i kontrolę procesów. Przykładowo, w systemach automatyki przemysłowej często wykorzystuje się je do kontrolowania ciśnienia w układach pneumatycznych, co pozwala na precyzyjne zarządzanie pracą urządzeń. Dodatkowo, czujniki te są zgodne z międzynarodowymi normami, co zapewnia ich niezawodność i bezpieczeństwo działania w trudnych warunkach. W kontekście stosowania czujników piezorezystancyjnych, warto również wspomnieć o ich zdolności do pracy w szerokim zakresie ciśnień oraz temperatur, co czyni je uniwersalnym narzędziem w wielu aplikacjach przemysłowych.

Pytanie 35

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (231)10
B. (230)10
C. (255)10
D. (254)10
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.